AATSR Level 2 Detailed Processing Model & Parameter Data List

Science and Technology Facilities Council
Rutherford Appleton Laboratory
Chilton, Didcot
Oxfordshire OX11 0QX

<table>
<thead>
<tr>
<th>Prepared by:</th>
<th>A.R. Birks, RAL</th>
<th>Approved by:</th>
<th>Caroline Cox, RAL</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Caroline Cox</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2011.10.21 15:08:24 +0000</td>
<td></td>
</tr>
</tbody>
</table>

Commercial In Confidence
AATSR Product Algorithm Detailed Documentation
Amendment Record

<table>
<thead>
<tr>
<th>Issue</th>
<th>Revision</th>
<th>Date</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>14 January 1997</td>
<td>Updated draft by RAL</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>12 February 1997</td>
<td>Revised by RAL</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>28 February 1997</td>
<td>First formal release</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>31 July 1997</td>
<td>Second Formal Release. Updated to match I/O DD Revision (Issue 1 Revision 7). ECMWF Product added. Corrections and clarifications made.</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>21 November 1997</td>
<td>Updated and clarified in the light of comments received.</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>5 December 1997</td>
<td>Third formal release (to ESA).</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>26 January 1998</td>
<td>Corrected and clarified.</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>20th October 1998</td>
<td>Revised to take account of SPRs to date.</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>11 March 1999</td>
<td>Revised to take account of SPRs to date.</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>12 March 1999</td>
<td>Fifth formal release</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>27 June 2000</td>
<td>Revised to take account of SPRs to date.</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>27 June 2000</td>
<td>Revised to incorporate changes to the across-track banding scheme for SST derivation; to the infra-red brightness temperature precision in the ABT product, and to the definition of the Meteo product.</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>4 July 2000</td>
<td>Sixth formal release</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>15 October 2001</td>
<td>LST algorithm added</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>2 June 2003</td>
<td>LST algorithm revised</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>18 June 2003</td>
<td>Seventh formal release</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>15 November 2005</td>
<td>LST Algorithm revised</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>2 June 2006</td>
<td>Eighth formal release</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>16 June 2011</td>
<td>Clarification of AST Confidence Flags Initialisation.</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>16 June 2011</td>
<td>Draft A Issued.</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>14th Oct. 2011</td>
<td>Ninth formal release</td>
</tr>
</tbody>
</table>
CONFIGURATION CONTROL

Document Last Updated by: RAL on the 14th October 2011
(to update these data, click on the field, hold down right mouse button and use Update Field)

Status(Draft / Controlled): Controlled
TABLE OF CONTENTS

1. PURPOSE OF DOCUMENT ... 8
2. INTRODUCTION .. 8
 2.1 Acronyms ... 8
3. REFERENCE DOCUMENTS ... 9
4. DETAILED PROCESSING MODEL ... 10
 4.1 Overview of Processing Structure ... 12
 4.1.1 General .. 12
 4.1.2 Input Annotation Data Sets (Module 1) .. 12
 4.1.3 Assemble Regridded Brightness Temperature Arrays (Module 2) 13
 4.1.4 Interpolate Solar Angles (Module 3) ... 13
 4.1.5 Interpolate Image Pixel position (Module 4) .. 14
 4.1.6 Grided SST/Vegetation Retrieval (Module 5) ... 14
 4.1.7 Output GSST Records (Module 6) ... 14
 4.1.8 Spatial Averaging (Half-Degree Cell) (Module 7) ... 14
 4.1.9 Averaged SST Retrieval (Half-Degree Cell) (Module 8) 14
 4.1.10 Averaged NDVI Retrieval (Half-Degree Cell) (Module 9) 14
 4.1.11 Spatially Averaged Cloud parameters (Half-Degree Cell) (Module 10) 14
 4.1.12 Spatial Averaging (50 km cell) (Module 11) .. 15
 4.1.13 Averaged SST Retrieval (50 km cell) (Module 12) 15
 4.1.14 Averaged NDVI Retrieval (50 km cell) (Module 13) 15
 4.1.15 Spatially Averaged Cloud parameters (50 km cell) (Module 14) 15
 4.1.16 Output AST Records (Module 15) ... 15
 4.1.17 Output ECMWF Product (Module 16) ... 15
 4.1.18 Breakpoints ... 15
 4.2 Module Definition: Input Annotation Data Sets .. 21
 4.2.1 Functional Description .. 21
 4.2.2 Interface Definition ... 21
4.2.3 Detailed Structure ... 23

4.3 Module Definition: Assemble Regridded Brightness Temperature Arrays 24
4.3.1 Functional Description ... 24
4.3.2 Interface Definition .. 24
4.3.3 Detailed Structure ... 27
4.3.3.1 Initialise Arrays .. 27
4.3.3.2 Input MDS records ... 27

4.4 Module Definition: Interpolate Solar Angles 29
4.4.1 Functional Description .. 29
4.4.2 Interface Definition .. 29
4.4.3 Detailed Structure ... 30

4.5 Module Definition: Interpolate Image Pixel Position 31
4.5.1 Functional Description .. 32
4.5.2 Interface Definition .. 32
4.5.3 Detailed Structure ... 33

4.6 Module Definition: Gridded SST / Vegetation Retrieval 34
4.6.1 Functional Description .. 34
4.6.2 Interface Definition .. 35
4.6.3 Detailed Structure ... 37

4.7 Module Definition: Output GSST Records 47
4.7.1 Functional Description .. 51
4.7.2 Interface Definition .. 51
4.7.3 Detailed Structure ... 53

4.8 Module Definition: Spatial Averaging (Half Degree Cell) 56
4.8.1 Functional Description .. 56
4.8.2 Interface Definition .. 56
4.8.3 Detailed Structure ... 58

4.9 Module Definition: Averaged SST Retrieval (Half Degree Cell) 66
4.9.1 Functional Description .. 66
4.9.2 Interface Definition .. 66
4.9.3 Detailed Structure ... 68

4.10 Module Definition: Averaged NDVI Retrieval (Half Degree Cell) 74
4.10.1 Functional Description .. 74
4.10.2 Interface Definition ... 75
4.10.3 Detailed Structure .. 76

4.11 Module Definition: Spatially Averaged Cloud Parameters (Half Degree Cell) 77
 4.11.1 Functional Description .. 82
 4.11.2 Interface Definition ... 83
 4.11.3 Detailed Structure .. 85

4.12 Module Definition: Spatial Averaging (50 km Cell) ... 86
 4.12.1 Functional Description .. 86
 4.12.2 Interface Definition ... 87
 4.12.3 Detailed Structure .. 89

4.13 Module Definition: Averaged SST Retrieval (50 km Cell) 97
 4.13.1 Functional Description .. 97
 4.13.2 Interface Definition ... 97
 4.13.3 Detailed Structure .. 98

4.14 Module Definition: Averaged NDVI Retrieval (50 km Cell) 105
 4.14.1 Functional Description .. 105
 4.14.2 Interface Definition ... 105
 4.14.3 Detailed Structure .. 107

4.15 Module Definition: Spatially Averaged Cloud Parameters (50 km Cell) 107
 4.15.1 Functional Description .. 112
 4.15.2 Interface Definition ... 113
 4.15.3 Detailed Structure .. 115

4.16 Module Definition: Output AST Product .. 116
 4.16.1 Functional Description .. 116
 4.16.2 Interface Definition ... 116
 4.16.3 Detailed Structure .. 117

4.17 Module Definition: Output ECMWF Product .. 132
 4.17.1 Functional Description .. 132
 4.17.2 Interface Definition ... 132
 4.17.3 Detailed Structure .. 132

5. INTERNAL PARAMETER LIST ... 134
1 PURPOSE OF DOCUMENT

This document defines the Data Processing Model and the Parameter Data List for ENVISAT AATSR Level 2 processing.

2 INTRODUCTION

AATSR Level 2 processing encompasses the derivation of the GSST and ASST products from GBTR products output at Level 1B (ref. [1]). This document describes the step by step procedures which should be implemented within the ENVISAT Ground Segment processing to produce near real-time (NRT) and offline products.

2.1 Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AATSR</td>
<td>Advanced Along-Track Scanning Radiometer</td>
</tr>
<tr>
<td>ADS</td>
<td>Annotation Data Set; a data set within an ENVISAT product containing annotation data.</td>
</tr>
<tr>
<td>AST</td>
<td>Averaged Surface Temperature.</td>
</tr>
<tr>
<td>BB</td>
<td>Black Body</td>
</tr>
<tr>
<td>CAEID</td>
<td>Critical Algorithm Elements Identification Document</td>
</tr>
<tr>
<td>CAPA</td>
<td>Critical Analysis of Processing Algorithms Document</td>
</tr>
<tr>
<td>CFI</td>
<td>Customer Furnished Item</td>
</tr>
<tr>
<td>CGU</td>
<td>Clock Generation Unit</td>
</tr>
<tr>
<td>CRC</td>
<td>Cyclical Redundancy Check</td>
</tr>
<tr>
<td>CRRD</td>
<td>Computer Resource Requirements Document</td>
</tr>
<tr>
<td>DPM</td>
<td>Detailed Processing Model</td>
</tr>
<tr>
<td>DS</td>
<td>Data Set</td>
</tr>
<tr>
<td>DSD</td>
<td>Data Set Descriptor</td>
</tr>
<tr>
<td>DSR</td>
<td>Data Set Record</td>
</tr>
<tr>
<td>FODP</td>
<td>Flight Operation and Data Plan</td>
</tr>
<tr>
<td>FPA</td>
<td>Focal Plane Assembly</td>
</tr>
<tr>
<td>GBTR</td>
<td>Gridded Brightness Temperature/Reflectance</td>
</tr>
<tr>
<td>GOME</td>
<td>Global Ozone Monitoring Experiment</td>
</tr>
<tr>
<td>GSST</td>
<td>Gridded Sea Surface Temperature</td>
</tr>
<tr>
<td>I/O DD</td>
<td>Input/Output Data Definition Document</td>
</tr>
<tr>
<td>LST</td>
<td>Land Surface Temperature</td>
</tr>
<tr>
<td>LUT</td>
<td>Look Up Table</td>
</tr>
<tr>
<td>MDS</td>
<td>Measurement Data Set; a data set within an ENVISAT product containing instrument data</td>
</tr>
<tr>
<td>MPH</td>
<td>Main Product Header</td>
</tr>
<tr>
<td>MX BB</td>
<td>Minus X black body</td>
</tr>
</tbody>
</table>
3 Reference Documents

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Number</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD 1</td>
<td>AATSR Level 1B Detailed Processing Model & Parameter Data List</td>
<td>PO-TN-RAL-GS-10004</td>
<td>RAL</td>
</tr>
<tr>
<td>RD 2</td>
<td>AATSR Input / Output Data Definition Document</td>
<td>PO-TN-RAL-GS-10003</td>
<td>RAL</td>
</tr>
<tr>
<td>RD-3</td>
<td>Land Surface Temperature Measurement from Space: AATSR Algorithm Theoretical Basis Document</td>
<td>Fred Prata (CSIRO)</td>
<td>RAL or CSIRO</td>
</tr>
<tr>
<td>AD 1</td>
<td>ENVISAT-1 reference definitions document for</td>
<td>PO-TN-ESA-GS-00361</td>
<td>ESA</td>
</tr>
</tbody>
</table>
4 Detailed Processing Model

This section describes the level 2 processing. It includes a module by module breakdown of the processing structure. First a general overview of the processing structure can be found (see also Figure 4-1-1). This is followed by a more detailed description of each of the component modules; each module having:

- A functional description
- An interface definition
- An algorithm definition or detailed structure description
- A description of test procedures.

The interface definition consists of two tables, an Input table and an Internal table. The first deals principally with the interface to the IODD and to external files defined within the ENVISAT processing environment. The second defines parameters which are “internal to the processor”, that is to say parameters which are defined within a particular module, used by one or more modules. The Input table can contain parameters defined either in the IODD, or another external file - it represents the interface with the “outside world". The Internal table contains newly defined parameters or parameters defined in a previously declared Internal table, which the module under discussion needs to access. Internal parameters can be local (to the module), or global. Global parameters are available to other modules, including the product output module. All global internal parameters are summarized in Table 5-1: Internal Parameter summary list.

Parameter names are defined using the following conventions:

IODD parameters: format: <ProductCode>-<Data set>-<ID number> (e.g. L0-MDS1-1)

Internal parameters format (global variables): <DPM>-INT-<SEQ> (e.g. L1B-INT-1), where SEQ is a unique number for any given DPM level.

