RETRIEVAL OF SUSPENDED PARTICULATE MATTER FROM TURBIDITY

– MODEL DEVELOPMENT, VALIDATION, AND APPLICATION TO MERIS DATA

Elina Kari, José M. Beltrán-Abaunza, E. Therese Harvey, Susanne Kratzer
Department of Ecology, Environment and Plant Sciences
Stockholm University, Sweden
Why to retrieve Suspended Particulate Matter?

- SPM causes most of the scattering in natural waters
 - Strong influence on underwater light field and consequently to the whole ecosystem
- SPM is the parameter of main interest for sediment transport and hence a good indicator of coastal dynamics
- Assessment of the eutrophication status of the Baltic Sea can be improved by monitoring SPM
Aims

• To provide a reliable model to estimate Suspended Particulate Matter (SPM) concentration from turbidity for the Baltic Sea

• To improve the retrieval of SPM concentration from remote sensing reflectance via turbidity
Study area

- Six measurement areas along the Swedish coast of the Baltic Sea
 - Transects from coastal to open sea
 - In total 26 measurement locations
Dataset

<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>Number of measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>August</td>
<td>10</td>
</tr>
<tr>
<td>2011</td>
<td>July-August</td>
<td>23</td>
</tr>
<tr>
<td>2012</td>
<td>April-July</td>
<td>36</td>
</tr>
<tr>
<td>2013</td>
<td>June-September</td>
<td>22</td>
</tr>
<tr>
<td>2014</td>
<td>February-May</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>In total</td>
<td>113</td>
</tr>
</tbody>
</table>
Dataset

Model development

<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>Number of measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>June - September</td>
<td>22</td>
</tr>
<tr>
<td>2014</td>
<td>February - May</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>In total</td>
<td>113</td>
</tr>
<tr>
<td>Year</td>
<td>Month</td>
<td>Number of measurements</td>
</tr>
<tr>
<td>------</td>
<td>---------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>2010</td>
<td>August</td>
<td>10</td>
</tr>
<tr>
<td>2011</td>
<td>July-Oct</td>
<td>23</td>
</tr>
<tr>
<td>2012</td>
<td>April-Sept</td>
<td>36</td>
</tr>
<tr>
<td>2013</td>
<td>Feb-May</td>
<td>22</td>
</tr>
</tbody>
</table>

Dataset

Model development

Validation
Methods

In situ - measurements

• **SPM** concentration measured gravimetrically according to Strickland and Parsons (1972)
• **Turbidity** measured with a portable turbidity meter – Hach Lange 2100Qis (ISO 7027)

Remote sensing methods

• **MERIS** (Medium Resolution Imaging Spectrometer)
 The standard processor MEGS 8.1
 • SPM product
 • Reflectance at 620 nm
Results
Results

- SPM model

\[
\ln(\text{SPM}) = -0.081 + 0.97\ln(\text{turbidity})
\]

\[r^2 = 0.93\]
Results

• Including these possible explanatory variables did **not** improve the model
 - Area
 - Coastal / Open sea –status
 - Proportion of Inorganic Matter
Results

• Including these possible explanatory variables did not improve the model
 o Area
 o Coastal / Open sea –status
 o Proportion of Inorganic Matter

• Importance of correlation of measurement stations was assessed by
 o grouping the data (same date + area + coastal/open sea -status)
 o fitting a mixed model

• The variance between individual measurement stations was more important than between the groups
Results

- Validation with 2013-2014 data set

\[\text{RMS} = 25.5\%\]
\[\text{MNB} = 2.6\%\]
\[n = 44\]
Conclusion 1:

- SPM concentration can be derived reliably from in situ turbidity along the Swedish coast of the Baltic Sea with our SPM model
Application to MERIS data
Match-up Dataset

<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>Number of match-ups</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>July</td>
<td>21</td>
</tr>
<tr>
<td>2010</td>
<td>May</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In total 32</td>
</tr>
</tbody>
</table>
Application to MERIS data

- Comparison of MERIS SPM product with in situ SPM concentration
 - The standard processor MEGS 8.1

![Graph showing the comparison between SPM MERIS and SPM in situ with RMS = 47.4 %, MNB = 11.3 %, n = 32](image)
Application to MERIS data

- Nechad (2009) algorithm to retrieve turbidity from MERIS reflectance at 620 nm

$$\text{Turbidity}_{\text{Nechad}} = \frac{174.41 \cdot \text{reflectance}_{620}}{1 - (\text{reflectance}_{620}/0.1533)} + 0.39 \ [\text{FNU}] \ (1)$$

- The SPM model to retrieve SPM concentration from turbidity

$$\text{SPM} = -0.081 + 0.97 \cdot \ln \ (\text{Turbidity}_{\text{Nechad}}) \ [\text{gm}^{-3}] \ (2)$$
Application to MERIS data

• Nechad (2009) algorithm to retrieve turbidity from MERIS reflectance at 620 nm

\[
\text{Turbidity}_{\text{Nechad}} = \frac{174.41 \cdot \text{reflectance}_{620}}{1 - (\text{reflectance}_{620}/0.1533)} + 0.39 \ \text{[FNU]} \quad (1)
\]

• The SPM model to retrieve SPM concentration from turbidity

\[
\text{SPM} = -0.081 + 0.97 \cdot \ln (\text{Turbidity}_{\text{Nechad}}) \ \text{[gm}^{-3}] \quad (2)
\]
Application to MERIS data

- Comparison of modelled SPM with in situ SPM concentrations

MERIS reflectance at 620 nm

Nechad’s Turbidity

SPM model

SPM concentration

RMS = 40.3%
MNB = -4.9%
n = 32
Distribution of SPM in the coastal zone

MERIS SPM product 2008-07-15

Modelled SPM 2008-07-15
Distribution of SPM in the coastal zone

MERIS SPM product 2008-07-28

Modelled SPM 2008-07-28
Conclusion 2:

• The retrieval of SPM concentration from MERIS data can be improved when retrieving turbidity from remote sensing reflectance and applying our SPM model
Conclusions

• With our SPM model, SPM concentrations can be derived reliably both from in situ turbidity and from remote sensing reflectance via turbidity.

• We recommend regular in situ turbidity measurements and the use of remote sensing data in monitoring programs of the Baltic Sea.
Acknowledgements

Andreas Hicketier, Ilias Thomas and Jakob Walve (SU)
Marine monitoring group (SU)
Askö Laboratory (SU)
Svealands vattenvårdsförbund
Waters project (Swedish Agency for Marine and Water management)