earth online

BROWSE RESULTS BY CATEGORY

All categories

You are currently viewing the newest articles added to the Earth Online portal. Go to other tabs to narrow down your results by specific types of content.
  • FDR4ATMOS - New ESA FDR for Atmospheric composition dataset from ERS-2 GOME and Envisat SCIAMACHY

    In addition to releasing new datasets for Envisat SCIAMACHY, the European Space Agency (ESA) has advanced the earth observation capabilities by developing an experimental product under the ESA FDR4ATMOS project (Fundamental Data Records in the domain of satellite Atmospheric Composition).

  • Fundamental Data Record for Atmospheric Composition [ATMOS__L1B]

    The Fundamental Data Record (FDR) for Atmospheric Composition UVN v.1.0 dataset is a cross-instrument Level-1 product [ATMOS__L1B] generated in 2023 and resulting from the ESA FDR4ATMOS project. The FDR contains selected Earth Observation Level 1b parameters (irradiance/reflectance) from the nadir-looking measurements of the ERS-2 GOME and Envisat SCIAMACHY missions for the period ranging from 1995 to 2012. The data record offers harmonised cross-calibrated spectra with focus on spectral windows in the Ultraviolet-Visible-Near Infrared regions for the retrieval of critical atmospheric constituents like ozone (O3), sulphur dioxide (SO2), nitrogen dioxide (NO2) column densities, alongside cloud parameters. The FDR4ATMOS products should be regarded as experimental due to the innovative approach and the current use of a limited-sized test dataset to investigate the impact of harmonization on the Level 2 target species, specifically SO2, O3 and NO2. Presently, this analysis is being carried out within follow-on activities. The FDR4ATMOS V1 is currently being extended to include the MetOp GOME-2 series. Product format For many aspects, the FDR product has improved compared to the existing individual mission datasets: GOME solar irradiances are harmonised using a validated SCIAMACHY solar reference spectrum, solving the problem of the fast-changing etalon present in the original GOME Level 1b data; Reflectances for both GOME and SCIAMACHY are provided in the FDR product. GOME reflectances are harmonised to degradation-corrected SCIAMACHY values, using collocated data from the CEOS PIC sites; SCIAMACHY data are scaled to the lowest integration time within the spectral band using high-frequency PMD measurements from the same wavelength range. This simplifies the use of the SCIAMACHY spectra which were split in a complex cluster structure (with own integration time) in the original Level 1b data; The harmonization process applied mitigates the viewing angle dependency observed in the UV spectral region for GOME data; Uncertainties are provided. Each FDR product provides, within the same file, irradiance/reflectance data for UV-VIS-NIR special regions across all orbits on a single day, including therein information from the individual ERS-2 GOME and Envisat SCIAMACHY measurements. FDR has been generated in two formats: Level 1A and Level 1B targeting expert users and nominal applications respectively. The Level 1A [ATMOS__L1A] data include additional parameters such as harmonisation factors, PMD, and polarisation data extracted from the original mission Level 1 products. The ATMOS__L1A dataset is not part of the nominal dissemination to users. In case of specific requirements, please contact EOHelp. Please refer to the README file for essential guidance before using the data. All the new products are conveniently formatted in NetCDF. Free standard tools, such as Panoply, can be used to read NetCDF data. Panoply is sourced and updated by external entities. For further details, please consult our Terms and Conditions page. Uncertainty characterisation One of the main aspects of the project was the characterization of Level 1 uncertainties for both instruments, based on metrological best practices. The following documents are provided: General guidance on a metrological approach to Fundamental Data Records (FDR) Uncertainty Characterisation document Effect tables NetCDF files containing example uncertainty propagation analysis and spectral error correlation matrices for SCIAMACHY (Atlantic and Mauretania scene for 2003 and 2010) and GOME (Atlantic scene for 2003) reflectance_uncertainty_example_FDR4ATMOS_GOME.nc reflectance_uncertainty_example_FDR4ATMOS_SCIA.nc

  • ERS ATSR fourth Reprocessing datasets available to users

    The fourth Reprocessing of the ATSR L1B datasets derived from the ERS-1 and ERS-2 satellites have now been released to users by the European Space Agency (ESA).

