earth online

BROWSE RESULTS BY CATEGORY

All categories

You are currently viewing the newest articles added to the Earth Online portal. Go to other tabs to narrow down your results by specific types of content.
  • FDR4ATMOS - New ESA FDR for Atmospheric composition dataset from ERS-2 GOME and Envisat SCIAMACHY

    In addition to releasing new datasets for Envisat SCIAMACHY, the European Space Agency (ESA) has advanced the earth observation capabilities by developing an experimental product under the ESA FDR4ATMOS project (Fundamental Data Records in the domain of satellite Atmospheric Composition).

  • Fundamental Data Record for Atmospheric Composition [ATMOS__L1B]

    The Fundamental Data Record (FDR) for Atmospheric Composition UVN v.1.0 dataset is a cross-instrument Level-1 product [ATMOS__L1B] generated in 2023 and resulting from the ESA FDR4ATMOS project. The FDR contains selected Earth Observation Level 1b parameters (irradiance/reflectance) from the nadir-looking measurements of the ERS-2 GOME and Envisat SCIAMACHY missions for the period ranging from 1995 to 2012. The data record offers harmonised cross-calibrated spectra with focus on spectral windows in the Ultraviolet-Visible-Near Infrared regions for the retrieval of critical atmospheric constituents like ozone (O3), sulphur dioxide (SO2), nitrogen dioxide (NO2) column densities, alongside cloud parameters. The FDR4ATMOS products should be regarded as experimental due to the innovative approach and the current use of a limited-sized test dataset to investigate the impact of harmonization on the Level 2 target species, specifically SO2, O3 and NO2. Presently, this analysis is being carried out within follow-on activities. The FDR4ATMOS V1 is currently being extended to include the MetOp GOME-2 series. Product format For many aspects, the FDR product has improved compared to the existing individual mission datasets: GOME solar irradiances are harmonised using a validated SCIAMACHY solar reference spectrum, solving the problem of the fast-changing etalon present in the original GOME Level 1b data; Reflectances for both GOME and SCIAMACHY are provided in the FDR product. GOME reflectances are harmonised to degradation-corrected SCIAMACHY values, using collocated data from the CEOS PIC sites; SCIAMACHY data are scaled to the lowest integration time within the spectral band using high-frequency PMD measurements from the same wavelength range. This simplifies the use of the SCIAMACHY spectra which were split in a complex cluster structure (with own integration time) in the original Level 1b data; The harmonization process applied mitigates the viewing angle dependency observed in the UV spectral region for GOME data; Uncertainties are provided. Each FDR product provides, within the same file, irradiance/reflectance data for UV-VIS-NIR special regions across all orbits on a single day, including therein information from the individual ERS-2 GOME and Envisat SCIAMACHY measurements. FDR has been generated in two formats: Level 1A and Level 1B targeting expert users and nominal applications respectively. The Level 1A [ATMOS__L1A] data include additional parameters such as harmonisation factors, PMD, and polarisation data extracted from the original mission Level 1 products. The ATMOS__L1A dataset is not part of the nominal dissemination to users. In case of specific requirements, please contact EOHelp. Please refer to the README file for essential guidance before using the data. All the new products are conveniently formatted in NetCDF. Free standard tools, such as Panoply, can be used to read NetCDF data. Panoply is sourced and updated by external entities. For further details, please consult our Terms and Conditions page. Uncertainty characterisation One of the main aspects of the project was the characterization of Level 1 uncertainties for both instruments, based on metrological best practices. The following documents are provided: General guidance on a metrological approach to Fundamental Data Records (FDR) Uncertainty Characterisation document Effect tables NetCDF files containing example uncertainty propagation analysis and spectral error correlation matrices for SCIAMACHY (Atlantic and Mauretania scene for 2003 and 2010) and GOME (Atlantic scene for 2003) reflectance_uncertainty_example_FDR4ATMOS_GOME.nc reflectance_uncertainty_example_FDR4ATMOS_SCIA.nc

  • Release of new Envisat SCIAMACHY reprocessed data

    ESA's Envisat SCIAMACHY mission, which ended operations in 2012, continues to yield valuable scientific insights through ongoing data reprocessing efforts.

