earth online

BROWSE RESULTS BY CATEGORY

All categories

You are currently viewing the newest articles added to the Earth Online portal. Go to other tabs to narrow down your results by specific types of content.
  • FDR4ATMOS - New ESA FDR for Atmospheric composition dataset from ERS-2 GOME and Envisat SCIAMACHY

    In addition to releasing new datasets for Envisat SCIAMACHY, the European Space Agency (ESA) has advanced the earth observation capabilities by developing an experimental product under the ESA FDR4ATMOS project (Fundamental Data Records in the domain of satellite Atmospheric Composition).

  • Fundamental Data Record for Atmospheric Composition [ATMOS__L1B]

    The Fundamental Data Record (FDR) for Atmospheric Composition UVN v.1.0 dataset is a cross-instrument Level-1 product [ATMOS__L1B] generated in 2023 and resulting from the ESA FDR4ATMOS project. The FDR contains selected Earth Observation Level 1b parameters (irradiance/reflectance) from the nadir-looking measurements of the ERS-2 GOME and Envisat SCIAMACHY missions for the period ranging from 1995 to 2012. The data record offers harmonised cross-calibrated spectra with focus on spectral windows in the Ultraviolet-Visible-Near Infrared regions for the retrieval of critical atmospheric constituents like ozone (O3), sulphur dioxide (SO2), nitrogen dioxide (NO2) column densities, alongside cloud parameters. The FDR4ATMOS products should be regarded as experimental due to the innovative approach and the current use of a limited-sized test dataset to investigate the impact of harmonization on the Level 2 target species, specifically SO2, O3 and NO2. Presently, this analysis is being carried out within follow-on activities. The FDR4ATMOS V1 is currently being extended to include the MetOp GOME-2 series. Product format For many aspects, the FDR product has improved compared to the existing individual mission datasets: GOME solar irradiances are harmonised using a validated SCIAMACHY solar reference spectrum, solving the problem of the fast-changing etalon present in the original GOME Level 1b data; Reflectances for both GOME and SCIAMACHY are provided in the FDR product. GOME reflectances are harmonised to degradation-corrected SCIAMACHY values, using collocated data from the CEOS PIC sites; SCIAMACHY data are scaled to the lowest integration time within the spectral band using high-frequency PMD measurements from the same wavelength range. This simplifies the use of the SCIAMACHY spectra which were split in a complex cluster structure (with own integration time) in the original Level 1b data; The harmonization process applied mitigates the viewing angle dependency observed in the UV spectral region for GOME data; Uncertainties are provided. Each FDR product provides, within the same file, irradiance/reflectance data for UV-VIS-NIR special regions across all orbits on a single day, including therein information from the individual ERS-2 GOME and Envisat SCIAMACHY measurements. FDR has been generated in two formats: Level 1A and Level 1B targeting expert users and nominal applications respectively. The Level 1A [ATMOS__L1A] data include additional parameters such as harmonisation factors, PMD, and polarisation data extracted from the original mission Level 1 products. The ATMOS__L1A dataset is not part of the nominal dissemination to users. In case of specific requirements, please contact EOHelp. Please refer to the README file for essential guidance before using the data. All the new products are conveniently formatted in NetCDF. Free standard tools, such as Panoply, can be used to read NetCDF data. Panoply is sourced and updated by external entities. For further details, please consult our Terms and Conditions page. Uncertainty characterisation One of the main aspects of the project was the characterization of Level 1 uncertainties for both instruments, based on metrological best practices. The following documents are provided: General guidance on a metrological approach to Fundamental Data Records (FDR) Uncertainty Characterisation document Effect tables NetCDF files containing example uncertainty propagation analysis and spectral error correlation matrices for SCIAMACHY (Atlantic and Mauretania scene for 2003 and 2010) and GOME (Atlantic scene for 2003) reflectance_uncertainty_example_FDR4ATMOS_GOME.nc reflectance_uncertainty_example_FDR4ATMOS_SCIA.nc

  • New campaign dataset for IceSAR 2019

    A new dataset has been released for the IceSAR campaign, involving X-, C-, and L-band radar data acquired over the Arctic in 2019.

  • IceSAR 2019

    The ICESAR 2019 study was motivated by the need to improve the understanding of radar backscatter of sea ice at different wavelengths and polarisations.

  • HM-ATMOS scheduled maintenance on 04 June 2024

    A software maintenance activity has been scheduled for HM-ATMOS OADS instance on Tuesday 04 June 2024 from 07:30 to 08:30 UTC.

