Bio-optical Algorithms for European Seas: Performance and Applicability of Neural-Net Inversion Schemes

Davide D'Alimonte and Tamito Kajiyama
with the collaboration of
Giuseppe Zibordi, Jean-François Berthon, Frédéric Mélin
and Elisabetta Canuti
Outline

• This study uses bio-optical algorithms (MLPs) to assess MERIS ocean color products in the Northern Adriatic Sea, the Baltic Sea and the Western Black Sea

• Research objectives included:
 – Dataset selection and quality assurance
 – Assessment of the MLP performance and applicability
 – Comparisons with MERIS products
Dataset selection

• Reference field measurements are the BiOMaP and CoASTS data, produced by the JRC and accessible within the framework of specific collaborations between JRC and FCT/UNL for MERIS products validation.

• Complementary benchmark analyses were also undertaken on the basis of the NASA Bio-Optical Marine Data Set (NOMAD).
Dataset selection (cont.)

• The selection of BiOMaP and CoASTS data was supported by:

 – Novel methods for the quality assurance of in-situ measurements of absorption, attenuation and back-scattering

 – MC simulations of the radiative transfer process in the water medium to investigate uncertainties induced by sea-surface wave focusing on radiometric data products derived from free-fall optical systems

 – Use of AERONET-OC measurements to assess the quality of MERIS radiometric products
MLP bio-optical algorithms

• Operational MLPs were implemented to derive Chl-a, $a_{ys}(412)$ and TSM from L_{WN} on the basis of BiOMaP and CoASTS data

• MLP performance was assessed through:

$$\varepsilon = 100 \frac{1}{N} \sum_{i=1}^{N} \left| \hat{t}_i - t_i \right|$$

$$\delta = 100 \frac{1}{N} \sum_{i=1}^{N} \frac{\hat{t}_i - t_i}{t_i}$$

• MLP parameter tables have been produced to permit user implementations of the bio-algorithms, and their application to MERIS images
MLP parameter tables

% Pre-processing
l = \log_{10}(RRS);
ndata = size(l, 1);
tmp = l - repmat(mu_l, ndata, 1);
x = tmp ./ repmat(s_l, ndata, 1);

% MLP mapping
z = \tanh(x*net.w1 + ones(ndata, 1)*net.b1);
y = z*net.w2 + ones(ndata, 1)*net.b2;

% Post-processing
tmp = y.*repmat(s_c, ndata, 1);
c = 10^((tmp+repmat(mu_c, ndata, 1));
Northern Adriatic Sea

- North Adriatic Sea and AAOT
- Chl-a [mg m⁻³]
- aₚₜ (412 nm) [m⁻¹]
- TSM [g m⁻³]

Graphs showing comparisons between computed and measured values for Chl-a, aₚₜ, and TSM, with statistical metrics provided.
Eastern Mediterranean Sea
Western Black Sea

Graphs:
- **Chl-a [mg m^{-3}]:**
 - \(N = 206 \)
 - \(\varepsilon = 25\% \)
 - \(\delta = 5\% \)
 - \(r^2 = 0.82 \)

- **\(a_{ys}(412 \text{ nm}) \) [m^{-1}]:**
 - \(N = 206 \)
 - \(\varepsilon = 17\% \)
 - \(\delta = 2\% \)
 - \(r^2 = 0.83 \)

- **TSM [g m^{-3}]:**
 - \(N = 206 \)
 - \(\varepsilon = 14\% \)
 - \(\delta = 1\% \)
 - \(r^2 = 0.83 \)
Performance analysis

• Cross-validation results at individual basins and for the BiOMaP data ensemble
• Results for Chl-a, $a_{ys}(412)$ and TSM are in green, yellow and gray, respectively

![Graph showing baseline and confidence intervals for performance analysis results across different basins.]
Cross-basin applicability analysis

