earth online

BROWSE RESULTS BY CATEGORY

DATA

Discover and download the Earth observation data you need from the broad catalogue of missions the European Space Agency operate and support.
  • Fundamental Data Record for Atmospheric Composition [ATMOS__L1B]

    The Fundamental Data Record (FDR) for Atmospheric Composition UVN v.1.0 dataset is a cross-instrument Level-1 product [ATMOS__L1B] generated in 2023 and resulting from the ESA FDR4ATMOS project. The FDR contains selected Earth Observation Level 1b parameters (irradiance/reflectance) from the nadir-looking measurements of the ERS-2 GOME and Envisat SCIAMACHY missions for the period ranging from 1995 to 2012. The data record offers harmonised cross-calibrated spectra with focus on spectral windows in the Ultraviolet-Visible-Near Infrared regions for the retrieval of critical atmospheric constituents like ozone (O3), sulphur dioxide (SO2), nitrogen dioxide (NO2) column densities, alongside cloud parameters. The FDR4ATMOS products should be regarded as experimental due to the innovative approach and the current use of a limited-sized test dataset to investigate the impact of harmonization on the Level 2 target species, specifically SO2, O3 and NO2. Presently, this analysis is being carried out within follow-on activities. The FDR4ATMOS V1 is currently being extended to include the MetOp GOME-2 series. Product format For many aspects, the FDR product has improved compared to the existing individual mission datasets: GOME solar irradiances are harmonised using a validated SCIAMACHY solar reference spectrum, solving the problem of the fast-changing etalon present in the original GOME Level 1b data; Reflectances for both GOME and SCIAMACHY are provided in the FDR product. GOME reflectances are harmonised to degradation-corrected SCIAMACHY values, using collocated data from the CEOS PIC sites; SCIAMACHY data are scaled to the lowest integration time within the spectral band using high-frequency PMD measurements from the same wavelength range. This simplifies the use of the SCIAMACHY spectra which were split in a complex cluster structure (with own integration time) in the original Level 1b data; The harmonization process applied mitigates the viewing angle dependency observed in the UV spectral region for GOME data; Uncertainties are provided. Each FDR product provides, within the same file, irradiance/reflectance data for UV-VIS-NIR special regions across all orbits on a single day, including therein information from the individual ERS-2 GOME and Envisat SCIAMACHY measurements. FDR has been generated in two formats: Level 1A and Level 1B targeting expert users and nominal applications respectively. The Level 1A [ATMOS__L1A] data include additional parameters such as harmonisation factors, PMD, and polarisation data extracted from the original mission Level 1 products. The ATMOS__L1A dataset is not part of the nominal dissemination to users. In case of specific requirements, please contact EOHelp. Please refer to the README file for essential guidance before using the data. All the new products are conveniently formatted in NetCDF. Free standard tools, such as Panoply, can be used to read NetCDF data. Panoply is sourced and updated by external entities. For further details, please consult our Terms and Conditions page. Uncertainty characterisation One of the main aspects of the project was the characterization of Level 1 uncertainties for both instruments, based on metrological best practices. The following documents are provided: General guidance on a metrological approach to Fundamental Data Records (FDR) Uncertainty Characterisation document Effect tables NetCDF files containing example uncertainty propagation analysis and spectral error correlation matrices for SCIAMACHY (Atlantic and Mauretania scene for 2003 and 2010) and GOME (Atlantic scene for 2003) reflectance_uncertainty_example_FDR4ATMOS_GOME.nc reflectance_uncertainty_example_FDR4ATMOS_SCIA.nc

  • Envisat SCIAMACHY Level 2 [SCI_____2P]