  • ESA's improved Earth system data records: what is in store for the future?

    Fundamental Data Records (FDRs) are instrumental in advancing our understanding of Earth systems and for addressing societal challenges effectively. These long-term records contain uncertainty-quantified, calibrated and geo-located multi-instrument/multi-platform satellite sensor data spanning several decades to support climate-related applications.

  • Trailblazing ERS-2 mission enables climate change applications

    As ESA’s ERS-2 satellite approaches Earth’s atmosphere for reentry, it’s time to reflect on the mission’s great achievements in powering climate-related applications.

  • Change of access to FTP-S for ERS and Envisat atmospheric and low-rate data

    As of 13 December 2023, access to a series of ERS and Envisat atmospheric and low rate data collections changed from simple FTP to FTP-S.

  • Long-term satellite data show wind farms can affect local air currents

    Decades of satellite data have allowed for the first long-term study of the impact of offshore wind farms on downstream wind flow in coastal areas.

  • ICEYE ESA archive

    The ICEYE ESA archive collection consists of ICEYE Level 1 products requested by ESA supported projects over their areas of interest around the world. The dataset regularly grows as ESA collects new products over the years. Three different modes are available: Spot: With a slant resolution of 50 cm in range by 25 cm in azimuth that translated into the ground generates a ground resolution of 1 m over an area of 5 km x 5 km. Due to multi-looking, speckle noise is significantly reduced Strip: The ground swath is 30 x 50 km2 and the ground range resolution is 3 m Scan: A large area (100 km x 100 km is acquired with ground resolution of 15 m). Two different processing levels: Single Look Complex (SLC): Level 1A geo-referenced product and stored in the satellite's native image acquisition geometry (the slant imaging plane) Ground Range Detected (GRD): Level 1B product; detected, multi-looked and projected to ground range using an Earth ellipsoid model; the image coordinates are oriented along the flight direction and along the ground range; no image rotation to a map coordinate system is performed, interpolation artefacts not introduced. The following table defines the offered product types: EO-SIP Product Type Mode Processing level XN_SM__SLC Strip Single Look Complex (SLC) - Level 1A XN_SM__GRD Strip Ground Range Detected (GRD) - Level 1B XN_SL__SLC Spot Single Look Complex (SLC) - Level 1A XN_SL__GRD Spot Ground Range Detected (GRD) - Level 1B XN_SR__GRD Scan Ground Range Detected (GRD) - Level 1B As per ESA policy, very high-resolution data over conflict areas cannot be provided.

  • Satellites track the health of the ozone layer

    ESA’s Earth observation activities are contributing to international efforts to monitor and preserve the layer of stratospheric ozone that blankets the planet.

  • Transforming space data into climate action

    ESA’s Earth observation activities are playing a key role in the revitalised global drive to combat climate change.

  • Interviewing Mirko Albani

    ESA’s Heritage Space Programme Manager describes the goals of the programme, some of the challenges involved in preserving and improving 40 years of historical Earth observation data, and his passion for curating this long-term archive.

  • Introducing Mirko Albani

    In this short introduction, ESA's Heritage Missions Programme Manager describes what he likes most about ESA's long term archive of satellite mission data and his role in the programme.

  • TerraSAR-X/TanDEM-X WorldDEM data now available to users

    WorldDEM products have been added to the TerraSAR-X/TanDEM-X offering and are now available to users for research and application development following submission of a project proposal subject to evaluation and acceptance by ESA and the data owner.

  • Earth Observation data to improve navigation risk modelling and shipping routes

    With the increased frequency of shipping activities, such as tourism and transport of freights, navigation safety has become a major concern. Even if new technologies have already supplied aids to pilots for navigation risk reduction, the International Maritime Organisation (IMO) reports that the majority of accidents could have been avoided by providing suitable input to the navigation decision-making process — this is where Earth Observation data can represent complementary information, to improve traffic monitoring and guidance along safe routes.

  • ERS Heritage Data allow for 30 years of science

    At their time of launch thirty years ago, the two ERS satellites were the most sophisticated Earth observation spacecraft ever developed and launched by Europe.

  • ERS - ESA’s first Earth observation satellites

    To mark the 30th anniversary of ERS, we've released a new infographic summarising the mission.

