A global Land Data Assimilation System for sequential assimilation of vegetation products:

Towards cross-cutting land ECV consistency assessment through data assimilation

Jean-Christophe Calvet, Clément Albergel, Alina Barbu, Dominique Carrer, Hélène Dewaele, David Fairbairn, Delphine Leroux, Catherine Meurey, Simon Munier

LPVE workshop
Frascati, 28 February 2018
« Sequential assimilation »

- **Model trajectory is driven by observations**
 - e.g. Kalman Filtering approach

- **Better than model calibration**
 - all kinds of errors can be accounted for
 - near real-time operation is possible
 - key parameters can be efficiently tuned by minimizing analysis increments
LDAS-Monde: a European global LDAS

- Based on the open-source SURFEX modeling platform
 - http://www.umr-cnrm.fr/surfex/
 - SURFEX is used in operational applications:
 - Weather forecast, hydrology, IPCC simulations (CNRM-ARPEGE)
 - Used by many meteorological services in Europe and North Africa

- Heritage
 - ISBA land surface model (in SURFEX)
 - Numerical Weather Prediction:
 - 1990’s: Meteo-France implements sequential assimilation of in situ T2m, HU2m observations to analyze root-zone soil moisture in weather forecast models
 - SMOSREX field experiment: LAI and soil moisture
 - Research Copernicus service demonstrators
 - FP7 GEOLAND2, IMAGINES, EARTH2OBSERVE
LDAS-Monde: addresses key issues

- Sequential assimilation of vegetation products
 - Unique!
 - Thanks to flexible LAI simulated by the ISBA model (photosynthesis-driven phenology, no GDD phenology sub-model)
 - Permits a better monitoring of unusual / extreme / poorly modeled events
 - Joint assimilation of LAI (or FAPAR) and surface soil moisture
- Satellite-derived LAI (5km x 5km) disaggregation
 - Disaggregation method developed by Carrer et al. RSE 2014 for surface albedo
 - Kalman filter based on SURFEX static proxy (ECOCLIMAP, Faroux et al. GMD 2013)

\[
\begin{align*}
X^a &= X^b + K(Y -HX) \\
\begin{pmatrix}
\text{LAI}_1^a \\
\vdots \\
\text{LAI}_N^a
\end{pmatrix} &= \begin{pmatrix}
\text{LAI}_1^b \\
\vdots \\
\text{LAI}_N^b
\end{pmatrix} + K \begin{pmatrix}
\text{LAI}_1^{eco} & \cdots & 0 & \vdots \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 1 & \vdots \\
\text{LAI}_N^{eco} & \cdots & \vdots & \text{LAI}_N^b
\end{pmatrix}
\end{align*}
\]

\[
K = PH^T(HPH^T + R)^{-1}
\]
\[
P^a = (I_n - KH) P^b
\]

\[
R = \begin{pmatrix}
r_{eco} & \cdots & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & r_{eco} & 0 \\
0 & \cdots & 0 & r_{soil} \ll r_{eco}
\end{pmatrix}
\]
LDAS-Monde: addresses key issues

- Satellite-derived LAI (5km x 5km) disaggregation
 - Needed for LAI ECV trend analyses (Munier et al., under review 2018)

1999-2015
Copernicus Global Land Service GEOV1 LAI
(SPOT-VGT and PROBA-V)
LDAS-Monde: addresses key issues

- Assimilating LAI or FAPAR?

\[\sigma_{\text{LAI}}^b = 0.2, \sigma_{\text{LAI}}^o = 0.2, \sigma_{\text{FAPAR}}^o = 0.02 \]

Explicit FAPAR (Carrer et al. 2013, JGR-B)
LDAS-Monde: addresses key issues

- Incorporation of geographic information into land surface models
 - Example: France
LDAS-Monde: addresses key issues

- Enhanced representation of agricultural droughts: spring 2011
- Soil moisture and photosynthesis 10-day changes

![SOIL MOISTURE](image)

Assimilation reinforces the drought signal

![GPP](image)

Barbu et al. 2014, HESS
LDAS-Monde: addresses key issues

- Enhanced representation of agricultural droughts: spring 2011
 - Agricultural drought indicators, example of Puy-de-Dôme (France)

LAI and biomass anomalies are less erratic than SWI anomalies
Complementary information content

10-day scaled anomalies:

![Graphs showing SWI, LAI, and Above-ground biomass anomalies](image)
LDAS-Monde: cross-cutting quality evaluation

- An operational component of the Copernicus Global Land Service using:
 - **LDAS-France** *(Barbu et al. HESS 2014)*
 - ISBA model forced by SAFRAN
 - 8 km x 8 km
 - **LDAS-Monde** *(Albergel et al. GMD 2017)*
 - ISBA model forced by ERA-Interim / ERA5
 - 0.5° x 0.5°
 - Assimilation (active monitoring) of
 - Copernicus GLS LAI
 - Copernicus GLS surface soil moisture
 - Passive monitoring of
 - FAPAR
 - SA
 - LST