The data tables have the following columns:

<table>
<thead>
<tr>
<th>Parameter ID:</th>
<th>refers to the ID in the IODD (for external parameters) or the internal data ID for internally generated parameters. These are also used within pseudo code and text descriptions to refer to the parameters. In the case of internal parameters, if this field is blank, or contains “local”, the variable is taken to be local to the module. For example, loop counters would generally be defined as local variables. If an Internal ID is defined, the variable is assumed to be global.</th>
</tr>
</thead>
</table>
Variable: This is an optional entry, allowing a parameter to also be referred to within the text through a variable name, for ease of use, or to follow convention. If the column is blank, the parameter will always be referred to by its ID;

Name: A “long name” format, providing the means for a short description. This can be used for reference in text descriptions, but generally is not used within pseudo code for reasons of clarity.

Type: The parameter type, using standard ENVISAT PDS conventions;

Units: The parameter SI unit (where appropriate), and if necessary scaling factor;

Size: The space required by the parameter in bytes;

Fields: The number of fields for cases where the ID refers to an array of parameters;

Other conventions in use in this document are as follows:

Underscore is regarded as an alphabetic character in variable names.

Type font and style are of no significance; for example, the same variable is meant whether the name appears in italic or roman type, or in a different font.

Type of brackets is of no significance; either parentheses or square brackets may be used equivalently. Parameter IDs are designed to enable cross-referencing between this document and the I/O DD, and between modules within this document, and they may be used as variable names to reduce ambiguity. Parameter IDs used in equations are generally enclosed in square brackets, to enable them to be subscripted. Thus if a parameter ID refers to an indexed or subscripted variable, the following notation may be used to associate the subscript ‘i’ with the ID: \([L2\text{-INT\text{-nn}}](i)\).

For example

\([L2\text{-INT\text{-101}}](i, j)\) is equivalent to \(I(ir12, n; i, j)\)

\([L2\text{-INT\text{-110}}](i, j)\) is equivalent to \(frwrd_fill_state(i, j)\)

and so on.

Pointed brackets <> are (except for a few points in the Level 2 processing where they are used to denote averaged quantities: this should be clear from the context) metasyntactical; they enclose strings that are to be substituted by one of a set of optional strings to give the true variable name. For example, the construction \(<\text{view}\>__fill_state(i, j)\) is to represent one of the two quantities \(nadir_fill_state(i, j)\) or \(frwrd_fill_state(i, j)\), according as whether the nadir or forward view data is being processed.

Indices in equations may appear indifferently as subscripts or enclosed in brackets. Sometimes the convention of separating parenthesised indices with semicolons is used: e.g. \(I(ch, v; i, j)\). The significance of this is that the indices preceding the square brackets are regarded as subscripts that may be thought of as part of the variable name (and therefore need
not correspond to variables in an implementation) while those following the semicolon are array indices.

Indexing

The following indexing conventions are adopted generally:

- \(i \) along track (image scan) index
- \(j \) across track (image pixel) index (\(j = 0, 511 \))

Unless otherwise stated, indices start at zero.

For the purpose of indexing and identifying the AATSR channels, the following conventional numbering scheme will be adopted.

<table>
<thead>
<tr>
<th>AATSR Channel</th>
<th>Symbol</th>
<th>Index (ch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 micron</td>
<td>(\text{ir12})</td>
<td>1</td>
</tr>
<tr>
<td>11 micron</td>
<td>(\text{ir11})</td>
<td>2</td>
</tr>
<tr>
<td>3.7 micron</td>
<td>(\text{ir37})</td>
<td>3</td>
</tr>
<tr>
<td>1.6 micron</td>
<td>(\text{v16})</td>
<td>4</td>
</tr>
<tr>
<td>0.870 micron</td>
<td>(\text{v870})</td>
<td>5</td>
</tr>
<tr>
<td>0.670 micron</td>
<td>(\text{v670})</td>
<td>6</td>
</tr>
<tr>
<td>0.55 micron</td>
<td>(\text{v555})</td>
<td>7</td>
</tr>
</tbody>
</table>

Requirements are identified by numbers of the form (Req. \(<\text{id}>-<\text{sequence}>\)) where \(<\text{id}>\) is an identifier that is unique to the module or chapter, and \(<\text{sequence}>\) is the sequence number within the series identified by \(<\text{id}>\).

4.1 Overview of Processing Structure

4.1.1 General

Figure 4-1-1 shows an overview of the Level 2 processing.

The main steps in the production of the Level 2 products are as follows:

- Derivation of Sea Surface Temperature (SST) and other parameters from the GBTR regridded brightness temperatures.
- Generation of averaged brightness temperatures and reflectances from the GBTR regridded brightness temperatures and visible channel reflectances.
- Derivation of averaged SST from the averaged brightness temperatures, and of NDVI from the averaged reflectances.

The processing makes use of some but not all of the supporting data from the GBTR ADS.

4.1.2 Input Annotation Data Sets (Module 1)

This module inputs those Annotation Data Sets of the GBTR product that are required for Level 2 Processing, and converts into appropriate units where necessary. It is described in Section 4.2.
4.1.3 Assemble Regridded Brightness Temperature Arrays (Module 2)

This module reads in grid co-ordinates and channel brightness temperatures / reflectances for forward and nadir views from the appropriate MDS of the GBTR product and arranges them in the required memory configuration. It is described in Section 4.3.

4.1.4 Interpolate Solar Angles (Module 3)

The solar azimuth and elevation and satellite azimuth and elevation, all measured at the pixel, are available for a series of uniformly spaced tie point pixels in ADS #5 for the nadir view and in ADS #6 for the forward view images. The present module derives those angles that are required for level 2 processing at every scan, and at the mid-points of the bands, by linear interpolation, between these tie points. Only the solar elevation is required for Level 2 processing as presently defined. It is described is Section 4.4.
4.1.5 Interpolate Image Pixel position (Module 4)

The (geodetic) latitudes and longitudes of a series of uniformly spaced tie point pixels are available in ADS #3. This module derives the latitude and longitude of each of image pixel by linear interpolation, in two dimensions, between these tie points. The module is described in Section 4.5.

4.1.6 Gridded SST/Vegetation Retrieval (Module 5)

This module derives the contents of the GSST product at 1 km resolution from the infra-red brightness temperatures. It derives the sea surface temperature (SST) or, over land, the vegetation index (NDVI), at 1 Km resolution, using cloud free data. It is described in Section 4.6.

4.1.7 Output GSST Records (Module 6)

All data required for the GSST product is now available, and is formatted into the products described in the IODD. The module is described in Section 4.16.

4.1.8 Spatial Averaging (Half-Degree Cell) (Module 7)

For the averaged products in half-degree cells, the globe is imagined as divided into cells 0.5° in latitude by 0.5° in longitude, and these cells are further subdivided into 9 sub-cells extending 10 arcmin in latitude by 10 arcmin in longitude. For each channel, the average brightness temperature (for the infra-red channels) or reflectance (for the visible channels) is averaged over all pixels of each type that fall within each sub-cell, to give distributions of a brightness temperature and radiance at 10 arc minute resolution. Averages are performed for the forward and nadir views separately, and a separate average is performed for each surface type (land and sea) and cloud state (clear or cloudy). There are thus 4 averages per channel per view. The mean across-track band number in each cell is also derived, for use by the averaged SST algorithm. The module is described in Section 4.8.

4.1.9 Averaged SST Retrieval (Half-Degree Cell) (Module 8)

This module derives the averaged SST for the cells and sub-cells from the averaged brightness temperatures determined above, for cells containing sea. It is described in Section 4.9.

4.1.10 Averaged NDVI Retrieval (Half-Degree Cell) (Module 9)

The NDVI is calculated for each sub-cell for which average reflectances over land have been calculated. The averaged NDVI over all the sub-cells, and its standard deviation, are also computed. The module is described in Section 4.10.

4.1.11 Spatially Averaged Cloud parameters (Half-Degree Cell) (Module 10)

This module provides physical information on the cloud state additional to the results of the cloud flagging provided in the Level 1b product. The product is based on the same half-degree cells defined above. In particular it derives an estimate of the cloud-top temperature. The latter is interpreted as the mean brightness temperature of the coldest 25% of the cloudy pixels in the cell. The module is described in Section 4.11.
4.1.12 Spatial Averaging (50 km cell) (Module 11)

This module derives spatially averaged brightness temperatures and reflectances as in Module 7, but averaged over cells and subcells of nominal dimensions 50 km x 50 km, and 17 x 17 km, respectively. It is described in Section 4.12

4.1.13 Averaged SST Retrieval (50 km cell) (Module 12)

This module derives spatially averaged brightness temperatures and reflectances as in Module 8, but averaged over cells and subcells of nominal dimensions 50 km x 50 km, and 17 x 17 km, respectively. It is described in Section 4.13

4.1.14 Averaged NDVI Retrieval (50 km cell) (Module 13)

This module derives spatially averaged NDVI as in Module 9, but averaged over cells and subcells of nominal dimensions 50 km x 50 km, and 17 x 17 km, respectively. It is described in Section 4.14.

4.1.15 Spatially Averaged Cloud parameters (50 km cell) (Module 14)

This module derives cloud parameters as in Module 9, but based on a cell of nominal dimensions 50 km x 50 km. It is described in Section 4.15.

4.1.16 Output AST Records (Module 15)

All data required for the AST product is now available, and is formatted into the products described in the IODD. The module is described in Section 4.16.

4.1.17 Output ECMWF Product (Module 16)

The ECMWF Averaged SST Product consists of an additional extraction of the AST product Measurement Data Set MDS #3. The product is generated in this module, which is described in Section 4.17.

4.1.18 Breakpoints

The following data shall be used as breakpoints in the testing of the Level 2 process.
Interpolated Solar Angles at the output of Module 3.
Interpolated pixel co-ordinates at the output of Module 4.
GSST Product Outputs from module 5.
AST product outputs from modules 7 - 15.

The table below indicates the accuracy with which the data should be verified against the output of the reference processor.

<table>
<thead>
<tr>
<th>Parameter ID</th>
<th>Name</th>
<th>Verification Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2-INT-120</td>
<td>nadr_band_edge_solar_elevation(i, k)</td>
<td>1 part in 1e6</td>
</tr>
<tr>
<td>L2-INT-140</td>
<td>fwrfd_band_edge_solar_elevation(i, k)</td>
<td>1 part in 1e6</td>
</tr>
<tr>
<td>L2-INT-124</td>
<td>nadr_band_centre_solar_elevation(i, k')</td>
<td>1 part in 1e6</td>
</tr>
<tr>
<td>L2-INT-144</td>
<td>fwrfd_band_centre_solar_elevation(i, k')</td>
<td>1 part in 1e6</td>
</tr>
<tr>
<td>L2-INT-160</td>
<td>image latitude</td>
<td>1 part in 1e6</td>
</tr>
<tr>
<td>L2-INT-161</td>
<td>image longitude</td>
<td>1 part in 1e6</td>
</tr>
</tbody>
</table>
Table 4-2-1. Level 2 Breakpoints

Note: In the table above, ‘Generally exact’ relates to flags or quantities of type integer, and indicates that test results should agree exactly with the reference processor in the majority of cases, but that a small number (TBD) of discrepancies may acceptable owing to differences in machine precision.

The following tables describe the formats specified for the breakpoint outputs.