Chl-a [mg m⁻³] North Adriatic Sea and AAOT
- GLOB [N=1137, ε=47 %]
- EMED [N=118, ε=32 %]
- LIGS [N=82, ε=26 %]
- NADR [N=107, ε=32 %]
- AAOT [N=1028, ε=31 %]
- VADR [N=1135, ε=31 %]
- BLKS [N=185, ε=41 %]
- ECHN [N=47, ε=49 %]
- BLTS [N=317, ε=54 %]

Chl-a [mg m⁻³] Black Sea
- GLOB [N=1137, ε=91 %]
- EMED [N=118, ε=191 %]
- LIGS [N=82, ε=38 %]
- NADR [N=107, ε=50 %]
- AAOT [N=1028, ε=37 %]
- VADR [N=1135, ε=38 %]
- BLKS [N=185, ε=22 %]
- ECHN [N=47, ε=55 %]
- BLTS [N=317, ε=61 %]

Chl-a [mg m⁻³] Baltic Sea
- GLOB [N=1137, ε=233 %]
- EMED [N=118, ε=937 %]
- LIGS [N=82, ε=317 %]
- NADR [N=107, ε=99 %]
- AAOT [N=1028, ε=245 %]
- VADR [N=1135, ε=231 %]
- BLKS [N=185, ε=317 %]
- ECHN [N=47, ε=103 %]
- BLTS [N=317, ε=26 %]

Chl-a [mg m⁻³] BiOMaP
- GLOB [N=1137, ε=50 %]
- EMED [N=118, ε=14 %]
- LIGS [N=82, ε=27 %]
- NADR [N=107, ε=35 %]
- AAOT [N=1028, ε=35 %]
- VADR [N=1135, ε=35 %]
- BLKS [N=185, ε=29 %]
- ECHN [N=47, ε=45 %]
- BLTS [N=317, ε=40 %]
Cross-basin applicability analysis (cont.)
Comparisons with MERIS products

• Assessment of MERIS Chl-a estimates in the Northern Adriatic Sea, Baltic Sea and Western Black Sea on the basis of MERIS level 2 data products (3rd reprocessing)

• Compared with reference Chl-a concentration derived from MLP_{BMP} regional algorithms trained with in-situ measurements collected in the BiOMaP and CoASTS programs
MERIS image processing

• Methods
 – Retrieval of algal-1 and algal-2 Chl-a maps from MERIS L2 products
 – Application of \(\text{MLP}_{\text{BMP}} \) regional algorithms to \(R_{\text{RS}} \) images taken from the same MERIS L2 products

• Software tools
 – BEAM/Java code for data retrieval and MLP application
 – BEAM graph-processing tool (gpt) for reprojection
 – MATLAB code for data analysis and visualization
Assessment

• The scattering and the bias of MERIS Chl-a estimates \(\hat{t}_i \) with respect to the corresponding \(\text{MLP}_{\text{BMP}} \) results \(t_i \) are assessed by absolute and signed percent differences \(\varepsilon \) and \(\delta \), respectively:

\[
\varepsilon = 100 \frac{1}{N} \sum_{i=1}^{N} \left| \frac{\hat{t}_i - t_i}{t_i} \right| \quad \delta = 100 \frac{1}{N} \sum_{i=1}^{N} \frac{\hat{t}_i - t_i}{t_i}
\]

where \(N \) is the total number of samples

• Only pixels in ROI(s) are considered
 – ROIs with a reduced number of noisy pixels were defined by visually inspecting product maps
Northern Adriatic Sea

(a) BiOMaP nadr
(b) MERIS algal-1
(c) MERIS algal-2
(d) ROI
(e) BiOMaP vs. algal-1
(f) BiOMaP vs. algal-2
Northern Adriatic Sea (cont.)

<table>
<thead>
<tr>
<th>ROI</th>
<th>N</th>
<th>ε [%]</th>
<th>δ [%]</th>
<th>r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>2858</td>
<td>111.4</td>
<td>111.2</td>
<td>0.77</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ROI</th>
<th>N</th>
<th>ε [%]</th>
<th>δ [%]</th>
<th>r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>3373</td>
<td>28.0</td>
<td>-7.5</td>
<td>0.84</td>
</tr>
</tbody>
</table>

Source: MER_RR_2PRACR20100824_092645_000026292092_00208_44350_0000.N1
Baltic Sea

(a) BiOMaP blts
(b) MERIS algal-1
(c) MERIS algal-2

(d) ROI
(e) BiOMaP vs. algal-1
(f) BiOMaP vs. algal-2
Baltic Sea (cont.)