LDAS-Monde: cross-cutting quality evaluation

- Example: LAI and soil moisture over France during late Summer of 2016
 - Extreme drought event!
 - LAI analysis departs from the observations

![Graph showing LAI over time]
LDAS-Monde: cross-cutting quality evaluation

- Example: LAI and soil moisture over France during late Summer of 2016
 - Extreme drought event!
 - Root-zone soil moisture analysis departs from the model
LDAS-Monde: cross-cutting quality evaluation

- Example: LAI and soil moisture over France during late Summer of 2016
 - Extreme drought event!
 - Surface soil moisture analysis scores depart more from model scores
LDAS-Monde: cross-cutting quality evaluation

- Example: LAI and soil moisture over France during late Summer of 2016
 - Extreme drought event!
 - LAI and root-zone soil moisture increments: LAI assimilation
LDAS-Monde: cross-cutting quality evaluation

- Example: LAI and soil moisture over France during late Summer of 2016
 - Extreme drought event!
 - LAI and root-zone soil moisture increments: LAI and SWI assimilation
LDAS-Monde: cross-cutting quality evaluation

- Example: Euro-Mediterranean area in September 2016 w.r.t. 2007-2015
 - Root-zone soil moisture increments (m3m$^{-3}$)

![Maps showing soil moisture increments for 2007:2015 and 2016.]
LDAS-Monde: cross-cutting quality evaluation

 - LAI accuracy assessment (low LAI values)

![Graph showing RMSD for LAI <= 2.5 m².m⁻² over 2007-2015]

GCOS accuracy requirement
LDAS-Monde: cross-cutting quality evaluation

 - LAI accuracy assessment (high LAI values)

![MAY](image)

![AUG](image)

Relative RMSD for LAI > 2.5 m².m⁻²

GCOS accuracy requirement
Validation: hydrology

- Example: Impact of vegetation and soil moisture analysis on river discharge

Mean analysis impact on river discharge over the 2000-2012 period
Validation: natural CO$_2$ fluxes

- Example: GPP vs. FLUXNET-MTE (2010-2011)

- SWI assimilation
Validation: natural CO$_2$ fluxes

- **Example: GPP vs. FLUXNET-MTE (2010-2011)**
 - SWI *and* LAI assimilation
Validation: natural CO$_2$ fluxes

 - SWI and LAI assimilation

Correlation (Analysis, Obs)

Corr(Analysis, Obs) - Corr(Model, Obs)

Leroux et al. in prep 2018
Validation: crop yields

- Example: wheat yields in France (1999-2013)
 - Disaggregated Copernicus GLS LAI correlates with wheat yields

Dewaele et al. HESS 2017

\[R^2 = 0.84 \]
Validation: crop yields

- Example: wheat yields in France (1999-2013)

ISBA MODEL WITHOUT ASSIMILATION
Validation: crop yields

- Example: wheat yields in France (1999-2013)

ISBA MODEL WITH ASSIMILATION

Dewaele et al. PhD 2017
Applications: estimation of key land parameters

- Example: soil maximum available water content (MaxAWC, in mm)
 - LDAS tuning (minimize LAI increments) is better than inverse modeling (minimize LAI RMSE)

![Graphs showing inverse modeling and LDAS tuning with RMSE and LAI increments vs. MaxAWC](image)

Dewaele et al. HESS 2017

Growth
Peak
Senescence
Applications: estimation of key land parameters

- Example: soil maximum available water content (MaxAWC, in mm)
 - LDAS tuning (minimize LAI increments) is better than inverse modeling (minimize LAI RMSE)

<table>
<thead>
<tr>
<th></th>
<th>Inverse modeling</th>
<th>LDAS tuning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraction of administrative units with significant correlation (p-value < 0.01)</td>
<td>36 %</td>
<td>53 %</td>
</tr>
<tr>
<td>LAI RMSE</td>
<td>1.2 m²m⁻²</td>
<td>1.1 m²m⁻²</td>
</tr>
<tr>
<td>Median MawAWC</td>
<td>111 mm</td>
<td>129 mm</td>
</tr>
</tbody>
</table>

More realistic!

Dewaele et al. HESS 2017
LDAS-Monde: conclusions

- Integration of satellite observations into SURFEX, fully coupled to hydrology
 - Now the only system able to sequentially assimilate vegetation products (together with soil moisture observations).
 - A powerful tool to monitor droughts!
 - A powerful tool for cross-cutting evaluation of land ECV products!

- Issues:
 - Assimilation of LAI is often more beneficial than assimilation of SSM
 - LAI can be used to analyze root-zone soil moisture but sampling time is affected by clouds
 - ASCAT-derived soil moisture product is affected by vegetation effects (seasonal CDF-matching needed)

- Prospects:
 - Observation operator for
 - ASCAT sigma0 using a multi-layer soil model
 - Surface albedo
 - Foster link to applications
 - Climate reanalisys, drought monitoring, seasonal weather forecast, agrometeorology, ...
 - Go near-real-time
 - Forest biomass data assimilation?
Thank you for your attention

CONTACT:

jean-christophe.calvet@meteo.fr