    This Envisat SCIAMACHY Level 2 Total column densities and stratospheric profiles v7.1 dataset is generated from the full mission reprocessing campaign completed in 2023 under the ESA FDR4ATMOS project. It provides atmospheric columnar distributions and stratospheric profiles for various trace gases based on the Level 1b version 10 products. This SCIAMACHY Level 2 dataset contains total column densities of O3, NO2, OClO, H2O, SO2, BrO, CO, HCHO, CHOCHO and CH4 retrieved from Nadir measurements. Additionally, cloud parameters (fractional coverage, top height, optical thickness) and an aerosol absorption indicator are enclosed. Stratospheric profiles of O3, NO2, and BrO are derived from limb measurements, along with flagging information for different cloud-types. Tropospheric NO2 and BrO columns are retrieved combining limb and nadir measurements. This SCIAMACHY Level 2 dataset version 7.1 replaces the previous version 6.01. Users are strongly encouraged to make use of the new datasets for optimal results. For limb O3 profiles, a separate product derived from the previous Version 6 processor is provided distinctly -> SCIAMACHY Level 2 - Limb Ozone [SCI_LIMBO3]. This is because the V7.1 limb ozone data is unsuitable for long-term change studies due to its divergent behavior from earlier processor versions, particularly from 2009 onwards. This divergence stems from residual deficiencies in the Level 1, resulting in a vertical oscillating pattern in the drift and bias profiles. In contrast, Version 6 limb ozone data does not exhibit these oscillations in bias and drift. Further details on this issue can be found in the latest README file. The new products are conveniently formatted in NetCDF. Free standard tools, such as Panoply, can be used to read NetCDF data. Panoply is sourced and updated by external entities. For further details, please consult our Terms and Conditions page. Please refer to the README file for essential guidance before using the data.

  • Envisat SCIAMACHY Level 2 - Limb Ozone [SCI_LIMBO3]

    This Envisat SCIAMACHY Ozone stratospheric profiles dataset has been extracted from the previous baseline (v6.01) of the SCIAMACHY Level 2 data. The dataset is generated in the framework of the full mission reprocessing campaign completed in 2023 under the ESA FDR4ATMOS project. For optimal results, users are strongly encouraged to make use of these specific ozone limb profiles rather than the ones contained in the SCIAMACHY Level 2 dataset version 7.1. The new products are conveniently formatted in NetCDF. Free standard tools, such as Panoply, can be used to read NetCDF data. Panoply is sourced and updated by external entities. For further details, please consult our Terms and Conditions page. Please refer to the README file (L2 v6.01) for essential guidance before using the data.

  • Envisat SCIAMACHY Level 1b [SCI_____1P]

    This Envisat SCIAMACHY Level 1b Geo-located atmospheric spectra V.10 dataset is generated from the full mission reprocessing campaign completed in 2023 under the ESA FDR4ATMOS project. This data product contains SCIAMACHY geo-located (ir)radiance spectra for Nadir, Limb, and Occultation measurements (Level 1), accompanied by supplementary monitoring and calibration measurements, along with instrumental parameters detailing the operational status and configuration throughout the Envisat satellite lifetime (2002-2012). Additionally, calibrated lunar measurements, including individual readings and averaged disk measurements, have been integrated into the Level 1b product. The Level 1b product represents the lowest level of SCIAMACHY data made available to the users. The measurements undergo correction for instrument degradation applying a scan mirror model and m-factors. However, spectra are partially calibrated and require a further step to apply specific calibrations with the SCIAMACHY Calibration and Extraction Tool [SciaL1c]. For many aspects, the SCIAMACHY Level 1b version 10 product marks a significant improvement with respect to previous mission datasets, supplanting the Level 1b dataset version 8.0X with product type SCI_NL__1P. Users are strongly encouraged to make use of the new datasets for optimal results. The new products are conveniently formatted in NetCDF. Free standard tools, such as Panoply, can be used to read NetCDF data. Panoply is sourced and updated by external entities. For further details, please consult our Terms and Conditions page. Please refer to the README file for essential guidance before using the data.

  • Announcement of Opportunity for Spire data

    ESA is launching an Announcement of Opportunity for the international scientific community to access data from the Spire mission for science and applications development.

  • ERS ATSR L1B Brightness Temperature/Radiance [ER1_AT_1_RBT / ER2_AT_1_RBT]

