Snow extent (SE) and lake surface water temperature (LSWT) retrieval with AVHRR

Stefan Wunderle, Fabia Hüsler, Michael Riffler, Gian Lieberherr
Institute of Geography
University of Bern, Switzerland

20. April 2015, ESA-AVHRR meeting, DLR-Oberpfaffenhofen
Available snow information or sensors for time series

- **SE**: snow extent
- **FSC**: fractional snow cover
- **SWE**: snow water equivalent

<table>
<thead>
<tr>
<th>Year</th>
<th>SE</th>
<th>FSC</th>
<th>SWE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td>NOAA Snow Charts</td>
<td>AVHRR</td>
<td>SMMR</td>
</tr>
<tr>
<td>1980</td>
<td>NOAA IMS</td>
<td>ATSR-2</td>
<td>SSM/I</td>
</tr>
<tr>
<td>1990</td>
<td></td>
<td>AATSR</td>
<td>AMSR-E</td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td>MODIS</td>
<td>SSM/I-S</td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td>VIIRS</td>
<td></td>
</tr>
</tbody>
</table>
Project overview for 2 ECVs

> **Snow Extent (SE)**
 - ESA Globsnow (WP 2: Snow Extent Algorithm Development – snow fraction and snow extent); NRT – back up; done
 - NRT – SE retrieval for Snow and Avalanche Institute, Davos (WSL-SLF); ongoing
 - European SE time series; ongoing
 - ESA/WB Lesotho snow mapping (but based on MODIS, MERIS)

> **Lake Surface Water Temperature (LSWT)**
 - GCOS-MeteoSwiss: feasibility study; done
 - SNF: A European Lake Surface Water Temperature data set derived from NOAA/Metop-AVHRR (1983 – 2013) – a proxy for climate change; ongoing
 - GCOS-MeteoSwiss: Lake Ice retrieval; submitted
Validation strategy

Hüsler et al. 2012
Algorithm modifications

RGB + scatterplot

original version: Khlopenkov&Trishchenko 2007

optimized thresholds Hüsler et al. 2012

Hüsler et al. 2012
The probability map

- **probability map** is provided for each snowmask
- Uncertainty indication very important for climate change studies
Monthly SCA time series vs. *in situ* data Switzerland

- high agreement between satellite data and ground-based SCA
- No artificial trend introduced by irregular data availability

Hüsler et al. 2012
Regional variability of snow cover
European Alps

Hüsler et al. 2014
Available AVHRR snow products for Europe

- **Daily scene SE** for available NOAA satellite overpasses
- **Daily Maximum SE** composite, from all NOAA satellite overpasses of a given day
- **Multi-day spatially and temporally filtered SE** composite over 7 days

Dates:
- 20100122
- 20100314
- 20060322
Monthly mean lake surface temperature

Method to retrieve SST/LakeST

- Split-window NOAA NESDIS
- Split-window Pathfinder (climate project of NOAA)
 → temporal homogenous retrieval (improvement to NOAA NESDIS)
- Independent from buoy measurements: use of radiative transfer code RTTOV-10

Satellite measurement

- linear or non-linear fitting

Buoy

NOAA NESDIS, Pathfinder

Satellite simulated

- To model
- linear/non-linear fitting

T_s od. T_{skin}

Simulation

Correction of T_{skin} to T_{bulk} after Minnett et al., 2010

M. Riffler, RSGB, 2012; Riffler et al. 2015
Validation of time series

- In-situ data (monthly profiles of Murtensee) used for all NOAA/Metop satellites

RMSE = 3.2
Bias = -2.1

RMSE = 2.2
Bias = -1.4

RMSE = 1.8
Bias = -0.6

LSWT of Lake Constance (1989 – 2009) - Seasonal linear trends

Figure 9. Seasonal mean water temperature and linear trends derived from in situ (dash-dotted) and satellite (solid) observations at Lake Constance for the period 1989 to 2009. Seasons are defined as JFM (January-February-March, winter), AMJ (April-May-June, spring), JAS (July-August-September, summer), and OND (October-November-December, autumn).

Riffler, M., G. Lieberherr and S. Wunderle (2015); Earth Syst. Sci. Data, 7, 1–17,
Critical issues

> Ideal data set:
 — Calibrated and geocoded AVHRR time series to fulfill GCOS and EUMETSAT requirements
 — Cloud retrieval: developments should be usable for AVHRR/2 and AVHRR/3 without many external data.

> MOST important: daily data availability from 1981 – today

> A one-stop-shop for data access is a strong requirement from climate users.
Conclusion

> The developed algorithms for snow extent and lake surface water temperature show a high level of validity and temporal stability.

> Also the algorithms for albedo and AOD are in a status to be used for time series processing.

> A careful post-processing is recommended to find erroneous retrievals (e.g. geocoding and remaining fractional clouds)

> MOST important from climate user perspective: extend the archive to the past (1981 – 1989) and fill some weekly gaps.

> Thanks!