MERIS algal-1 vs. MLP\textsubscript{BMP}

<table>
<thead>
<tr>
<th>ROI</th>
<th>N</th>
<th>ε [%]</th>
<th>δ [%]</th>
<th>r²</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>390</td>
<td>679.2</td>
<td>679.2</td>
<td>0.01</td>
</tr>
<tr>
<td>#2</td>
<td>1</td>
<td>1735.9</td>
<td>1735.9</td>
<td>NaN</td>
</tr>
<tr>
<td>#3</td>
<td>13</td>
<td>238.1</td>
<td>238.1</td>
<td>0.38</td>
</tr>
<tr>
<td>#4</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>#5</td>
<td>55</td>
<td>279.0</td>
<td>279.0</td>
<td>0.39</td>
</tr>
<tr>
<td>#6</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>#7</td>
<td>28</td>
<td>175.7</td>
<td>175.7</td>
<td>0.00</td>
</tr>
<tr>
<td>#8</td>
<td>3</td>
<td>407.9</td>
<td>407.9</td>
<td>0.05</td>
</tr>
<tr>
<td>#9</td>
<td>60</td>
<td>352.4</td>
<td>352.4</td>
<td>0.02</td>
</tr>
<tr>
<td>Total</td>
<td>550</td>
<td>567.9</td>
<td>567.9</td>
<td>0.20</td>
</tr>
</tbody>
</table>

MERIS algal-2 vs. MLP\textsubscript{BMP}

<table>
<thead>
<tr>
<th>ROI</th>
<th>N</th>
<th>ε [%]</th>
<th>δ [%]</th>
<th>r²</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>1045</td>
<td>218.6</td>
<td>218.5</td>
<td>0.81</td>
</tr>
<tr>
<td>#2</td>
<td>2183</td>
<td>192.9</td>
<td>192.9</td>
<td>0.37</td>
</tr>
<tr>
<td>#3</td>
<td>913</td>
<td>166.3</td>
<td>166.3</td>
<td>0.03</td>
</tr>
<tr>
<td>#4</td>
<td>1511</td>
<td>295.4</td>
<td>295.4</td>
<td>0.62</td>
</tr>
<tr>
<td>#5</td>
<td>727</td>
<td>146.3</td>
<td>146.3</td>
<td>0.01</td>
</tr>
<tr>
<td>#6</td>
<td>1282</td>
<td>218.8</td>
<td>218.8</td>
<td>0.40</td>
</tr>
<tr>
<td>#7</td>
<td>826</td>
<td>94.7</td>
<td>92.4</td>
<td>0.22</td>
</tr>
<tr>
<td>#8</td>
<td>787</td>
<td>190.4</td>
<td>189.8</td>
<td>0.65</td>
</tr>
<tr>
<td>#9</td>
<td>687</td>
<td>183.2</td>
<td>183.2</td>
<td>0.20</td>
</tr>
<tr>
<td>Total</td>
<td>9961</td>
<td>199.6</td>
<td>199.4</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Source: MER_RR_2PRACR20080731_092147_000026342070_00437_33557_0000.N1
Western Black Sea

(a) BiOMaP blks

(b) MERIS algal-1

(c) MERIS algal-2

(d) ROI

(e) BiOMaP vs. algal-1

(f) BiOMaP vs. algal-2
Western Black Sea (cont.)