  • ERS ATSR L1B Brightness Temperature/Radiance [ER1_AT_1_RBT / ER2_AT_1_RBT]

    Band measurements with associated uncertainty estimates. The ERS-1/2 ATSR Level 1B Brightness Temperature/Radiance products (RBT) contain top of atmosphere (TOA) brightness temperature (BT) values for the infra-red channels and radiance values for the visible channels, when available, on a 1-km pixel grid. The visible channels are only available for the ATSR-2 instrument. Values for each channel and for the nadir and oblique views occupy separate NetCDF files within the Sentinel-SAFE format, along with associated uncertainty estimates. Additional files contain cloud flags, land and water masks, and confidence flags for each image pixel, as well as instrument and ancillary meteorological information. The ATSR-1 and ATSR-2 products [ER1_AT_1_RBT and ER2_AT_1_RBT], in NetCDF format stemming from the 4th ATSR reprocessing, are precursors of Envisat AATSR and Sentinel-3 SLSTR data. They have replaced the former L1B products [AT1_TOA_1P and AT2_TOA_1P] in Envisat format from the 3rd reprocessing. Users with Envisat-format products are recommended to move to the new Sentinel-SAFE like/NetCDF format products, and consult the ERS ATSR Product Notice Readme document. The processing updates that have been put in place and the expected scientific improvements for the ERS ATSR 4th reprocessing data have been outlined in full in the User Documentation for (A)ATSR 4th Reprocessing Products

  • ESA's improved Earth system data records: what is in store for the future?

    Fundamental Data Records (FDRs) are instrumental in advancing our understanding of Earth systems and for addressing societal challenges effectively. These long-term records contain uncertainty-quantified, calibrated and geo-located multi-instrument/multi-platform satellite sensor data spanning several decades to support climate-related applications.

  • Trailblazing ERS-2 mission enables climate change applications

    As ESA’s ERS-2 satellite approaches Earth’s atmosphere for reentry, it’s time to reflect on the mission’s great achievements in powering climate-related applications.

  • Transforming space data into climate action

    ESA’s Earth observation activities are playing a key role in the revitalised global drive to combat climate change.

  • Interviewing Mirko Albani

    ESA’s Heritage Space Programme Manager describes the goals of the programme, some of the challenges involved in preserving and improving 40 years of historical Earth observation data, and his passion for curating this long-term archive.

  • Introducing Mirko Albani

    In this short introduction, ESA's Heritage Missions Programme Manager describes what he likes most about ESA's long term archive of satellite mission data and his role in the programme.

  • ERS - ESA’s first Earth observation satellites

    To mark the 30th anniversary of ERS, we've released a new infographic summarising the mission.

  • SCIRoCCo

    The SCIRoCCo project is an interdisciplinary cooperation of scatterometry experts aimed at promoting the continuing exploitation of ESA's unique 20 years' worth of ERS Scatterometer data.

  • EO Summer Schools

    ESA's series of summer schools, on Monitoring of the Earth System, aims to promote the exploitation of Earth observation (EO) data.

  • EO Summer School 8

    ESA's series of summer schools, on Monitoring of the Earth System, aims to promote the exploitation of Earth observation data.

  • EO Summer School 7

    ESA's series of summer schools, on Monitoring of the Earth System, aims to promote the exploitation of Earth observation data.

  • EO Summer School 6

    ESA's series of summer schools, on Monitoring of the Earth System, aims to promote the exploitation of Earth observation data.

  • EO Summer School 5

    ESA's series of summer schools, on Monitoring of the Earth System, aims to promote the exploitation of Earth observation data.

  • EO Summer School 4

    ESA's series of summer schools, on Monitoring of the Earth System, aims to promote the exploitation of Earth observation data.

  • EO Summer School 3

    ESA's series of summer schools, on Monitoring of the Earth System, aims to promote the exploitation of Earth observation data.

  • Living Planet Symposium 2022

    Learn about the 2022 edition of ESA's Living Planet Symposium.

  • Dragon 2 Cooperation Programme

    The Dragon 2 Programme focussed on the exploitation of ESA, ESA's Third Party Missions and Chinese Earth observation data for science and applications development in land, ocean and atmospheric applications.