Table 4-2-2: Break Point #1 Record: nadir solar and viewing angles

<table>
<thead>
<tr>
<th>Parameter ID</th>
<th>Start byte</th>
<th>End byte</th>
<th>Field Description</th>
<th>Type</th>
<th>Units</th>
<th>Field size</th>
<th>Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>0</td>
<td>3</td>
<td>image row index (i)</td>
<td>sl</td>
<td>n/a</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>L2-INT-120</td>
<td>4</td>
<td>47</td>
<td>nadir_band_edge_solar_elevation(i, k)</td>
<td>float</td>
<td>degrees</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>L2-INT-124</td>
<td>48</td>
<td>87</td>
<td>nadir_band_centre_solar_elevation(i, k)</td>
<td>float</td>
<td>degrees</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>L2-INT-140</td>
<td>88</td>
<td>131</td>
<td>fwdrd_band_edge_solar_elevation(i, k)</td>
<td>float</td>
<td>degrees</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>L2-INT-144</td>
<td>132</td>
<td>171</td>
<td>fwdrd_band_centre_solar_elevation(i, k)</td>
<td>float</td>
<td>degrees</td>
<td>4</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 4-2-3: Break Point #2 Record: nadir view instrument pixel numbers

<table>
<thead>
<tr>
<th>Parameter ID</th>
<th>Start byte</th>
<th>End byte</th>
<th>Field Description</th>
<th>Type</th>
<th>Units</th>
<th>Field size</th>
<th>Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>0</td>
<td>3</td>
<td>image row index (i)</td>
<td>sl</td>
<td>n/a</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>L2-INT-160</td>
<td>4</td>
<td>2051</td>
<td>image_latitude(i, j)</td>
<td>float</td>
<td>degrees</td>
<td>4</td>
<td>512</td>
</tr>
<tr>
<td>L2-INT-161</td>
<td>2052</td>
<td>4099</td>
<td>image_longitude(i, j)</td>
<td>float</td>
<td>degrees</td>
<td>4</td>
<td>512</td>
</tr>
</tbody>
</table>

Table 4-2-4: Break Point #3 Record: Gridded product record

<table>
<thead>
<tr>
<th>Parameter ID</th>
<th>Start byte</th>
<th>End byte</th>
<th>Field Description</th>
<th>Type</th>
<th>Units</th>
<th>Field size</th>
<th>Fields</th>
<th>Verification Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>0</td>
<td>3</td>
<td>image row index (i)</td>
<td>sl</td>
<td>n/a</td>
<td>4</td>
<td>1</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-272</td>
<td>4</td>
<td>1027</td>
<td>confidence words</td>
<td>us</td>
<td>flags</td>
<td>2</td>
<td>512</td>
<td>generally exact</td>
</tr>
<tr>
<td>L2-INT-270</td>
<td>1028</td>
<td>2051</td>
<td>nadir field prior to SST smoothing</td>
<td>ss</td>
<td>K/100</td>
<td>2</td>
<td>512</td>
<td>0.01 K</td>
</tr>
<tr>
<td>L2-INT-271</td>
<td>2052</td>
<td>3075</td>
<td>combined field prior to SST smoothing</td>
<td>ss</td>
<td>K/100</td>
<td>2</td>
<td>512</td>
<td>0.01 K</td>
</tr>
</tbody>
</table>

Note 1. The GSST product is switchable, so that the contents of these MDS fields depend on the setting of the cloud land flags. The confidence word is included in the above records so that the product is interpretable. The units of these quantities depend on the flag settings; values quoted are for cloud-free sea data.

Table 4-2-5: Break point #4 Record, AST Sea Record, 30 arc minute cell

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Start byte</th>
<th>End byte</th>
<th>View</th>
<th>Field Description</th>
<th>Type</th>
<th>Units</th>
<th>Field size</th>
<th>Fields</th>
<th>Verification Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2-INT-30</td>
<td>0</td>
<td>7</td>
<td>n/a</td>
<td>cell UTC</td>
<td>double</td>
<td>days</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L2-INT-47</td>
<td>8</td>
<td>11</td>
<td>n/a</td>
<td>cell latitude</td>
<td>sl</td>
<td>μdeg</td>
<td>4</td>
<td>100</td>
<td>μdeg</td>
</tr>
<tr>
<td>L2-INT-48</td>
<td>12</td>
<td>15</td>
<td>n/a</td>
<td>cell longitude</td>
<td>sl</td>
<td>μdeg</td>
<td>4</td>
<td>100</td>
<td>μdeg</td>
</tr>
<tr>
<td>L2-INT-344</td>
<td>16</td>
<td>19</td>
<td>N</td>
<td>total of clear sea pixels, nadir view</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td>1</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-345</td>
<td>20</td>
<td>23</td>
<td>F</td>
<td>total of clear sea pixels, forward view</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td>1</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-346</td>
<td>24</td>
<td>27</td>
<td>N</td>
<td>total of cloudy sea pixels, nadir view</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td>1</td>
<td>exact</td>
</tr>
<tr>
<td>Field No.</td>
<td>Start byte</td>
<td>End byte</td>
<td>View</td>
<td>Field Description</td>
<td>Type</td>
<td>Units</td>
<td>Field Size</td>
<td>Fields</td>
<td>Verification Accuracy</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>----------</td>
<td>------</td>
<td>-------------------</td>
<td>------</td>
<td>-------</td>
<td>------------</td>
<td>--------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>L2-INT-30</td>
<td>0</td>
<td>7</td>
<td>n/a</td>
<td>cell UTC</td>
<td>double</td>
<td>days</td>
<td>9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L2-INT-47</td>
<td>8</td>
<td>11</td>
<td>n/a</td>
<td>cell latitude</td>
<td>sl</td>
<td>µdeg</td>
<td>1</td>
<td>100 udeg</td>
<td></td>
</tr>
<tr>
<td>L2-INT-48</td>
<td>12</td>
<td>15</td>
<td>n/a</td>
<td>cell longitude</td>
<td>sl</td>
<td>µdeg</td>
<td>1</td>
<td>100 udeg</td>
<td></td>
</tr>
<tr>
<td>L2-INT-328</td>
<td>16</td>
<td>19</td>
<td>N</td>
<td>total of clear land pixels, nadir view</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td>1</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-329</td>
<td>20</td>
<td>23</td>
<td>F</td>
<td>total of clear land pixels, forward view</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td>1</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-330</td>
<td>24</td>
<td>27</td>
<td>N</td>
<td>total of cloudy land pixels, nadir view</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td>1</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-331</td>
<td>28</td>
<td>31</td>
<td>F</td>
<td>total of cloudy land pixels, forward view</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td>1</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-332</td>
<td>32</td>
<td>2031</td>
<td>F</td>
<td>nadir histogram (land cell)</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>1000</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-333</td>
<td>2032</td>
<td>2031</td>
<td>F</td>
<td>forward histogram (land cell)</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>1000</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-40</td>
<td>4032</td>
<td>4045</td>
<td>N</td>
<td>Total clear pixels over land in cell, ch = 1,...?</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>7</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-40</td>
<td>4046</td>
<td>4059</td>
<td>N</td>
<td>Total cloudy pixels over land in cell, ch = 1,...?</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>7</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-40</td>
<td>4060</td>
<td>4073</td>
<td>F</td>
<td>Total clear pixels over sea in cell, ch = 1,...?</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>7</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-40</td>
<td>4074</td>
<td>4087</td>
<td>F</td>
<td>Total cloudy pixels over sea in cell, ch = 1,...?</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>7</td>
<td>exact</td>
</tr>
</tbody>
</table>

Table 4-2-6: Break point #5 Record, AST Land Record, 30 arc minute cell
Table 4-2-7: Break point #6 Record, AST Sea Record, 10 arc minute cell

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Start byte</th>
<th>End byte</th>
<th>View</th>
<th>Field Description</th>
<th>Type</th>
<th>Units</th>
<th>Size</th>
<th>Fields</th>
<th>Verification Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2-INT-31</td>
<td>0</td>
<td>11</td>
<td>n/a</td>
<td>sub-cell UTC</td>
<td>double</td>
<td>days</td>
<td>9</td>
<td>1</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-49</td>
<td>12</td>
<td>12</td>
<td>n/a</td>
<td>nadir view day/night flag</td>
<td>ss</td>
<td>flag</td>
<td>2</td>
<td>1</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-50</td>
<td>13</td>
<td>15</td>
<td>n/a</td>
<td>forward view day/night flag</td>
<td>ss</td>
<td>flag</td>
<td>2</td>
<td>1</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-45</td>
<td>16</td>
<td>19</td>
<td>n/a</td>
<td>nadir solar elevation for sub-cell</td>
<td>float</td>
<td>degrees</td>
<td>4</td>
<td>1</td>
<td>1 part in 1e6</td>
</tr>
<tr>
<td>L2-INT-46</td>
<td>20</td>
<td>23</td>
<td>n/a</td>
<td>fwdrd solar elevation for sub-cell</td>
<td>float</td>
<td>degrees</td>
<td>4</td>
<td>1</td>
<td>1 part in 1e6</td>
</tr>
<tr>
<td>L2-INT-32</td>
<td>24</td>
<td>25</td>
<td>n/a</td>
<td>sub-cell latitude</td>
<td>sl</td>
<td>μdeg</td>
<td>4</td>
<td>1</td>
<td>100 μdeg</td>
</tr>
<tr>
<td>L2-INT-33</td>
<td>26</td>
<td>27</td>
<td>N</td>
<td>sub-cell longitude</td>
<td>sl</td>
<td>μdeg</td>
<td>4</td>
<td>1</td>
<td>100 μdeg</td>
</tr>
<tr>
<td>L2-INT-34</td>
<td>28</td>
<td>29</td>
<td>N</td>
<td>sub-cell across-track band</td>
<td>sl</td>
<td>none</td>
<td>2</td>
<td>1</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-36</td>
<td>30</td>
<td>31</td>
<td>N</td>
<td>sub-cell total, ch = 1, ..., 7, clear pixels, nadir view</td>
<td>sl</td>
<td>n/a</td>
<td>4</td>
<td>7</td>
<td>500 lsb</td>
</tr>
<tr>
<td>L2-INT-36</td>
<td>58</td>
<td>85</td>
<td>N</td>
<td>sub-cell total, ch = 1, ..., 7, cloudy pixels, nadir view</td>
<td>sl</td>
<td>n/a</td>
<td>4</td>
<td>7</td>
<td>500 lsb</td>
</tr>
<tr>
<td>L2-INT-36</td>
<td>86</td>
<td>113</td>
<td>F</td>
<td>sub-cell total, ch = 1, ..., 7, clear pixels, forward view</td>
<td>sl</td>
<td>n/a</td>
<td>4</td>
<td>7</td>
<td>500 lsb</td>
</tr>
<tr>
<td>L2-INT-36</td>
<td>114</td>
<td>141</td>
<td>F</td>
<td>sub-cell total, ch = 1, ..., 7, cloudy pixels, fwdrd view</td>
<td>sl</td>
<td>n/a</td>
<td>4</td>
<td>7</td>
<td>500 lsb</td>
</tr>
<tr>
<td>L2-INT-37</td>
<td>142</td>
<td>155</td>
<td>N</td>
<td>sub-cell valid pixel count, ch = 1, ..., 7, clear pixels</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>7</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-37</td>
<td>156</td>
<td>169</td>
<td>N</td>
<td>sub-cell valid pixel count, ch = 1, ..., 7, cloudy pixels</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>7</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-37</td>
<td>170</td>
<td>183</td>
<td>F</td>
<td>sub-cell valid pixel count, ch = 1, ..., 7, clear pixels</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>7</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-37</td>
<td>184</td>
<td>197</td>
<td>F</td>
<td>sub-cell valid pixel count, ch = 1, ..., 7, cloudy pixels</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>7</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-35</td>
<td>198</td>
<td>199</td>
<td>N</td>
<td>cumulative across-track band sum</td>
<td>ss</td>
<td>none</td>
<td>4</td>
<td>1</td>
<td>1 lsb</td>
</tr>
<tr>
<td>L2-INT-35</td>
<td>200</td>
<td>201</td>
<td>N</td>
<td>cumulative across-track band sum</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>1</td>
<td>1 lsb</td>
</tr>
<tr>
<td>L2-INT-35</td>
<td>202</td>
<td>203</td>
<td>N</td>
<td>mean across-track band number</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>1</td>
<td>1 lsb</td>
</tr>
</tbody>
</table>