    Band measurements with associated uncertainty estimates. The ERS-1/2 ATSR Level 1B Brightness Temperature/Radiance products (RBT) contain top of atmosphere (TOA) brightness temperature (BT) values for the infra-red channels and radiance values for the visible channels, when available, on a 1-km pixel grid. The visible channels are only available for the ATSR-2 instrument. Values for each channel and for the nadir and oblique views occupy separate NetCDF files within the Sentinel-SAFE format, along with associated uncertainty estimates. Additional files contain cloud flags, land and water masks, and confidence flags for each image pixel, as well as instrument and ancillary meteorological information. The ATSR-1 and ATSR-2 products [ER1_AT_1_RBT and ER2_AT_1_RBT], in NetCDF format stemming from the 4th ATSR reprocessing, are precursors of Envisat AATSR and Sentinel-3 SLSTR data. They have replaced the former L1B products [AT1_TOA_1P and AT2_TOA_1P] in Envisat format from the 3rd reprocessing. Users with Envisat-format products are recommended to move to the new Sentinel-SAFE like/NetCDF format products, and consult the ERS ATSR Product Notice Readme document. The processing updates that have been put in place and the expected scientific improvements for the ERS ATSR 4th reprocessing data have been outlined in full in the User Documentation for (A)ATSR 4th Reprocessing Products

  • FINESSE at Andøya 2023

    The Andøya campaign was undertaken in support of the Earth Explorer 9 Far-infrared Outgoing Radiation Understanding and Monitoring (FORUM) mission.

  • EarthCARE JAXA L2 Products

    This EarthCARE collection contains the following data products: Level 2a: Single-Instrument Geophysical Products These products are derived from individual instrument data onboard EarthCARE. They provide detailed geophysical parameters and properties specific to each instrument's capabilities for example cloud and aerosol properties derived solely from radar or lidar measurements, offering high-resolution insights into atmospheric phenomena. Level 2b: Synergistic Geophysical Products Level 2b products leverage data from multiple EarthCARE instruments to generate comprehensive, synergistic geophysical datasets. By combining measurements from instruments like radar, lidar, and radiometers, these products offer a more integrated view of cloud-aerosol interactions and atmospheric dynamics. Synergistic products provide enhanced accuracy and depth compared to single-instrument outputs, enabling detailed studies of complex atmospheric processes.

  • EarthCARE ESA L2 Products

    This EarthCARE collection contains the following data products: Level 2a: Single-Instrument Geophysical Products These products are derived from individual instrument data onboard EarthCARE. They provide detailed geophysical parameters and properties specific to each instrument's capabilities for example cloud and aerosol properties derived solely from radar or lidar measurements, offering high-resolution insights into atmospheric phenomena. Level 2b: Synergistic Geophysical Products Level 2b products leverage data from multiple EarthCARE instruments to generate comprehensive, synergistic geophysical datasets. By combining measurements from instruments like radar, lidar, and radiometers, these products offer a more integrated view of cloud-aerosol interactions and atmospheric dynamics. Synergistic products provide enhanced accuracy and depth compared to single-instrument outputs, enabling detailed studies of complex atmospheric processes.

  • EarthCARE L1 Products

    This EarthCARE collection contains the following data products: Level 1b: Fully Calibrated and Geolocated Instrument Science Measurements Level 1b data represents the fully processed, calibrated, and geolocated measurements from EarthCARE's instruments. Each measurement is aligned with the native instrument grid. For the Broadband Radiometer (BBR), measurements are also spatially integrated to various ground pixel sizes. Level 1c (MSI only): MSI Level 1b Data Interpolated to a Common Spatial Grid Specifically for the Multi-Spectral Imager (MSI), Level 1c data involves interpolating Level 1b measurements onto a standardised spatial grid that is consistent across all MSI bands. This grid closely matches the spacing used in MSI Level 1b data. Level 1d: Joint Standard Grid (JSG) for all instruments with ECMWF Meteorological Fields. Level 1d data provides a spatial grid to enable easy collocation and synergistic use of the data from all EarthCARE instruments, named the "joint standard grid." Additionally, this level incorporates ECMWF (European Centre for Medium-Range Weather Forecasts) meteorological fields limited to the EarthCARE swath, enabling comprehensive analysis and modelling of atmospheric conditions within the satellite's coverage area. CPR level 1b: C-NOM products is generated and provided by JAXA. This product is used as input, in combination with the X-MET aux file, for different processors in the EarthCARE production chain. AUX_MET_1D: meteorological analysis and forecast fields X-MET provided by ECMWF. This product is used as input, in combination with the C-NOM product, for different processors in the EarthCARE production chain.