MERIS algal-1 vs. MLP$_{BMP}$

<table>
<thead>
<tr>
<th>ROI</th>
<th>N</th>
<th>ϵ [%]</th>
<th>δ [%]</th>
<th>r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>1135</td>
<td>51.5</td>
<td>49.3</td>
<td>0.95</td>
</tr>
<tr>
<td>#2</td>
<td>3033</td>
<td>213.6</td>
<td>213.6</td>
<td>0.83</td>
</tr>
<tr>
<td>#3</td>
<td>489</td>
<td>357.7</td>
<td>357.7</td>
<td>0.60</td>
</tr>
<tr>
<td>Total</td>
<td>4657</td>
<td>189.2</td>
<td>188.7</td>
<td>0.96</td>
</tr>
</tbody>
</table>

MERIS algal-2 vs. MLP$_{BMP}$

<table>
<thead>
<tr>
<th>ROI</th>
<th>N</th>
<th>ϵ [%]</th>
<th>δ [%]</th>
<th>r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>2374</td>
<td>42.1</td>
<td>-27.5</td>
<td>0.75</td>
</tr>
<tr>
<td>#2</td>
<td>12295</td>
<td>120.7</td>
<td>115.5</td>
<td>0.87</td>
</tr>
<tr>
<td>#3</td>
<td>6700</td>
<td>141.5</td>
<td>141.5</td>
<td>0.80</td>
</tr>
<tr>
<td>Total</td>
<td>21369</td>
<td>118.5</td>
<td>107.8</td>
<td>0.86</td>
</tr>
</tbody>
</table>

Source: MER_RR__2PRACR20080708_081104_000021512070_00107_33227_0000.N1
Summary and conclusions

• MLPs were developed from quality assured BiOMaP and CoASTS data fulfilling the need of in-situ measurements collected in different basins with consistent instrument sets and measurement protocols

• The selected basins show a wide range of optically complex water conditions

• MERIS algal-2 Chl-a estimates exhibit a better agreement with MLP_BMP results than algal-1 in the considered optically complex waters
Summary and conclusions (cont.)

- Northern Adriatic Sea
 - Algal-1 overestimates MLP_{BMP} by more than 100%
 - Algal-2 and MLP_{BMP} show a substantial agreement

- Baltic Sea
 - Both algal-1 and algal-2 overestimate MLP_{BMP}
 - Algal-1 displays a clear saturation pattern
 - Specific trends at a sub-regional level

- Western Black Sea
 - A correlation between MERIS and MLP_{BMP} somehow in between to what observed in the other two basins
 - Specific trends at a sub-regional level
Foreseen studies

• Unified framework where bio-optical algorithms are developed and applied accounting for geographical distribution and optical properties to improve ocean color products retrieval
• Automated ROI selection and data processing (time series)
• Extension of the analysis to the absorption of the yellow substance (\(a_{ys}\)) and concentration of the total suspended matter (TSM)
• Extension of the analysis to additional European Seas (e.g., Atlantic off Portugal)
E.g.: Atlantic off Portugal

(a) BiOMaP allb
(b) MERIS algal-1
(c) MERIS algal-2
(d) ROI
(e) BiOMaP vs. algal-1
(f) BiOMaP vs. algal-2

Source: MER_RR__2PRACR20100825_103551_000026292092_00223_44365_0000.N1
E.g.: Atlantic off Portugal (cont.)

(a) BiOMaP emed

(b) MERIS algal-1

(c) MERIS algal-2

(d) ROI

(e) BiOMaP vs. algal-1

(f) BiOMaP vs. algal-2
E.g.: Atlantic off Portugal (cont.)

(a) BiOMaP nadr

(b) MERIS algal-1

(c) MERIS algal-2

(d) ROI

(e) BiOMaP vs. algal-1

(f) BiOMaP vs. algal-2
Acknowledgments

• European Space Agency through contract number C22576.

• Geo-Info project funded by the Portuguese Foundation for Science and Technology (FCT), Ministry of Science, Technology and Higher Education
Selected publications

Monte Carlo simulations

Results have shown coefficients of variation of subsurface radiometric values in the range of 0.5%–3.5% for Ed(0-), below 0.4% for Eu(0-), and up to 1.2% for Lu(0-)
Dataset selection and QA

Binned data computed applying the standard moving average scheme and the optimized filtering scheme (left and right panel, respectively)