Table 4-2-8: Break point #7 Record, AST Land, 10 arc minute cell

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Start byte</th>
<th>End byte</th>
<th>View</th>
<th>Field Description</th>
<th>Type</th>
<th>Units</th>
<th>Field Size</th>
<th>Fields</th>
<th>Verification Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2-INT-31</td>
<td>0</td>
<td>7</td>
<td>n/a</td>
<td>sub-cell UTC</td>
<td>double</td>
<td>days</td>
<td>9</td>
<td>1</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-49</td>
<td>8</td>
<td>9</td>
<td>N</td>
<td>nadir view day/night flag</td>
<td>ss</td>
<td>flag</td>
<td>2</td>
<td>1</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-50</td>
<td>10</td>
<td>11</td>
<td>F</td>
<td>forward view day/night flag</td>
<td>ss</td>
<td>flag</td>
<td>2</td>
<td>1</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-45</td>
<td>12</td>
<td>15</td>
<td>N</td>
<td>nadir solar elevation for sub-cell</td>
<td>float</td>
<td>degrees</td>
<td>4</td>
<td>1</td>
<td>1 part in 1e6</td>
</tr>
<tr>
<td>L2-INT-46</td>
<td>16</td>
<td>19</td>
<td>F</td>
<td>fwdrd solar elevation for sub-cell</td>
<td>float</td>
<td>degrees</td>
<td>4</td>
<td>1</td>
<td>1 part in 1e6</td>
</tr>
<tr>
<td>L2-INT-32</td>
<td>20</td>
<td>23</td>
<td>N</td>
<td>sub-cell latitude</td>
<td>sl</td>
<td>μdeg</td>
<td>4</td>
<td>1</td>
<td>100 μdeg</td>
</tr>
<tr>
<td>L2-INT-33</td>
<td>24</td>
<td>27</td>
<td>N</td>
<td>sub-cell longitude</td>
<td>sl</td>
<td>μdeg</td>
<td>4</td>
<td>1</td>
<td>100 μdeg</td>
</tr>
<tr>
<td>L2-INT-34</td>
<td>28</td>
<td>29</td>
<td>N</td>
<td>sub-cell across-track band</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>1</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-36</td>
<td>30</td>
<td>31</td>
<td>N</td>
<td>sub-cell total, ch = 1, ..., 7, clear pixels, nadir view</td>
<td>sl</td>
<td>n/a</td>
<td>4</td>
<td>7</td>
<td>500 lsb</td>
</tr>
<tr>
<td>L2-INT-36</td>
<td>58</td>
<td>85</td>
<td>N</td>
<td>sub-cell total, ch = 1, ..., 7, cloudy pixels, nadir view</td>
<td>sl</td>
<td>n/a</td>
<td>4</td>
<td>7</td>
<td>500 lsb</td>
</tr>
<tr>
<td>L2-INT-36</td>
<td>86</td>
<td>113</td>
<td>F</td>
<td>sub-cell total, ch = 1, ..., 7, clear pixels, forward view</td>
<td>sl</td>
<td>n/a</td>
<td>4</td>
<td>7</td>
<td>500 lsb</td>
</tr>
<tr>
<td>L2-INT-36</td>
<td>114</td>
<td>141</td>
<td>F</td>
<td>sub-cell total, ch = 1, ..., 7, cloudy pixels, fwdrd view</td>
<td>sl</td>
<td>n/a</td>
<td>4</td>
<td>7</td>
<td>500 lsb</td>
</tr>
<tr>
<td>L2-INT-37</td>
<td>142</td>
<td>155</td>
<td>N</td>
<td>sub-cell valid pixel count, ch = 1, ..., 7, clear pixels</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>7</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-37</td>
<td>156</td>
<td>169</td>
<td>N</td>
<td>sub-cell valid pixel count, ch = 1, ..., 7, cloudy pixels</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>7</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-37</td>
<td>170</td>
<td>183</td>
<td>F</td>
<td>sub-cell valid pixel count, ch = 1, ..., 7, clear pixels</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>7</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-37</td>
<td>184</td>
<td>197</td>
<td>F</td>
<td>sub-cell valid pixel count, ch = 1, ..., 7, cloudy pixels</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>7</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-35</td>
<td>198</td>
<td>199</td>
<td>N</td>
<td>cumulative across-track band sum</td>
<td>ss</td>
<td>none</td>
<td>4</td>
<td>1</td>
<td>1 lsb</td>
</tr>
<tr>
<td>L2-INT-35</td>
<td>200</td>
<td>201</td>
<td>N</td>
<td>cumulative across-track band sum</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>1</td>
<td>1 lsb</td>
</tr>
<tr>
<td>L2-INT-35</td>
<td>202</td>
<td>203</td>
<td>N</td>
<td>mean across-track band number</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>1</td>
<td>1 lsb</td>
</tr>
</tbody>
</table>
Table 4-2-9: Break point #8 Record, AST Sea Record, 50 km cell

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Start byte</th>
<th>End byte</th>
<th>View</th>
<th>Field Description</th>
<th>Type</th>
<th>Units</th>
<th>Field Size</th>
<th>Fields</th>
<th>Verification Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2-INT-20</td>
<td>0</td>
<td>7</td>
<td>n/a</td>
<td>cell UTC</td>
<td>double</td>
<td>days</td>
<td>8</td>
<td>1</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-77</td>
<td>8</td>
<td>11</td>
<td>n/a</td>
<td>cell latitude</td>
<td>sl</td>
<td>deg</td>
<td>4</td>
<td>1</td>
<td>100 udeg</td>
</tr>
<tr>
<td>L2-INT-78</td>
<td>12</td>
<td>15</td>
<td>n/a</td>
<td>cell longitude</td>
<td>sl</td>
<td>deg</td>
<td>4</td>
<td>1</td>
<td>100 udeg</td>
</tr>
<tr>
<td>L2-INT-445</td>
<td>16</td>
<td>19</td>
<td>N</td>
<td>total of clear sea pixels, nadir view</td>
<td>sl</td>
<td>deg</td>
<td>4</td>
<td>1</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-446</td>
<td>20</td>
<td>23</td>
<td>F</td>
<td>total of clear sea pixels, forward view</td>
<td>sl</td>
<td>deg</td>
<td>4</td>
<td>1</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-447</td>
<td>24</td>
<td>27</td>
<td>N</td>
<td>total of cloudy sea pixels, nadir view</td>
<td>sl</td>
<td>deg</td>
<td>4</td>
<td>1</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-448</td>
<td>28</td>
<td>31</td>
<td>F</td>
<td>total of cloudy sea pixels, forward view</td>
<td>sl</td>
<td>deg</td>
<td>4</td>
<td>1</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-446</td>
<td>32</td>
<td>2031</td>
<td>N</td>
<td>nadir histogram (sea cell)</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>1000</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-449</td>
<td>2032</td>
<td>4031</td>
<td>F</td>
<td>forward histogram (sea cell)</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>1000</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-70</td>
<td>4032</td>
<td>4045</td>
<td>N</td>
<td>total clear pixels over sea in cell, ch = 1, ...7</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>7</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-70</td>
<td>4046</td>
<td>4059</td>
<td>N</td>
<td>total cloudy pixels over sea in cell, ch = 1, ...7</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>7</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-70</td>
<td>4060</td>
<td>4073</td>
<td>F</td>
<td>total clear pixels over sea in cell, ch = 1, ...7</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>7</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-70</td>
<td>4074</td>
<td>4087</td>
<td>F</td>
<td>total cloudy pixels over sea in cell, ch = 1, ...7</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>7</td>
<td>exact</td>
</tr>
<tr>
<td>AST-MDS13-73</td>
<td>4086</td>
<td>4089</td>
<td>N</td>
<td>Lowest 11 micron BT of all cloudy pixels, nadir view</td>
<td>ss</td>
<td>K/100</td>
<td>2</td>
<td>1</td>
<td>0.01 K</td>
</tr>
<tr>
<td>AST-MDS13-74</td>
<td>4090</td>
<td>4093</td>
<td>N</td>
<td>Corresponding 12 micron BT, nadir view</td>
<td>ss</td>
<td>K/100</td>
<td>2</td>
<td>1</td>
<td>0.01 K</td>
</tr>
<tr>
<td>AST-MDS13-75</td>
<td>4092</td>
<td>4095</td>
<td>N</td>
<td>Corresponding 3.7 micron BT, nadir view</td>
<td>ss</td>
<td>K/100</td>
<td>2</td>
<td>1</td>
<td>0.01 K</td>
</tr>
<tr>
<td>AST-MDS13-76</td>
<td>4094</td>
<td>4097</td>
<td>N</td>
<td>Corresponding 1.6 micron reflectance, nadir view</td>
<td>ss</td>
<td>%/100</td>
<td>2</td>
<td>1</td>
<td>0.01 %</td>
</tr>
<tr>
<td>AST-MDS13-77</td>
<td>4096</td>
<td>4099</td>
<td>N</td>
<td>Corresponding 1.6 micron reflectance, nadir view</td>
<td>ss</td>
<td>%/100</td>
<td>2</td>
<td>1</td>
<td>0.01 %</td>
</tr>
<tr>
<td>AST-MDS13-78</td>
<td>4098</td>
<td>4101</td>
<td>N</td>
<td>Corresponding 0.55 micron reflectance, nadir view</td>
<td>ss</td>
<td>%/100</td>
<td>2</td>
<td>1</td>
<td>0.01 %</td>
</tr>
<tr>
<td>AST-MDS13-79</td>
<td>4100</td>
<td>4103</td>
<td>N</td>
<td>Corresponding 0.55 micron reflectance, nadir view</td>
<td>ss</td>
<td>%/100</td>
<td>2</td>
<td>1</td>
<td>0.01 %</td>
</tr>
<tr>
<td>AST-MDS13-80</td>
<td>4104</td>
<td>4107</td>
<td>N</td>
<td>Corresponding 12 micron BT, forward view</td>
<td>ss</td>
<td>K/100</td>
<td>2</td>
<td>1</td>
<td>0.01 K</td>
</tr>
<tr>
<td>AST-MDS13-81</td>
<td>4106</td>
<td>4109</td>
<td>N</td>
<td>Corresponding 3.7 micron BT, forward view</td>
<td>ss</td>
<td>K/100</td>
<td>2</td>
<td>1</td>
<td>0.01 K</td>
</tr>
<tr>
<td>AST-MDS13-82</td>
<td>4108</td>
<td>4111</td>
<td>N</td>
<td>Corresponding 1.6 micron reflectance, forward view</td>
<td>ss</td>
<td>%/100</td>
<td>2</td>
<td>1</td>
<td>0.01 %</td>
</tr>
<tr>
<td>AST-MDS13-83</td>
<td>4110</td>
<td>4113</td>
<td>N</td>
<td>Corresponding 0.55 micron reflectance, forward view</td>
<td>ss</td>
<td>%/100</td>
<td>2</td>
<td>1</td>
<td>0.01 %</td>
</tr>
<tr>
<td>AST-MDS13-84</td>
<td>4112</td>
<td>4115</td>
<td>N</td>
<td>Corresponding 0.55 micron reflectance, forward view</td>
<td>ss</td>
<td>%/100</td>
<td>2</td>
<td>1</td>
<td>0.01 %</td>
</tr>
</tbody>
</table>

Table 4-2-10: Break point #9 Record, AST Land Record, 50 km cell

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Start byte</th>
<th>End byte</th>
<th>View</th>
<th>Field Description</th>
<th>Type</th>
<th>Units</th>
<th>Field Size</th>
<th>Fields</th>
<th>Verification Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2-INT-20</td>
<td>0</td>
<td>7</td>
<td>n/a</td>
<td>cell UTC</td>
<td>double</td>
<td>days</td>
<td>8</td>
<td>1</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-77</td>
<td>8</td>
<td>11</td>
<td>n/a</td>
<td>cell latitude</td>
<td>sl</td>
<td>deg</td>
<td>4</td>
<td>1</td>
<td>100 udeg</td>
</tr>
<tr>
<td>L2-INT-78</td>
<td>12</td>
<td>15</td>
<td>n/a</td>
<td>cell longitude</td>
<td>sl</td>
<td>deg</td>
<td>4</td>
<td>1</td>
<td>100 udeg</td>
</tr>
<tr>
<td>L2-INT-428</td>
<td>16</td>
<td>19</td>
<td>N</td>
<td>total of clear land pixels, nadir view</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td>1</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-429</td>
<td>20</td>
<td>23</td>
<td>F</td>
<td>total of clear land pixels, forward view</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td>1</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-430</td>
<td>24</td>
<td>27</td>
<td>N</td>
<td>total of cloudy land pixels, nadir view</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td>1</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-431</td>
<td>28</td>
<td>31</td>
<td>F</td>
<td>total of cloudy land pixels, forward view</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td>1</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-432</td>
<td>32</td>
<td>2031</td>
<td>N</td>
<td>nadir histogram (land cell)</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>1000</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-433</td>
<td>2032</td>
<td>4031</td>
<td>F</td>
<td>forward histogram (land cell)</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>1000</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-70</td>
<td>4032</td>
<td>4045</td>
<td>N</td>
<td>total clear pixels over land in cell, ch = 1, ...7</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>7</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-70</td>
<td>4046</td>
<td>4059</td>
<td>N</td>
<td>total cloudy pixels over land in cell, ch = 1, ...7</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>7</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-70</td>
<td>4060</td>
<td>4073</td>
<td>F</td>
<td>total clear pixels over land in cell, ch = 1, ...7</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>7</td>
<td>exact</td>
</tr>
</tbody>
</table>
Table 4-2-11: Break point #10 Record, AST Sea Record, 17 km cell