  • ICEYE full archive and tasking

    ICEYE full archive and new tasking products are available in Strip, Spot, SLEA (Spot Extended Area), Scan, and Dwell modes: Strip instrument mode: the ground swath is illuminated with a continuous sequence of pulses while the antenna beam is fixed in its orientation. This results in a long image strip parallel to the flight direction: the transmitted pulse bandwidth is adjusted to always achieve a ground range resolution of 3 m Spot instrument mode: the radar beam is steered to illuminate a fixed point to increase the illumination time, resulting in an extended Synthetic aperture length, which improves the azimuth resolution. Spot mode uses a 300 MHz pulse bandwidth and provides a slant plane image with a resolution of 0.5 m (range) by 0.25 m (azimuth); when translated into the ground, the products has 1 m resolution covering an area of 5 km x 5 km. Due to multi-looking, speckle noise is significantly reduced As an evolution of Spot mode, SLEA (Spot Extended Area) products are available with the same resolution of Spot data but a scene size of 15 km x 15 km Scan Instrument mode: the phased array antenna is used to create multiple beams in the elevation direction which allows to acquire a large area (100km x 100km) with resolution better than 15m. To achieve the finest image quality of its Scan image, ICEYE employs a TOPSAR technique, which brings major benefits over the quality of the images obtained with conventional SCANSAR imaging. With the 2-dimensional electronic beam steering, TOPSAR ensures the maximum radar power distribution in the scene, providing uniform image quality. Dwell mode: with the satellite staring at the same location for up to 25 seconds, Dwell mode is a very long Spot mode SAR collection. This yields a very fine azimuth resolution and highly-reduced speckle. The 25 second collection time allows the acquired image stack to be reconstructed as a video to give insight into the movement of objects. Two different processing levels can be requested: Single Look Complex (SLC): Single Look Complex (SLC) Level 1a products consist of focused SAR data geo-referenced using orbit and attitude data from the satellite and the scenes are stored in the satellite's native image acquisition geometry which is the slant-range-by-azimuth imaging plane and with zero-Doppler SAR coordinates. The pixels are spaced equidistant in azimuth and in slant range. The products include a single look in each dimension using the full transmit signal bandwidth and consist of complex magnitude value samples preserving both amplitude and phase information. No radiometric artefacts induced by spatial resampling or geocoding. The product is provided in Hierarchical Data Format (HDF5) plus a xml file with selected metadata Ground Range Detected (GRD): Ground Range Detected (GRD) Level 1b products consist of focused SAR data that has been detected, multi-looked and projected to ground range using an Earth ellipsoid model. The image coordinates are oriented along the flight direction and along the ground range. Pixel values represent detected magnitude, the phase information is lost. The resulting product has approximately square spatial resolution pixels and square pixel spacing with reduced speckle due to the multi-look processing at the cost of worse spatial resolution. No image rotation to a map coordinate system has been performed and interpolation artefacts are thus avoided. The product is provided in GeoTiff plus a xml file with selected metadata. Strip Spot SLEA Scan Dwell Ground range resolution (GRD) 3 m 1 m 1 m 15 m 1 Ground azimuth resolution (GRD) 3 m 1 m 1 m 15 m 1 Slant range resolution (SLC) 0.5 m - 2.5 m 0.5 m 0.5 m 0.5 m Slant azimuth resolution (SLC) 3 m 0.25 m 1 m 0.05 m Scene size (W x L) 30 x 50 km2 5 x 5 km2 15 x 15 km2 100 x 100 km2 5 x 5 km2 Incident angle 15 - 30° 20 - 35° 20 - 35° 21 - 29° 20 - 35° Polarisation VV All details about the data provision, data access conditions and quota assignment procedure are described in the ICEYE Terms of Applicability. In addition, ICEYE has released a public catalogue that contains nearly 18,000 thumbnails under a creative common license of radar images acquired with ICEYE's SAR satellite constellation all around the world from 2019 until October 2020. Access to the catalogue requires registration. As per ESA policy, very high-resolution data over conflict areas cannot be provided.

  • GOME Total Column Water Vapour Climate product

    The GOME Total Column Water Vapour (TCWV) Climate product was generated by the Max Planck Institute for Chemistry (MPIC), and the German Aerospace Center (DLR) within the ESA GOME-Evolution project. It is a Level 3 type product containing homogenized time-series of the global distribution of TCWV spanning over more than two decades (1995-2015). The data is provided as single netCDF file, containing monthly mean TCWV (units kg/m2) with 1-degree resolution, and is based on measurements from the satellite instruments ERS-2 GOME, Envisat SCIAMACHY, and MetOp-A GOME-2. Details are available in the paper by Beirle et al, 2018. Please also consult the GOME TCWV Product Quality Readme file before using the data.