earth online

BROWSE RESULTS BY CATEGORY

All categories

You are currently viewing the newest articles added to the Earth Online portal. Go to other tabs to narrow down your results by specific types of content.
  • Showcasing success stories from ESA's CryoSat mission

    ESA's ice mission, CryoSat, was launched in 2010 and carried an advanced radar altimeter to measure Earth's cryosphere.

  • How to find data collection in EO CAT?

    A short guide to EO-CAT Earth Observation Catalogue application with examples.

  • New stories on change detection and ERS-2 re-entry in HEDAVI

    Two new stories are now available in ESA’s HEDAVI (HEritage DAta VIsualisation) tool. HEDAVI visualises Earth observation data from satellites in ESA’s Heritage and Third Party Missions programme, and includes some data from the Copernicus Sentinel satellites.

  • Oil Spill in Galicia (Spain), November 2002 - April 2003

    Explore a series of satellite images depicting the progression of the Prestige oil spill along the Galician coast from November 2002 to March 2003.

  • Deforestation in Guatemala Rainforest, 2010

    Explore a series of images showing deforestation in Guatemala's rainforest ecoregions.

  • ERS ATSR fourth Reprocessing datasets available to users

    The fourth Reprocessing of the ATSR L1B datasets derived from the ERS-1 and ERS-2 satellites have now been released to users by the European Space Agency (ESA).

  • Aegean Islands (Greece), 2001

    See the Aegean Sea through satellite image captured by ERS-2, featuring a view of Samos Island and other Greek islands.

  • Oil Spill In Wales (UK), February 1996

    Explore the impact of the 1996 Sea Empress oil spill through satellite images captured by Radasat, ERS-1, and ERS-2

  • Cartagena (Colombia), 2001

    View Cartagena in a SAR multitemporal composite image.

  • Strait of Messina (Italy), 2004

    View the Strait of Messina in a SAR multitemporal composite image.

  • Strait of Gibraltar (Spain), 2002

    View the Strait of Gibraltar in a SAR multitemporal composite image, created by merging three satellite images from 1999, 2000 and 2002.

  • ERS ATSR L1B Brightness Temperature/Radiance [ER1_AT_1_RBT / ER2_AT_1_RBT]

    Band measurements with associated uncertainty estimates. The ERS-1/2 ATSR Level 1B Brightness Temperature/Radiance products (RBT) contain top of atmosphere (TOA) brightness temperature (BT) values for the infra-red channels and radiance values for the visible channels, when available, on a 1-km pixel grid. The visible channels are only available for the ATSR-2 instrument. Values for each channel and for the nadir and oblique views occupy separate NetCDF files within the Sentinel-SAFE format, along with associated uncertainty estimates. Additional files contain cloud flags, land and water masks, and confidence flags for each image pixel, as well as instrument and ancillary meteorological information. The ATSR-1 and ATSR-2 products [ER1_AT_1_RBT and ER2_AT_1_RBT], in NetCDF format stemming from the 4th ATSR reprocessing, are precursors of Envisat AATSR and Sentinel-3 SLSTR data. They have replaced the former L1B products [AT1_TOA_1P and AT2_TOA_1P] in Envisat format from the 3rd reprocessing. Users with Envisat-format products are recommended to move to the new Sentinel-SAFE like/NetCDF format products, and consult the ERS ATSR Product Notice Readme document. The processing updates that have been put in place and the expected scientific improvements for the ERS ATSR 4th reprocessing data have been outlined in full in the User Documentation for (A)ATSR 4th Reprocessing Products

  • Bosphorus (Turkey), 2004

    View Bosphorus in a SAR multitemporal composite image.

  • Helsinki (Finland), 2004

    View Helsinki in a SAR multitemporal composite image.

  • Athens, Greece Through SAR Eyes

    Explore Athens' evolution through ERS-2 SAR imagery, revealing the city's changes from 1996, 1999, and 2003.

  • Showcasing Fundamental Data Records for Altimetry

    ESA has developed a comprehensive suite of Earth system data records as part of the Fundamental Data Records for Altimetry (FDR4ALT) project.

  • ESA's improved Earth system data records: what is in store for the future?

    Fundamental Data Records (FDRs) are instrumental in advancing our understanding of Earth systems and for addressing societal challenges effectively. These long-term records contain uncertainty-quantified, calibrated and geo-located multi-instrument/multi-platform satellite sensor data spanning several decades to support climate-related applications.

  • FDR4ALT - ESA unveils new cutting-edge ERS/Envisat Altimeter and Microwave Radiometer Datasets

    The European Space Agency (ESA) has developed a comprehensive suite of innovative Earth system data records as part of the Fundamental Data Records for Altimetry project - FDR4ALT.

  • Fundamental Data Records for Altimetry [ALT_FDR___]

    This dataset is a Fundamental Data Record (FDR) resulting from the ESA FDR4ALT project. The Fundamental Data Record for Altimetry V1 products contain Level 0 and Level 1 altimeter-related parameters including calibrated radar waveforms and supplementary instrumental parameters describing the altimeter operating status and configuration through the satellite lifetime. The data record consists of data for the ERS-1, ERS-2 and Envisat missions for the period ranging from 1991 to 2012, and bases on the Level 1 data obtained from previous ERS REAPER and ENVISAT V3.0 reprocessing efforts incorporating new algorithms, flags, and corrections to enhance the accuracy and reliability of the data. For many aspects, the Altimetry FDR product has improved compared to the existing individual mission datasets: New neural-network waveform classification, surface type classification, distance to shoreline and surface flag based on GSHHG Instrumental calibration information directly available in the product Improved Orbit solutions Correction of REAPER drawbacks (i.e., time jumps and negative waveforms) The FDR4ALT products are available in NetCDF format. Free standard tools for reading NetCDF data can be used. Information for expert altimetry users is also available in a dedicated NetCDF group within the products. Please consult the FDR4ALT Product User Guide before using the data. The FDR4ALT datasets represent the new reference data for the ERS/Envisat altimetry missions, superseding any previous mission data. Users are strongly encouraged to make use of these datasets for optimal results.

  • Sea Ice Thematic Data Product [ALT_TDP_SI]

    This is the Sea Ice Thematic Data Product (TDP) V1 resulting from the ESA FDR4ALT project and containing the sea ice related geophysical parameters, along with associated uncertainties: snow depth, radar and sea-ice freeboard, sea ice thickness and concentration. The collection covers data for the ERS-1, ERS-2 and Envisat missions, and bases on Level 1 data coming from previous reprocessing (ERS REAPER and the Envisat V3.0) but taking into account the improvements made at Level 0/Level 1 in the frame of FDR4ALT (ALT FDR). The Sea Ice TDP provides data from the northern or southern hemisphere in two files corresponding to the Arctic and Antarctic regions respectively for the winter periods only, i.e., October to June for the Arctic, and May to November for the Antarctic. For many aspects, the Sea Ice TDP is very innovative: First time series of sea-ice thickness estimates for ERS Homogeneous calibration, allowing the first Arctic radar freeboard time series from ERS-1 (1991) to CryoSat-2 (2021) Uncertainties estimated along-track with a bottom-up approach based on dominant sources ERS pulse blurring error corrected using literature procedure [Peacock, 2004] The FDR4ALT products are available in NetCDF format. Free standard tools for reading NetCDF data can be used. Information for expert altimetry users is also available in a dedicated NetCDF group within the products. Please consult the FDR4ALT Product User Guide before using the data. The FDR4ALT datasets represent the new reference data for the ERS/Envisat altimetry missions, superseding any previous mission data. Users are strongly encouraged to make use of these datasets for optimal results.