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Start byte</th>
<th>End byte</th>
<th>View</th>
<th>Field Description</th>
<th>Type</th>
<th>Units</th>
<th>Field Size</th>
<th>Fields</th>
<th>Verification Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2-INT-21</td>
<td>0</td>
<td>11</td>
<td>n/a</td>
<td>utc(cell)/sub-cell UTC</td>
<td>double</td>
<td>days</td>
<td>8</td>
<td>1</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-79</td>
<td>12</td>
<td>12</td>
<td>n/a</td>
<td>nadir view day/night flag</td>
<td>ss</td>
<td>flag</td>
<td>2</td>
<td>1</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-80</td>
<td>13</td>
<td>15</td>
<td>n/a</td>
<td>forward view day/night flag</td>
<td>ss</td>
<td>flag</td>
<td>2</td>
<td>1</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-75</td>
<td>16</td>
<td>19</td>
<td>n/a</td>
<td>nadir solar elevation for sub-cell</td>
<td>float</td>
<td>degrees</td>
<td>4</td>
<td>1</td>
<td>1 part in 1e6</td>
</tr>
<tr>
<td>L2-INT-76</td>
<td>20</td>
<td>23</td>
<td>n/a</td>
<td>frwrd solar elevation for sub-cell</td>
<td>float</td>
<td>degrees</td>
<td>4</td>
<td>1</td>
<td>1 part in 1e6</td>
</tr>
<tr>
<td>L2-INT-62</td>
<td>24</td>
<td>25</td>
<td>n/a</td>
<td>sub-cell latitude</td>
<td>sl</td>
<td>udeg</td>
<td>4</td>
<td>1</td>
<td>100 udeg</td>
</tr>
<tr>
<td>L2-INT-63</td>
<td>26</td>
<td>27</td>
<td>N</td>
<td>sub-cell longitude</td>
<td>sl</td>
<td>udeg</td>
<td>4</td>
<td>1</td>
<td>100 udeg</td>
</tr>
<tr>
<td>L2-INT-64</td>
<td>28</td>
<td>29</td>
<td>N</td>
<td>sub-cell across-track band</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>1</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-66</td>
<td>30</td>
<td>31</td>
<td>N</td>
<td>sub-cell total, ch = 1, ..., 7, clear pixels, nadir view</td>
<td>sl</td>
<td>n/a</td>
<td>4</td>
<td>7</td>
<td>500 lsb</td>
</tr>
<tr>
<td>L2-INT-66</td>
<td>58</td>
<td>85</td>
<td>N</td>
<td>sub-cell total, ch = 1, ..., 7, cloudy pixels, nadir view</td>
<td>sl</td>
<td>n/a</td>
<td>4</td>
<td>7</td>
<td>500 lsb</td>
</tr>
<tr>
<td>L2-INT-66</td>
<td>86</td>
<td>113</td>
<td>F</td>
<td>sub-cell total, ch = 1, ..., 7, clear pixels, forward view</td>
<td>sl</td>
<td>n/a</td>
<td>4</td>
<td>7</td>
<td>500 lsb</td>
</tr>
<tr>
<td>L2-INT-66</td>
<td>114</td>
<td>141</td>
<td>F</td>
<td>sub-cell total, ch = 1, ..., 7, cloudy pixels, forward view</td>
<td>sl</td>
<td>n/a</td>
<td>4</td>
<td>7</td>
<td>500 lsb</td>
</tr>
<tr>
<td>L2-INT-67</td>
<td>142</td>
<td>155</td>
<td>N</td>
<td>sub-cell valid pixel count, ch = 1, ..., 7, clear pixels</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>7</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-67</td>
<td>156</td>
<td>169</td>
<td>N</td>
<td>sub-cell valid pixel count, ch = 1, ..., 7, cloudy pixels</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>7</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-67</td>
<td>170</td>
<td>183</td>
<td>F</td>
<td>sub-cell valid pixel count, ch = 1, ..., 7, clear pixels</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>7</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-67</td>
<td>184</td>
<td>197</td>
<td>F</td>
<td>sub-cell valid pixel count, ch = 1, ..., 7, cloudy pixels</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>7</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-455</td>
<td>198</td>
<td>199</td>
<td>N</td>
<td>sub-cell filled pixel count, clear pixels, nadir view</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>1</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-455</td>
<td>200</td>
<td>201</td>
<td>N</td>
<td>sub-cell filled pixel count, cloudy pixels, nadir view</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>1</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-455</td>
<td>202</td>
<td>203</td>
<td>F</td>
<td>sub-cell filled pixel count, clear pixels, forward view</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>1</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-455</td>
<td>204</td>
<td>205</td>
<td>F</td>
<td>sub-cell filled pixel count, cloudy pixels, forward view</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>1</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-456</td>
<td>206</td>
<td>209</td>
<td>N</td>
<td>cumulative across-track band sum</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td>1</td>
<td>1 lsb</td>
</tr>
<tr>
<td>L2-INT-457</td>
<td>210</td>
<td>211</td>
<td>N</td>
<td>mean across-track band number</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>1</td>
<td>1 lsb</td>
</tr>
</tbody>
</table>

Table 4-2-12: Break point #11 Record, AST Land, 17 km cell

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Start byte</th>
<th>End byte</th>
<th>View</th>
<th>Field Description</th>
<th>Type</th>
<th>Units</th>
<th>Field Size</th>
<th>Fields</th>
<th>Verification Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2-INT-21</td>
<td>0</td>
<td>7</td>
<td>n/a</td>
<td>utc(cell)/sub-cell UTC</td>
<td>double</td>
<td>days</td>
<td>8</td>
<td>1</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-79</td>
<td>8</td>
<td>9</td>
<td>N</td>
<td>nadir view day/night flag</td>
<td>ss</td>
<td>flag</td>
<td>2</td>
<td>1</td>
<td>exact</td>
</tr>
<tr>
<td>L2-INT-80</td>
<td>10</td>
<td>11</td>
<td>F</td>
<td>forward view day/night flag</td>
<td>ss</td>
<td>flag</td>
<td>2</td>
<td>1</td>
<td>exact</td>
</tr>
</tbody>
</table>
4.2 Module Definition: Input Annotation Data Sets

4.2.1 Functional Description

The Annotation Data Sets of the GBTR product that are required for Level 2 Processing are read into memory, and converted into appropriate units where necessary. Data are required from data sets ADS #3 (grid pixel latitude and longitude), and ADS #5, #6 (solar angles). In addition data sets ADS #1, ADS #2 and ADS #4 are needed for AST record time tagging.

4.2.2 Interface Definition

<table>
<thead>
<tr>
<th>Parameter ID</th>
<th>Field</th>
<th>Name</th>
<th>Type</th>
<th>Units</th>
<th>Field size</th>
<th>Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBTR-ADS1-1</td>
<td>sl</td>
<td>Nadir UTC time in MJD format</td>
<td>sl 2*ul</td>
<td>MJD</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>GBTR-ADS1-2</td>
<td>sc</td>
<td>Attachment flag (always zero for this ADS)</td>
<td>sc n/a</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>GBTR-ADS1-3</td>
<td>3*uc</td>
<td>Spare (null characters)</td>
<td>3*uc n/a</td>
<td></td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>GBTR-ADS1-4</td>
<td>si</td>
<td>image scan y coordinate</td>
<td>si m</td>
<td></td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>GBTR-ADS1-5</td>
<td>us</td>
<td>instrument scan number, nadir view</td>
<td>us none</td>
<td></td>
<td>2</td>
<td>512</td>
</tr>
<tr>
<td>GBTR-ADS2-1</td>
<td>us</td>
<td>pixel number, nadir view</td>
<td>us none</td>
<td></td>
<td>2</td>
<td>512</td>
</tr>
<tr>
<td>GBTR-ADS2-2</td>
<td>sc</td>
<td>Attachment flag (always zero for this ADS)</td>
<td>sc n/a</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>GBTR-ADS2-3</td>
<td>3*uc</td>
<td>Spare (null characters)</td>
<td>3*uc n/a</td>
<td></td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>GBTR-ADS2-4</td>
<td>si</td>
<td>image scan y coordinate</td>
<td>si m</td>
<td></td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>GBTR-ADS2-5</td>
<td>us</td>
<td>instrument scan number, forward view</td>
<td>us none</td>
<td></td>
<td>2</td>
<td>512</td>
</tr>
<tr>
<td>GBTR-ADS2-6</td>
<td>us</td>
<td>pixel number, forward view</td>
<td>us none</td>
<td></td>
<td>2</td>
<td>512</td>
</tr>
<tr>
<td>GBTR-ADS3-1</td>
<td>sl</td>
<td>Nadir UTC time in MJD format</td>
<td>sl 2*ul</td>
<td>MJD</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>GBTR-ADS3-2</td>
<td>sc</td>
<td>Attachment flag (always zero for this ADS)</td>
<td>sc n/a</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>GBTR-ADS3-3</td>
<td>3*uc</td>
<td>Spare (null characters)</td>
<td>3*uc n/a</td>
<td></td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>GBTR-ADS3-4</td>
<td>si</td>
<td>image scan y coordinate</td>
<td>si m</td>
<td></td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>GBTR-ADS3-5</td>
<td>sl</td>
<td>tie point latitudes</td>
<td>sl µdeg</td>
<td></td>
<td>4</td>
<td>23</td>
</tr>
<tr>
<td>GBTR-ADS3-6</td>
<td>sl</td>
<td>tie point longitudes</td>
<td>sl µdeg</td>
<td></td>
<td>4</td>
<td>23</td>
</tr>
<tr>
<td>GBTR-ADS3-7</td>
<td>latitude corrections, nadir view</td>
<td>sl</td>
<td>µdeg</td>
<td>4</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS3-8</td>
<td>latitude corrections, nadir view</td>
<td>sl</td>
<td>µdeg</td>
<td>4</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS3-9</td>
<td>latitude corrections, forward view</td>
<td>sl</td>
<td>µdeg</td>
<td>4</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS3-10</td>
<td>latitude corrections, forward view</td>
<td>sl</td>
<td>µdeg</td>
<td>4</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS3-11</td>
<td>Topographic Altitude</td>
<td>ss</td>
<td>metres</td>
<td>2</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS4-1</td>
<td>Scan UTC time in MJD format</td>
<td>sl, 2*uc</td>
<td>MJD</td>
<td>12</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS4-2</td>
<td>Attachment flag (always zero for this ADS)</td>
<td>sc</td>
<td>n/a</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS4-3</td>
<td>Spare (null characters)</td>
<td>3*uc</td>
<td>n/a</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS4-4</td>
<td>instrument scan number</td>
<td>us</td>
<td>none</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS4-5</td>
<td>tie pixel x coordinate</td>
<td>sl</td>
<td>m</td>
<td>4</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS4-6</td>
<td>tie pixel y coordinate</td>
<td>sl</td>
<td>m</td>
<td>4</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS5-1</td>
<td>Nadir UTC time in MJD format</td>
<td>sl, 2*uc</td>
<td>MJD</td>
<td>12</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS5-2</td>
<td>Attachment flag (always zero for this ADS)</td>
<td>sc</td>
<td>n/a</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS5-3</td>
<td>Spare (null characters)</td>
<td>3*uc</td>
<td>n/a</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS5-4</td>
<td>image scan y coordinate</td>
<td>sl</td>
<td>m</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS5-5</td>
<td>tie point solar elevation, nadir view</td>
<td>sl</td>
<td>mdeg</td>
<td>4</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS5-6</td>
<td>tie point satellite elevation, nadir view</td>
<td>sl</td>
<td>mdeg</td>
<td>4</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS5-7</td>
<td>tie point solar azimuth, nadir view</td>
<td>sl</td>
<td>mdeg</td>
<td>4</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS5-8</td>
<td>tie point satellite azimuth, nadir view</td>
<td>sl</td>
<td>mdeg</td>
<td>4</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS6-1</td>
<td>Nadir UTC time in MJD format</td>
<td>sl, 2*uc</td>
<td>MJD</td>
<td>12</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS6-2</td>
<td>Attachment flag (always zero for this ADS)</td>
<td>sc</td>
<td>n/a</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS6-3</td>
<td>Spare (null characters)</td>
<td>3*uc</td>
<td>n/a</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS6-4</td>
<td>image scan y coordinate</td>
<td>sl</td>
<td>m</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS6-5</td>
<td>tie point solar elevation, forward view</td>
<td>sl</td>
<td>mdeg</td>
<td>4</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS6-6</td>
<td>tie point satellite elevation, forward view</td>
<td>sl</td>
<td>mdeg</td>
<td>4</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS6-7</td>
<td>tie point solar azimuth, forward view</td>
<td>sl</td>
<td>mdeg</td>
<td>4</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS6-8</td>
<td>tie point satellite azimuth, forward view</td>
<td>sl</td>
<td>mdeg</td>
<td>4</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Table 4-2-1: Input Data Table - Input Annotation Data Sets