  • EarthCARE Orbit Data

    EarthCARE data products encompass essential supporting auxiliary (AUX) and orbit data critical for accurate sensor data processing and analysis. Orbit data consists of on-board satellite data and orbital information predicted or determined by the Flight Operations Segment (FOS). For EarthCARE, this includes Reconstructed Orbit and Attitude Files, which provide detailed satellite positioning and orientation information. The integration of AUX and orbit data into EarthCARE's data processing workflow ensures the production of high-quality, scientifically valuable datasets for atmospheric research, climate modelling, and environmental monitoring.

  • EarthCARE ESA L2 Products for the Commissioning Team

    This EarthCARE collection contains the following data products: Level 2a: Single-Instrument Geophysical Products These products are derived from individual instrument data onboard EarthCARE. They provide detailed geophysical parameters and properties specific to each instrument's capabilities for example cloud and aerosol properties derived solely from radar or lidar measurements, offering high-resolution insights into atmospheric phenomena. Level 2b: Synergistic Geophysical Products Level 2b products leverage data from multiple EarthCARE instruments to generate comprehensive, synergistic geophysical datasets. By combining measurements from instruments like radar, lidar, and radiometers, these products offer a more integrated view of cloud-aerosol interactions and atmospheric dynamics. Synergistic products provide enhanced accuracy and depth compared to single-instrument outputs, enabling detailed studies of complex atmospheric processes.

  • EarthCARE Auxiliary Data for Cal/Val Users

    EarthCARE data products encompass essential supporting auxiliary (AUX) and orbit data critical for accurate sensor data processing and analysis. AUX data includes datasets used outside the primary Space Segment stream to apply corrections to sensor data. This comprises previously derived calibration parameters, ground control data, and digital elevation data. Calibration parameters ensure measurement accuracy, while ground control data aids in data validation, and digital elevation data enables precise geolocation. Orbit data consists of on-board satellite data and orbital information. For EarthCARE, this includes Reconstructed Orbit and Attitude Files, which provide detailed satellite positioning and orientation information. The integration of AUX and orbit data into EarthCARE's data processing workflow ensures the production of high-quality, scientifically valuable datasets for atmospheric research, climate modelling, and environmental monitoring.

  • EarthCARE L0 and L1 Products for the Commissioning Team

    This EarthCARE collection for the Commissioning Team contains the following data products: Level 0: Annotated Raw Instrument Source Packets These packets contain unprocessed data as generated by EarthCARE's instruments, annotated with basic metadata in front of each packet Level 1b: Fully Calibrated and Geolocated Instrument Measurements Level 1b products are fully processed, calibrated, and geolocated measurements from EarthCARE's instruments. Each measurement is aligned with the native instrument grid. For the Broadband Radiometer (BBR), measurements are also spatially integrated to various ground pixel sizes. Level 1C (MSI only): MSI Level 1b Data Interpolated to a Common Spatial Grid Specifically for the Multi-Spectral Imager (MSI), Level 1c data involves interpolating Level 1b measurements onto a standardised spatial grid that is consistent across all MSI bands. This grid closely matches the spacing used in MSI Level 1b data. Level 1D: Joint Standard Grid (JSG) for all Instruments and ECMWF Meteorological Fields Level 1d data provide a spatial grid to enable easy collocation and synergistic use of the data from all EarthCARE instruments, named the "joint standard grid." Additionally, this level incorporates ECMWF (European Centre for Medium-Range Weather Forecasts) meteorological fields limited to the EarthCARE swath, enabling comprehensive analysis and modelling of atmospheric conditions within the satellite's coverage area.

  • EarthCARE L1 Products for Cal/Val Users

    This EarthCARE collection is restrained, and contains the following data products: Level 1B: Fully Calibrated and Geolocated Instrument Science Measurements Level 1b data represents the fully processed, calibrated, and geolocated measurements from EarthCARE's instruments. Each measurement is aligned with the native instrument grid. For the Broadband Radiometer (BBR), measurements are also spatially integrated to various ground pixel sizes. Level 1C (MSI only): MSI Level 1b Data Interpolated to a Common Spatial Grid Specifically for the Multi-Spectral Imager (MSI), Level 1c data involves interpolating Level 1b measurements onto a standardised spatial grid that is consistent across all MSI bands. This grid closely matches the spacing used in MSI Level 1b data. Level 1D: Joint Standard Grid (JSG) for all instruments with ECMWF Meteorological Fields. Level 1d data provides a spatial grid to enable easy collocation and synergistic use of the data from all EarthCARE instruments, named the "joint standard grid." Additionally, this level incorporates ECMWF (European Centre for Medium-Range Weather Forecasts) meteorological fields limited to the EarthCARE swath, enabling comprehensive analysis and modelling of atmospheric conditions within the satellite's coverage area.