  • Envisat SCIAMACHY Level 2 [SCI_____2P]

    This Envisat SCIAMACHY Level 2 Total column densities and stratospheric profiles v7.1 dataset is generated from the full mission reprocessing campaign completed in 2023 under the ESA FDR4ATMOS project. It provides atmospheric columnar distributions and stratospheric profiles for various trace gases based on the Level 1b version 10 products. This SCIAMACHY Level 2 dataset contains total column densities of O3, NO2, OClO, H2O, SO2, BrO, CO, HCHO, CHOCHO and CH4 retrieved from Nadir measurements. Additionally, cloud parameters (fractional coverage, top height, optical thickness) and an aerosol absorption indicator are enclosed. Stratospheric profiles of O3, NO2, and BrO are derived from limb measurements, along with flagging information for different cloud-types. Tropospheric NO2 and BrO columns are retrieved combining limb and nadir measurements. This SCIAMACHY Level 2 dataset version 7.1 replaces the previous version 6.01. Users are strongly encouraged to make use of the new datasets for optimal results. For limb O3 profiles, a separate product derived from the previous Version 6 processor is provided distinctly -> SCIAMACHY Level 2 - Limb Ozone [SCI_LIMBO3]. This is because the V7.1 limb ozone data is unsuitable for long-term change studies due to its divergent behavior from earlier processor versions, particularly from 2009 onwards. This divergence stems from residual deficiencies in the Level 1, resulting in a vertical oscillating pattern in the drift and bias profiles. In contrast, Version 6 limb ozone data does not exhibit these oscillations in bias and drift. Further details on this issue can be found in the latest README file. The new products are conveniently formatted in NetCDF. Free standard tools, such as Panoply, can be used to read NetCDF data. Panoply is sourced and updated by external entities. For further details, please consult our Terms and Conditions page. Please refer to the README file for essential guidance before using the data.

  • Envisat SCIAMACHY Level 2 - Limb Ozone [SCI_LIMBO3]

    This Envisat SCIAMACHY Ozone stratospheric profiles dataset has been extracted from the previous baseline (v6.01) of the SCIAMACHY Level 2 data. The dataset is generated in the framework of the full mission reprocessing campaign completed in 2023 under the ESA FDR4ATMOS project. For optimal results, users are strongly encouraged to make use of these specific ozone limb profiles rather than the ones contained in the SCIAMACHY Level 2 dataset version 7.1. The new products are conveniently formatted in NetCDF. Free standard tools, such as Panoply, can be used to read NetCDF data. Panoply is sourced and updated by external entities. For further details, please consult our Terms and Conditions page. Please refer to the README file (L2 v6.01) for essential guidance before using the data.

  • Envisat SCIAMACHY Level 1b [SCI_____1P]

    This Envisat SCIAMACHY Level 1b Geo-located atmospheric spectra V.10 dataset is generated from the full mission reprocessing campaign completed in 2023 under the ESA FDR4ATMOS project. This data product contains SCIAMACHY geo-located (ir)radiance spectra for Nadir, Limb, and Occultation measurements (Level 1), accompanied by supplementary monitoring and calibration measurements, along with instrumental parameters detailing the operational status and configuration throughout the Envisat satellite lifetime (2002-2012). Additionally, calibrated lunar measurements, including individual readings and averaged disk measurements, have been integrated into the Level 1b product. The Level 1b product represents the lowest level of SCIAMACHY data made available to the users. The measurements undergo correction for instrument degradation applying a scan mirror model and m-factors. However, spectra are partially calibrated and require a further step to apply specific calibrations with the SCIAMACHY Calibration and Extraction Tool [SciaL1c]. For many aspects, the SCIAMACHY Level 1b version 10 product marks a significant improvement with respect to previous mission datasets, supplanting the Level 1b dataset version 8.0X with product type SCI_NL__1P. Users are strongly encouraged to make use of the new datasets for optimal results. The new products are conveniently formatted in NetCDF. Free standard tools, such as Panoply, can be used to read NetCDF data. Panoply is sourced and updated by external entities. For further details, please consult our Terms and Conditions page. Please refer to the README file for essential guidance before using the data.

  • ERS ATSR fourth Reprocessing datasets available to users

    The fourth Reprocessing of the ATSR L1B datasets derived from the ERS-1 and ERS-2 satellites have now been released to users by the European Space Agency (ESA).

  • ERS ATSR L1B Brightness Temperature/Radiance [ER1_AT_1_RBT / ER2_AT_1_RBT]

    Band measurements with associated uncertainty estimates. The ERS-1/2 ATSR Level 1B Brightness Temperature/Radiance products (RBT) contain top of atmosphere (TOA) brightness temperature (BT) values for the infra-red channels and radiance values for the visible channels, when available, on a 1-km pixel grid. The visible channels are only available for the ATSR-2 instrument. Values for each channel and for the nadir and oblique views occupy separate NetCDF files within the Sentinel-SAFE format, along with associated uncertainty estimates. Additional files contain cloud flags, land and water masks, and confidence flags for each image pixel, as well as instrument and ancillary meteorological information. The ATSR-1 and ATSR-2 products [ER1_AT_1_RBT and ER2_AT_1_RBT], in NetCDF format stemming from the 4th ATSR reprocessing, are precursors of Envisat AATSR and Sentinel-3 SLSTR data. They have replaced the former L1B products [AT1_TOA_1P and AT2_TOA_1P] in Envisat format from the 3rd reprocessing. Users with Envisat-format products are recommended to move to the new Sentinel-SAFE like/NetCDF format products, and consult the ERS ATSR Product Notice Readme document. The processing updates that have been put in place and the expected scientific improvements for the ERS ATSR 4th reprocessing data have been outlined in full in the User Documentation for (A)ATSR 4th Reprocessing Products