<table>
<thead>
<tr>
<th>Parameter ID</th>
<th>Variable</th>
<th>Name</th>
<th>Type</th>
<th>Units</th>
<th>Field size</th>
<th>Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2-INT-18</td>
<td>MJD(T4)</td>
<td>Scan UTC in MJD Format</td>
<td>4*sl</td>
<td>MJD</td>
<td>16 per sg</td>
<td></td>
</tr>
<tr>
<td>L2-INT-23</td>
<td>MJD(DP)[1]</td>
<td>Scan UTC in processing format</td>
<td>double</td>
<td>days</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>L2-INT-24</td>
<td>MJD(DP)[2]</td>
<td>Scan delta UT1 (dummy)</td>
<td>double</td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>L2-INT-26</td>
<td>time(sg)</td>
<td>scan UTC</td>
<td>double</td>
<td>days</td>
<td>8 per sg</td>
<td></td>
</tr>
<tr>
<td>L2-INT-27</td>
<td>scan(sg)</td>
<td>scan number corresponding to time(sg)</td>
<td>us</td>
<td>none</td>
<td>2 per sg</td>
<td></td>
</tr>
<tr>
<td>L2-INT-134</td>
<td>scn_nadir(g, j)</td>
<td>nadir view instrument scan number</td>
<td>us</td>
<td>none</td>
<td>4 j = 0, 511</td>
<td></td>
</tr>
<tr>
<td>L2-INT-135</td>
<td>pxl_nadir(g, j)</td>
<td>nadir view instrument pixel number</td>
<td>us</td>
<td>none</td>
<td>4 j = 0, 511</td>
<td></td>
</tr>
<tr>
<td>L2-INT-154</td>
<td>scn_fwd(g, j)</td>
<td>forward view instrument scan number</td>
<td>us</td>
<td>none</td>
<td>4 j = 0, 511</td>
<td></td>
</tr>
<tr>
<td>L2-INT-155</td>
<td>pxl_fwd(g, j)</td>
<td>forward view instrument pixel number</td>
<td>us</td>
<td>none</td>
<td>4 j = 0, 511</td>
<td></td>
</tr>
<tr>
<td>local lg</td>
<td>index to instrument scan granules</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>local j</td>
<td>index to image pixels (j' = 0, 511)</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>local j'</td>
<td>index to tie point pixels (j' = 0, 22)</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-1</td>
<td>oWl[g, j]</td>
<td>Tie point latitude</td>
<td>float</td>
<td>deg.</td>
<td>4 j = 0, 22</td>
<td></td>
</tr>
<tr>
<td>L2-INT-2</td>
<td>oWl[g, j]</td>
<td>Tie point longitude</td>
<td>float</td>
<td>deg.</td>
<td>4 j = 0, 22</td>
<td></td>
</tr>
<tr>
<td>local k</td>
<td>Index to across-track band (k = 0, 10)</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-3</td>
<td>pxl[g, k]</td>
<td>tie scan solar elevation, nadir</td>
<td>float</td>
<td>deg.</td>
<td>4 k = 0, 10</td>
<td></td>
</tr>
<tr>
<td>L2-INT-4</td>
<td>Axi[g, k]</td>
<td>tie scan solar azimuth, nadir</td>
<td>float</td>
<td>deg.</td>
<td>4 k = 0, 10</td>
<td></td>
</tr>
<tr>
<td>L2-INT-5</td>
<td>pxl[g, k]</td>
<td>tie scan solar elevation, forward</td>
<td>float</td>
<td>deg.</td>
<td>4 k = 0, 10</td>
<td></td>
</tr>
<tr>
<td>L2-INT-6</td>
<td>Axi[g, k]</td>
<td>tie scan solar azimuth, forward</td>
<td>float</td>
<td>deg.</td>
<td>4 k = 0, 10</td>
<td></td>
</tr>
<tr>
<td>L2-INT-13</td>
<td>vxi[g, k]</td>
<td>tie scan satellite elevation, nadir</td>
<td>float</td>
<td>deg.</td>
<td>4 k = 0, 10</td>
<td></td>
</tr>
<tr>
<td>L2-INT-15</td>
<td>vxi[g, k]</td>
<td>tie scan satellite elevation, forward</td>
<td>float</td>
<td>deg.</td>
<td>4 k = 0, 10</td>
<td></td>
</tr>
<tr>
<td>local UTC</td>
<td>Scan UTC Time (byproduct not required)</td>
<td>char</td>
<td>n/a</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>local DUT1E</td>
<td>delta UT1 for scan (byproduct not required)</td>
<td>char</td>
<td>n/a</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-25</td>
<td>status</td>
<td>status flag</td>
<td>sl</td>
<td>n/a</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Table 4-2-2: Internal Data Table - Input Annotation Data Sets
4.2.3 Detailed Structure

Step 4.2.1 Read ADS records.

The required ADS records as tabulated above are read in. Angular variables are converted from the external format (fixed point in units of millidegrees for solar angles, microdegrees for lat/long) to floating point format in degrees.

For the first record of each data set the record (image scan) counter ig is initialised to 0. Increment by 1 for each subsequent record.

ADS #1 and #2. For each record ig and for each $j = 0, 511$

\[
\begin{align*}
scn_{\text{nadir}}(ig, j) &= [\text{GBTR-ADS1-5}](ig, j) \\
pxl_{\text{nadir}}(ig, j) &= [\text{GBTR-ADS1-6}](ig, j) \\
scn_{\text{frwrd}}(ig, j) &= [\text{GBTR-ADS2-5}](ig, j) \\
pxl_{\text{frwrd}}(ig, j) &= [\text{GBTR-ADS2-6}](ig, j)
\end{align*}
\]

ADS #3: For each record ig and for each $j' = 0, 22$

\[
\begin{align*}
\varphi_{g}(ig, j) &= 0.000001[\text{GBTR-ADS3-5}](ig, j') \\
\lambda_{g}(ig, j) &= 0.000001[\text{GBTR-ADS3-6}](ig, j')
\end{align*}
\]

ADS #5 and #6. For each record ig and for each $k = 0, 10$

\[
\begin{align*}
\beta^{\nu}(ig, k) &= 0.001 \times [\text{GBTR-ADS5-5}](ig, k) \\
A^{\nu}(ig, k) &= 0.001 \times [\text{GBTR-ADS5-7}](ig, k) \\
\beta^{\lambda}(ig, k) &= 0.001 \times [\text{GBTR-ADS6-5}](ig, k) \\
A^{\lambda}(ig, k) &= 0.001 \times [\text{GBTR-ADS6-7}](ig, k) \\
\gamma^{\nu}(ig, k) &= 0.001 \times [\text{GBTR-ADS5-6}](ig, k) \\
\gamma^{\lambda}(ig, k) &= 0.001 \times [\text{GBTR-ADS6-6}](ig, k)
\end{align*}
\]

(Req 4.2-1)

(The satellite azimuth is not required for level 2 processing as currently defined, but the satellite elevation is required for land surface temperature processing.)

ADS #4: For the first record of each data set the record (instrument scan) counter sg is initialised to 0. Increment by 1 for each subsequent record.

For each record sg copy the three (long integer) words of the UTC scan time field into the first three elements of the corresponding array, noting that the second and third elements are to be converted from ul to sl:

\[
[MJDT[0:2]/(1:3)](sg) = [\text{GBTR-ADS4-1}]
\]

(Req 4.2-2)

(Only the instrument scan times are required for Level 2 processing.)

Step 4.2.2 Convert Scan UT from Transport to Processing Format.
The CFI time conversion subroutine must now be used to convert each instrument scan time from transport to processing format. This is necessary so that the scan time can be interpolated freely within granules.

The subroutine `pl_tmjd` from the time conversion library is used to convert the scan time from transport format to processing format. The time in external (character string) format is produced as an (unwanted) byproduct.

Initialise MJDT[3]/(4) = 0.0

\[\text{status} = \text{pl_tmjd}(\text{MJDT}, \text{MJD}, \text{UTCE}, \text{DUT1E}) \]

Check that the value of `status` is zero; if it is not, an input error has occurred. If it is,

\[\text{time}(\text{sg}) = \text{MJD}[0]/(1) \]

(Req 4.2-3)

Also save the corresponding scan number from the same record:

\[\text{scan}(\text{sg}) = [\text{GBTR-ADS4-4}](\text{sg}) \]

(Req 4.2-4)

4.3 Module Definition: Assemble Regridded Brightness Temperature Arrays

4.3.1 Functional Description

This module reads in grid co-ordinates and 7 channel brightness temperatures / reflectances for forward and nadir views from the appropriate MDS of the GBTR product and arranges them in the required memory configuration.

4.3.2 Interface Definition

The module input data is read from the GBTR parameters listed in Table 4.3.1: Input Data Table - Assemble Regridded Brightness Temperature Arrays, output is internal.

<table>
<thead>
<tr>
<th>Parameter ID</th>
<th>Variable</th>
<th>Name</th>
<th>Type</th>
<th>Units</th>
<th>Field size</th>
<th>Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBTR-MDS1-1</td>
<td>Nadir UTC time in MJD format</td>
<td>sl, 2*ul</td>
<td>MJD</td>
<td>12</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-MDS1-2</td>
<td>Record Quality Indicator</td>
<td>sc</td>
<td>n/a</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-MDS1-3</td>
<td>Spare (null characters)</td>
<td>3*uc</td>
<td>n/a</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-MDS1-4</td>
<td>image scan y coordinate</td>
<td>sl</td>
<td>m</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-MDS1-5</td>
<td>nadir BT pixels 12 micron channel</td>
<td>ss</td>
<td>0.01K</td>
<td>2</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td>GBTR-MDS2-1</td>
<td>Nadir UTC time in MJD format</td>
<td>sl, 2*ul</td>
<td>MJD</td>
<td>12</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-MDS2-2</td>
<td>Record Quality Indicator</td>
<td>sc</td>
<td>n/a</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-MDS2-3</td>
<td>Spare (null characters)</td>
<td>3*uc</td>
<td>n/a</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-MDS2-4</td>
<td>image scan y coordinate</td>
<td>sl</td>
<td>m</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-MDS2-5</td>
<td>nadir BT pixels 11 micron channel</td>
<td>ss</td>
<td>0.01K</td>
<td>2</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td>GBTR-MDS3-1</td>
<td>Nadir UTC time in MJD format</td>
<td>sl, 2*ul</td>
<td>MJD</td>
<td>12</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-MDS3-2</td>
<td>Record Quality Indicator</td>
<td>sc</td>
<td>n/a</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-MDS3-3</td>
<td>Spare (null characters)</td>
<td>3*uc</td>
<td>n/a</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-MDS3-4</td>
<td>image scan y coordinate</td>
<td>sl</td>
<td>m</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-MDS3-5</td>
<td>nadir BT pixels 3.7 micron channel</td>
<td>ss</td>
<td>0.01K</td>
<td>2</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td>GBTR-MDS4-1</td>
<td>Nadir UTC time in MJD format</td>
<td>sl, 2*ul</td>
<td>MJD</td>
<td>12</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-MDS4-2</td>
<td>Record Quality Indicator</td>
<td>sc</td>
<td>n/a</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-MDS4-3</td>
<td>Spare (null characters)</td>
<td>3*uc</td>
<td>n/a</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-MDS4-4</td>
<td>image scan y coordinate</td>
<td>sl</td>
<td>m</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Table 4.3.1: Input Data Table - Assemble Regridded Brightness Temperature Arrays