  • EarthCARE ESA L2 Products for Cal/Val Users

    This EarthCARE collection is restrained, and contains the following data products: Level 2a: Single-Instrument Geophysical Products These products are derived from individual instrument data onboard EarthCARE. They provide detailed geophysical parameters and properties specific to each instrument's capabilities for example cloud and aerosol properties derived solely from radar or lidar measurements, offering high-resolution insights into atmospheric phenomena. Level 2b: Synergistic Geophysical Products Synergistic Geophysical Products Level 2b products leverage data from multiple EarthCARE instruments to generate comprehensive, synergistic geophysical datasets. By combining measurements from instruments like radar, lidar, and radiometers, these products offer a more integrated view of cloud-aerosol interactions and atmospheric dynamics. Synergistic products provide enhanced accuracy and depth compared to single-instrument outputs, enabling detailed studies of complex atmospheric processes.

  • EarthCARE JAXA L2 Products for Cal/Val Users

    This EarthCARE collection is restrained, and contains the following data products: Level 2a: Single-Instrument Geophysical Products These products are derived from individual instrument data onboard EarthCARE. They provide detailed geophysical parameters and properties specific to each instrument's capabilities for example cloud and aerosol properties derived solely from radar or lidar measurements, offering high-resolution insights into atmospheric phenomena. Level 2b: Synergistic Geophysical Products Level 2b products leverage data from multiple EarthCARE instruments to generate comprehensive, synergistic geophysical datasets. By combining measurements from instruments like radar, lidar, and radiometers, these products offer a more integrated view of cloud-aerosol interactions and atmospheric dynamics. Synergistic products provide enhanced accuracy and depth compared to single-instrument outputs, enabling detailed studies of complex atmospheric processes.

  • EarthCARE JAXA L2 Products for the Commissioning Team

    This EarthCARE collection contains the following data products: Level 2a: Single-Instrument Geophysical Products These products are derived from individual instrument data onboard EarthCARE. They provide detailed geophysical parameters and properties specific to each instrument's capabilities for example cloud and aerosol properties derived solely from radar or lidar measurements, offering high-resolution insights into atmospheric phenomena. Level 2b: Synergistic Geophysical Products Level 2b products leverage data from multiple EarthCARE instruments to generate comprehensive, synergistic geophysical datasets. By combining measurements from instruments like radar, lidar, and radiometers, these products offer a more integrated view of cloud-aerosol interactions and atmospheric dynamics. Synergistic products provide enhanced accuracy and depth compared to single-instrument outputs, enabling detailed studies of complex atmospheric processes.

  • TerraSAR-X Sample Data

    Download free TerraSAR-X sample datasets to preview products available for this mission.

  • Fundamental Data Records for Radiometry [MWR_FDR___]

    This dataset is a Fundamental Data Record (FDR) resulting from the ESA FDR4ALT project. The Fundamental Data Record for Radiometry V1 products contain intercalibrated Top of the Atmosphere brightness temperatures at 23.8 and 36.5 GHz. The collection covers data for the ERS-1, ERS-2 and Envisat missions, and is built upon a new processing of Level 0 data, incorporating numerous improvements in terms of algorithms, flagging procedures, and corrections. Compared to existing datasets, the Radiometry FDR demonstrates notable improvements in several aspects: New solutions for instrumental effects (ERS Reflector loss, Skyhorn, and Sidelobe corrections) Native sampling rate of 7Hz with enhanced coverage The FDR4ALT products are available in NetCDF format. Free standard tools for reading NetCDF data can be used. Information for expert altimetry users is also available in a dedicated NetCDF group within the products. Please consult the FDR4ALT Product User Guide before using the data. The FDR4ALT datasets represent the new reference data for the ERS/Envisat altimetry missions, superseding any previous mission data. Users are strongly encouraged to make use of these datasets for optimal results.