  • GOSAT-2 FTS-2 observations suspended from 10 to 31 May 2024

    Due to an upcoming inclination control manoeuvre to be conducted by JAXA on the GOSAT-2 satellite, the FTS-2 sensor observations will be suspended from Friday 10 May to Friday 31 May 2024.

  • ESA's improved Earth system data records: what is in store for the future?

    Fundamental Data Records (FDRs) are instrumental in advancing our understanding of Earth systems and for addressing societal challenges effectively. These long-term records contain uncertainty-quantified, calibrated and geo-located multi-instrument/multi-platform satellite sensor data spanning several decades to support climate-related applications.

  • Trailblazing ERS-2 mission enables climate change applications

    As ESA’s ERS-2 satellite approaches Earth’s atmosphere for reentry, it’s time to reflect on the mission’s great achievements in powering climate-related applications.

  • Global remote sensing of greenhouse gases ramps up

    With growing pressure to reduce the amount of greenhouse gases released into the atmosphere, recent research studies using the carbon dioxide monitoring TanSat mission are timely.

  • GOSAT – TANSO-FTS observations unavailability

    Due to an inclination control manoeuvre of the JAXA GOSAT-1 satellite, the TANSO-FTS sensor observations have been suspended.

  • Key facts about Canada's ozone-studying SCISAT mission

    Learn about the SCISAT mission in our new infographic.

  • TanSat AGCS and CAPI products now available for users

    In the framework of Earthnet’s Third Party Missions Programme, ESA is opening a new TanSat collection to users, freely accessible and available worldwide upon submission of a fast registration.

  • TanSat AGCS and CAPI products

    The Atmospheric Carbon-dioxide Grating Spectrometer (ACGS) instrument is pushbroom spectrometer operating in NIR and SWIR bands which allows the measuring of CO2 mole fraction. The available ACGS products have a temporal coverage between March 2017 and January 2020 (not all days included in the time frame): L1A DS: Sample Dark Calibration sample product L1A GL: Sample Glint Sample products L1A LS: Sample Lamp Calibration sample product L1A ND: Principal-Plane Nadir Sample product L1A ZS: Sample Z-Axis Solar Calibration Sample L1B CAL DS: Sample Dark Calibration product L1B CAL LS: Sample Lamp Calibration product L1B CAL ZS: Sample Z-Axis Solar Calibration product L1B SCI GL: Sample Glint Science product L1B SCI ND: Principal-Plane Nadir Science product. The Cloud Aerosol Polarization Imager (CAPI) is a pushbroom radiometer in VIS, NIR and SWIR bands for the observation of aerosols and clouds optical properties. The CAPI products are available in a time range from July 2019 and January 2020 (not all days included in the time frame): L1A ND: Principal-Plane Nadir product L1B ND 1000M: Principal-Plane Nadir products at 1000 m resolution (1375 nm, 1640 nm) L1B ND 250M: Principal-Plane Nadir products at 250 m resolution (380 nm, 670 nm, 870 nm) L1B ND GEOQK: Principal-Plane Nadir georeferenced at 250 m resolution L1B ND GEO1K: Principal-Plane Nadir georeferenced at 1000 m resolution L1B ND OBC: Principal-Plane Nadir on-board calibrator product L2 ND CLM: Principal-Plane Nadir cloud flag product.

  • Satellites track the health of the ozone layer

    ESA’s Earth observation activities are contributing to international efforts to monitor and preserve the layer of stratospheric ozone that blankets the planet.

  • Transforming space data into climate action

    ESA’s Earth observation activities are playing a key role in the revitalised global drive to combat climate change.

  • Data preservation takes centre stage at Living Planet Symposium

    Against the backdrop of the famed Rhine River, world-class scientists and Earth observation data-users are gathered this week in the historical city of Bonn, at the Living Planet Symposium (LPS).

  • Space data help to unravel the complexities of Earth’s atmosphere

    As the impacts of the climate crisis intensify, scientists are using ESA’s Earth observation archives to investigate atmospheric processes and their influences on the planet’s changing environment.