<table>
<thead>
<tr>
<th>Parameter ID</th>
<th>Variable</th>
<th>Name</th>
<th>Type</th>
<th>Units</th>
<th>Field size</th>
<th>Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2-INT-10</td>
<td>yi(j)</td>
<td>image scan y co-ordinate</td>
<td>sl, m</td>
<td></td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-101</td>
<td>[i(1, n, l, j)]</td>
<td>12 µm nadir Brightness Temperature</td>
<td>ss array</td>
<td>0.01 K</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-102</td>
<td>[i(2, n, l, j)]</td>
<td>11 µm nadir Brightness Temperature</td>
<td>ss array</td>
<td>0.01 K</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-103</td>
<td>[i(3, n, l, j)]</td>
<td>3.7 µm nadir Brightness Temperature</td>
<td>ss array</td>
<td>0.01 K</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-104</td>
<td>[i(4, n, l, j)]</td>
<td>1.6 µm nadir Brightness Temperature</td>
<td>ss array</td>
<td>0.01 %</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-105</td>
<td>[i(5, n, l, j)]</td>
<td>0.870 µm nadir Reflectance</td>
<td>ss array</td>
<td>0.01 %</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-106</td>
<td>[i(6, n, l, j)]</td>
<td>0.670 µm nadir Reflectance</td>
<td>ss array</td>
<td>0.01 %</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-107</td>
<td>[i(7, n, l, j)]</td>
<td>0.555 µm nadir Reflectance</td>
<td>ss array</td>
<td>0.01 %</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-111</td>
<td>[i(1, f, i, j)]</td>
<td>12 µm forward Brightness Temperature</td>
<td>ss array</td>
<td>0.01 K</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-112</td>
<td>[i(2, f, i, j)]</td>
<td>11 µm forward Brightness Temperature</td>
<td>ss array</td>
<td>0.01 K</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-113</td>
<td>[i(3, f, i, j)]</td>
<td>3.7 µm forward Brightness Temperature</td>
<td>ss array</td>
<td>0.01 K</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-114</td>
<td>[i(4, f, i, j)]</td>
<td>1.8 µm forward Brightness Temperature</td>
<td>ss array</td>
<td>0.01 %</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-115</td>
<td>[i(5, f, i, j)]</td>
<td>0.870 µm forward Reflectance</td>
<td>ss array</td>
<td>0.01 %</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-116</td>
<td>[i(6, f, i, j)]</td>
<td>0.670 µm forward Reflectance</td>
<td>ss array</td>
<td>0.01 %</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-117</td>
<td>[i(7, f, i, j)]</td>
<td>0.555 µm forward Reflectance</td>
<td>ss array</td>
<td>0.01 %</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-171</td>
<td>gbtr_confidence_nadir(i,j)</td>
<td>ss array</td>
<td>flags</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-172</td>
<td>gbtr_confidence_fwrd(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-200</td>
<td>nadir_blanking_pulse(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-201</td>
<td>nadir_cosmetic(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-202</td>
<td>nadir_scan_absent(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-203</td>
<td>nadir_pixel_absent(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-204</td>
<td>nadir_packet_validation_error(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-205</td>
<td>nadir_zero_count(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-206</td>
<td>nadir_saturation(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-207</td>
<td>nadir_cal_out_of_range(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-208</td>
<td>nadir_calibration_unavailable(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-209</td>
<td>nadir_unfilled_pixel(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-216</td>
<td>fwrd_blanking_pulse(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-217</td>
<td>fwrd_cosmetic(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-218</td>
<td>fwrd_scan_absent(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-219</td>
<td>fwrd_pixel_absent(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-220</td>
<td>fwrd_packet_validation_error(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-221</td>
<td>fwrd_zero_count(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-222</td>
<td>fwrd_saturation(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-223</td>
<td>fwrd_cal_out_of_range(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-224</td>
<td>fwrd_calibration_unavailable(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-225</td>
<td>fwrd_unfilled_pixel(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-234</td>
<td>nadir_sunglint(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-235</td>
<td>nadir_v16_histogram_test(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-236</td>
<td>nadir_v16_spatial_coherence_test(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-237</td>
<td>nadir_ir11_spatial_coherence_test(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-238</td>
<td>nadir_ir12_gross_cloud_test(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-239</td>
<td>nadir_ir11_ir12_thin_cirrus_test(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-240</td>
<td>nadir_ir37_ir12med_high_level_test(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-241</td>
<td>nadir_ir11_ir37_fog_low_stratus_test(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-242</td>
<td>nadir_ir11_ir12_view_diff_test(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-243</td>
<td>nadir_ir37_ir11_view_diff_test(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-244</td>
<td>nadir_ir11_ir12_histogram_test(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-246</td>
<td>fwrd_land(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-249</td>
<td>fwrd_cloud(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-250</td>
<td>fwrd_sunglint(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-251</td>
<td>fwrd_v16_histogram_test(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-252</td>
<td>fwrd_v16_spatial_coherence_test(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-253</td>
<td>fwrd_ir12_spatial_coherence_test(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-254</td>
<td>fwrd_ir12_gross_cloud_test(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-255</td>
<td>fwrd_ir11_ir12_thin_cirrus_test(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-256</td>
<td>fwrd_ir37_ir12med_high_level_test(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-257</td>
<td>fwrd_ir11_ir37_fog_low_stratus_test(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-258</td>
<td>fwrd_ir11_ir12_view_diff_test(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-259</td>
<td>fwrd_ir37_ir11_view_diff_test(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-260</td>
<td>fwrd_ir11_ir12_histogram_test(i,j)</td>
<td>ss array</td>
<td>flag</td>
<td>j = 0, 511</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Local:

| local | i | row (scan index) | integer | none | 4 1 |
| local | j | pixel index (j = 0, 511) | integer | none | 4 1 |

L2-INT-100 | nadir_fill_state(i,j) | byte | none | j = 0, 511 |
L2-INT-110 | fwrd_fill_state(i,j) | byte | none | j = 0, 511 |
constant | NATURAL_PIXEL (= 0) | byte | none | 1 1 |
constant | COSMETIC_PIXEL (= 1) | byte | none | 1 1 |
constant | UNFILLED_PIXEL (= 2) | byte | none | 1 1 |

Table 4.3.2: Internal Data Table - Assemble Regridded Brightness Temperature Arrays
4.3.3 Detailed Structure

4.3.3.1 Initialise Arrays

An internal data array needs to be constructed and initialised for each of the following parameters (the arrays are defined in Table 4-3-2):

- 12µ channel nadir brightness temperature
- 11µ channel nadir brightness temperature
- 3.7µ channel nadir brightness temperature
- 1.6µ channel nadir reflectance
- 0.870µ channel nadir reflectance
- 0.670µ channel nadir reflectance
- 0.555µ channel nadir reflectance
- 12µ channel forward brightness temperature
- 11µ channel forward brightness temperature
- 3.7µ channel forward brightness temperature
- 1.6µ channel forward reflectance
- 0.870µ channel forward reflectance
- 0.670µ channel forward reflectance
- 0.555µ channel forward reflectance
- nadir look confidence words
- forward look confidence words
- nadir look land / cloud flags
- forward look land / cloud flags

4.3.3.2 Input MDS records

For the first record, initialise a record counter \(i = 0 \).

For each subsequent record, increment \(i \) by 1.

Step 4.3.1 Read Measurement Data Sets #1 - 7.

These measurement data sets represent the nadir view channel brightness/reflectance values. For each channel \(ch = 1, 7 \) and for each image scan \(i \):

\[
\text{FOR each pixel } j = 0, 511, \quad I(ch, n; i, j) = [\text{GBTR-MDS}<ch>5](i, j) \quad (\text{Req } 4.3-1)
\]

No type conversion is required here.

Step 4.3.2 Read Measurement Data Sets #8 - 14.
These measurement data sets represent the forward view channel brightness/reflectance values. For each channel $ch = 1, 7$ and for each image scan i:

\[
\text{FOR each pixel } j = 0, 511, \\
\text{[GST-S-MDS}<7 + ch>_5](i, j) = I(ch, f; i, j) \quad \text{(Req 4.3-2)}
\]

No type conversion is required here.

Step 4.3.3 Read Measurement Data Sets #15, 16.

These measurement data sets represent the nadir and forward view confidence words respectively. For each image scan i, read in the records of confidence words:

\[
\text{FOR each pixel } j = 0, 511, \\
\text{gbtr_confidence_nadir}(i, j) = \text{[GBTR-MDS15-5]}(i, j) \\
\text{FOR each pixel } j = 0, 511, \\
\text{gbtr_confidence_frwrd}(i, j) = \text{[GBTR-MDS16-5]}(i, j) \quad \text{(Req 4.3-3)}
\]

Extract the individual flags from the confidence words for each pixel $j = 0, 511$. For each confidence flag, the truth value ($1 = \text{TRUE}; 0 = \text{FALSE}$) of the flag is to be set according to the corresponding bit of the confidence word as follows:

\[
\begin{align*}
\text{<view>_blanking_pulse}(i, j) &= \text{[gbtr_confidence_<view>]}(i, j)(\text{bit 0}) \\
\text{<view>_cosmetic}(i, j) &= \text{[gbtr_confidence_<view>]}(i, j)(\text{bit 1}) \\
\text{<view>_scan_absent}(i, j) &= \text{[gbtr_confidence_<view>]}(i, j)(\text{bit 2}) \\
\text{<view>_pixel_absent}(i, j) &= \text{[gbtr_confidence_<view>]}(i, j)(\text{bit 3}) \\
\text{<view>_packet_validation_error}(i, j) &= \text{[gbtr_confidence_<view>]}(i, j)(\text{bit 4}) \\
\text{<view>_zero_count}(i, j) &= \text{[gbtr_confidence_<view>]}(i, j)(\text{bit 5}) \\
\text{<view>_saturation}(i, j) &= \text{[gbtr_confidence_<view>]}(i, j)(\text{bit 6}) \\
\text{<view>_cal_out_of_range}(i, j) &= \text{[gbtr_confidence_<view>]}(i, j)(\text{bit 7}) \\
\text{<view>_cal_out_of_range}(i, j) &= \text{[gbtr_confidence_<view>]}(i, j)(\text{bit 8}) \\
\text{<view>_unfilled_pixel}(i, j) &= \text{[gbtr_confidence_<view>]}(i, j)(\text{bit 9})
\end{align*}
\]

where in each case

\[
\text{<view> = <nadir | frwrd}> \quad \text{(Req 4.3-4)}
\]

Set the fill state bytes for each pixel $j = 0, 511$ according to the settings of the relevant the confidence flags as follows:

\[
\begin{align*}
\text{<view>_fill_state}(i, j) &= \text{UNFILLED_PIXEL IF <view>_unfilled_pixel}(i, j) \text{ is TRUE;} \\
\text{<view>_fill_state}(i, j) &= \text{COSMETIC_PIXEL IF <view>_cosmetic}(i, j) \text{ is TRUE;} \\
\text{<view>_fill_state}(i, j) &= \text{NATURAL_PIXEL otherwise,}
\end{align*}
\]

where in each case

\[
\text{<view> = <nadir | frwrd}> \quad \text{(Req 4.3-5)}
\]

Step 4.3.4 Read Measurement Data Sets #17, 18.

These measurement data sets represent the nadir and forward view cloud/land flag words respectively. For each image scan i, read in the records of cloud flag words:

\[
\begin{align*}
\text{FOR each pixel } j = 0, 511 \\
\text{gbtr_cloud_state_nadir}(i, j) &= \text{[GBTR-MDS17-5]}(i, j) \\
\text{FOR each pixel } j = 0, 511
\end{align*}
\]
gbtr_cloud_state_frwrd(i, j) = [GBTR-MDS18-5](i, j) \text{ (Req 4.3-6)}

Extract the land and cloud state flags for each pixel j = 0, 511:

For each cloud/land state flag, the truth value (1 = TRUE; 0 = FALSE) of the flag is to be set according to the corresponding bit of the cloud state word as follows:

\begin{align*}
\text{<view>_land}(i, j) &= \text{[gbtr_cloud_state_<view>(i, j)](bit 0)} \\
\text{<view>_cloud}(i, j) &= \text{[gbtr_cloud_state_<view>(i, j)](bit 1)} \\
\text{<view>_sunglint}(i, j) &= \text{[gbtr_cloud_state_<view>(i, j)](bit 2)} \\
\text{<view>_v16_histogram_test}(i, j) &= \text{[gbtr_cloud_state_<view>(i, j)](bit 3)} \\
\text{<view>_v16_spatial_coherence_test}(i, j) &= \text{[gbtr_cloud_state_<view>(i, j)](bit 4)} \\
\text{<view>_ir11_spatial_coherence_test}(i, j) &= \text{[gbtr_cloud_state_<view>(i, j)](bit 5)} \\
\text{<view>_ir12_gross_cloud_test}(i, j) &= \text{[gbtr_cloud_state_<view>(i, j)](bit 6)} \\
\text{<view>_ir11_ir12_thin_cirrus_test}(i, j) &= \text{[gbtr_cloud_state_<view>(i, j)](bit 7)} \\
\text{<view>_ir37_ir12med_high_level_test}(i, j) &= \text{[gbtr_cloud_state_<view>(i, j)](bit 8)} \\
\text{<view>_ir11_ir37_fog_low_stratus_test}(i, j) &= \text{[gbtr_cloud_state_<view>(i, j)](bit 9)} \\
\text{<view>_ir11_ir12_view_diff_test}(i, j) &= \text{[gbtr_cloud_state_<view>(i, j)](bit 10)} \\
\text{<view>_ir37_ir11_view_diff_test}(i, j) &= \text{[gbtr_cloud_state_<view>(i, j)](bit 11)} \\
\text{<view>_ir11_ir12_histogram_test}(i, j) &= \text{[gbtr_cloud_state_<view>(i, j)](bit 12)}
\end{align*}

where in each case

\[<view> = <\text{nadir} > | <\text{frwrd}> \quad \text{(Req 4.3-7)}\]

4.4 Module Definition: Interpolate Solar Angles

4.4.1 Functional Description

The solar azimuth and elevation and satellite azimuth and elevation, all measured at the pixel, are available for a series of uniformly spaced tie point pixels in ADS #5 for the nadir view and in ADS #6 for the forward view images. The present module derives those angles that are required for level 2 processing at every scan, and at the mid-points of the bands, by linear interpolation, between these tie points. Only the solar elevation is required for most Level 2 processing, but the satellite elevation is required for LST retrieval. (If it were necessary to derive interpolated azimuths as well, account would need to be taken of the possibility of a discontinuity as the azimuth passes through 180°.)

4.4.2 Interface Definition

<table>
<thead>
<tr>
<th>Parameter ID</th>
<th>Variable</th>
<th>Name</th>
<th>Type</th>
<th>Units</th>
<th>Field size</th>
<th>Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2-AUX3-9</td>
<td>NGRANULE</td>
<td>interval between ADS records (Granule size)</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 4.4.1: Input Data Table - Interpolate Solar Angles

<table>
<thead>
<tr>
<th>Parameter ID</th>
<th>Variable</th>
<th>Name</th>
<th>Type</th>
<th>Units</th>
<th>Field size</th>
<th>Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>local k</td>
<td>k</td>
<td>index to across-track band edge samples (k = 0, 10)</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>local k'</td>
<td>k'</td>
<td>index to across-track band centre samples (k' = 0, 9)</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>L2-INT-3</td>
<td>ig(k)</td>
<td>tie point solar elevation nadir</td>
<td>float</td>
<td>deg.</td>
<td>4</td>
<td>k = 0, 10</td>
</tr>
<tr>
<td>L2-INT-5</td>
<td>ig(k)</td>
<td>tie point solar elevation frwrd</td>
<td>float</td>
<td>deg.</td>
<td>4</td>
<td>k = 0, 10</td>
</tr>
<tr>
<td>local ig</td>
<td>g</td>
<td>index to (tie) rows</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>local ig</td>
<td>i</td>
<td>index to image rows (scans)</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>L2-INT-120</td>
<td>ig(k)</td>
<td>nadir band edge solar elevation(i, k)</td>
<td>float</td>
<td>degrees</td>
<td>4</td>
<td>k = 0, 10</td>
</tr>
<tr>
<td>L2-INT-121</td>
<td>ig(k)</td>
<td>nadir band edge satellite elevation(i, k)</td>
<td>float</td>
<td>degrees</td>
<td>4</td>
<td>k = 0, 10</td>
</tr>
<tr>
<td>L2-INT-140</td>
<td>ig(k)</td>
<td>frwrd band edge solar elevation(i, k)</td>
<td>float</td>
<td>degrees</td>
<td>4</td>
<td>k = 0, 10</td>
</tr>
<tr>
<td>L2-INT-141</td>
<td>ig(k)</td>
<td>frwrd band edge satellite elevation(i, k)</td>
<td>float</td>
<td>degrees</td>
<td>4</td>
<td>k = 0, 10</td>
</tr>
<tr>
<td>L2-INT-124</td>
<td>k'</td>
<td>nadir band centre solar elevation(i, k')</td>
<td>float</td>
<td>degrees</td>
<td>4</td>
<td>k' = 0, 9</td>
</tr>
<tr>
<td>L2-INT-125</td>
<td>k'</td>
<td>nadir band centre satellite elevation(i, k')</td>
<td>float</td>
<td>degrees</td>
<td>4</td>
<td>k' = 0, 9</td>
</tr>
<tr>
<td>L2-INT-144</td>
<td>k'</td>
<td>frwrd band centre solar elevation(i, k')</td>
<td>float</td>
<td>degrees</td>
<td>4</td>
<td>k' = 0, 9</td>
</tr>
<tr>
<td>L2-INT-145</td>
<td>k'</td>
<td>frwrd band centre satellite elevation(i, k')</td>
<td>float</td>
<td>degrees</td>
<td>4</td>
<td>k' = 0, 9</td>
</tr>
</tbody>
</table>

Table 4.4.2: Internal Data Table - Interpolate Solar Angles

4.4.3 Detailed Structure

Intermediate values are now calculated by linear interpolation. The nadir and forward scans are treated separately. Level 1b processing will have ensured that each ADS record corresponds to a single image row with

\[i = ig \cdot NGRANULE \]

where \(i \) indexes the image scans, and \(ig \) is an index to the ADS records, both counting from 0.

The elevation values read in from the ADS records may contain exception values (-999). If a solar elevation of -999.0 appears at either end of an interpolation interval, the interpolated values in the interval should all be set to -999.0. This ensures that the interpolated values are consistent with the values derived at Level 1B in the presence of exception values.

(Implementation note: this may be achieved by initialising the arrays <view>_band_edge_solar_elevation and <view>_band_centre_solar_elevation to -999.0)

Step 4.4.1. Interpolate band edge solar angles.

The solar elevations for the intermediate rows can be determined by linear interpolation as follows:

for each \(k = 0, 1, ..., 10 \) and for \(j = 0, 1, ... NGRANULE - 1 \)

calculate

\[w = j / NGRANULE \]

\[i = ig \cdot NGRANULE + j \]

If [L2-INT-3](ig, k) equals -999.0 or [L2-INT-3](ig + 1, k) equals -999.0 (these are the nadir view tie point solar elevations at the two ends of the interpolation interval) then set
nadir_band_edge_solar_elevation(i, k) = -999.0
otherwise
nadir_band_edge_solar_elevation(i, k) = \beta^a(ig, k) + w \cdot \left\{ \beta^a(ig + 1, k) - \beta^a(ig, k) \right\}

If [L2-INT-5](ig, k) equals -999.0 or [L2-INT-5](ig + 1, k) equals -999.0 (these are the forward view tie point solar elevations at the two ends of the interpolation interval) then set
frwrd_band_edge_solar_elevation(i, k) = -999.0
otherwise
frwrd_band_edge_solar_elevation(i, k) = \beta^f(ig, k) + w \cdot \left\{ \beta^f(ig + 1, k) - \beta^f(ig, k) \right\}

(Req 4.4-1)

Step 4.4.2. Interpolate band centre solar angles.

The band centre values are then given as follows.
If <view>_band_edge_solar_elevation(i, k') equals -999.0 or <view>_band_edge_solar_elevation(i, k' + 1) equals -999.0 then
<view>_band_centre_solar_elevation(i, k') = -999.0
otherwise
<view>_band_centre_solar_elevation(i, k') = 0.5 \left\{ <view>_band_edge_solar_elevation(i, k') + <view>_band_edge_solar_elevation(i, k' + 1) \right\}
for k' = 0, 9.

(Req 4.4-2)

Step 4.4.3. Interpolate band edge satellite angles.

The satellite elevations for the intermediate rows are determined by linear interpolation in the same way as the solar elevations, but with [L2-INT-13] in place of [L2-INT-3] and with [L2-INT-15] in place of [L2-INT-5].
for each k = 0, 1, ..., 10 and for j = 0, 1, ... NGRANULE - 1
calculate
w = j / NGRANULE
i = ig \cdot NGRANULE + j

If [L2-INT-13](ig, k) equals -999.0 or [L2-INT-13](ig + 1, k) equals -999.0 then set
nadir_band_edge_satellite_elevation(i, k) = -999.0
otherwise
nadir_band_edge_satellite_elevation(i, k) = \gamma^a(ig, k) + w \cdot \left\{ \gamma^a(ig + 1, k) - \gamma^a(ig, k) \right\}
If \([L2-INT-15](ig, k)\) equals -999.0 or \([L2-INT-15](ig + 1, k)\) equals -999.0 then set
\[frwrd_band_edge_satellite_elevation(i, k) = -999.0\]
otherwise
\[frwrd_band_edge_satellite_elevation(i, k) = \gamma^f (ig, k) + w \cdot \left\{ \gamma^f (ig + 1, k) - \gamma^f (ig, k) \right\}\]

\((\text{Req } 4.4-3)\)

Step 4.4.4. Interpolate band centre satellite angles.

The band centre values are then given as follows.

If \(<view>__band_edge_satellite_elevation(i, k')\) equals -999.0 or
\(<view>__band_edge_satellite_elevation(i, k' + 1)\) equals -999.0 then
\(<view>__band_centre_satellite_elevation(i, k') = -999.0\)
otherwise
\[<view>__band_centre_satellite_elevation(i, k') = 0.5\left\{<view>__band_edge_satellite_elevation(i, k') + <view>__band_edge_satellite_elevation(i, k' + 1)\right\}\]

for \(k' = 0, 9\).

\((\text{Req } 4.4-4)\)

4.5 Module Definition: Interpolate Image Pixel Position

4.5.1 Functional Description

The (geodetic) latitudes and longitudes of a series of uniformly space tie point pixels are available in ADS #3. This module derives the latitude and longitude of each of image pixel by linear interpolation, in two dimensions, between these tie points. In the case of longitude account must be taken of the possibility that the 180 degree meridian intersects the image scan.

4.5.2 Interface Definition

<table>
<thead>
<tr>
<th>Parameter ID</th>
<th>Variable</th>
<th>Name</th>
<th>Type</th>
<th>Units</th>
<th>Field size</th>
<th>Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBTR-ADS3-1</td>
<td></td>
<td>UTC nadir time 1</td>
<td>sl</td>
<td>days</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>GBTR-ADS3-2</td>
<td></td>
<td>UTC nadir time 2</td>
<td>ul</td>
<td>s</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>GBTR-ADS3-3</td>
<td></td>
<td>UTC nadir time 3</td>
<td>ul</td>
<td>micros</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>GBTR-ADS3-4</td>
<td></td>
<td>image scan y coordinate</td>
<td>sl</td>
<td>km</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>GBTR-ADS3-5</td>
<td></td>
<td>tie point latitudes</td>
<td>sl</td>
<td>mdeg</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>GBTR-ADS3-6</td>
<td></td>
<td>tie point longitudes</td>
<td>sl</td>
<td>mdeg</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>GBTR-ADS3-7</td>
<td></td>
<td>latitude corrections</td>
<td>ss</td>
<td>mdeg</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>GBTR-ADS3-8</td>
<td></td>
<td>longitude corrections</td>
<td>ss</td>
<td>mdeg</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>GBTR-ADS3-9</td>
<td></td>
<td>Topographic Altitude</td>
<td>ss</td>
<td>metres</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>L2-AUX3-9</td>
<td>NGRANULE</td>
<td>interval between ADS records (Granule size)</td>
<td>sl</td>
<td>none</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Table 4.5-1: Input Data Table - Interpolate Image Pixel Position
Table 4.5-2: Internal Data Table - Interpolate Image Pixel Position

4.5.3 Detailed Structure

Step 4.5.1. Interpolate pixel latitudes.

Given an image scan and pixel number i, j define

$$i_g = \text{integer part of } i / \text{NGRANULE}$$

$$w_y = (i / \text{NGRANULE}) - i_g$$

$$j_g = \text{integer part of } (j + 19)/25$$

$$w_x = (j + 19) / 25 - j_g$$

Interpolate the geocentric latitudes as follows:

$$\varphi(i, j) = \varphi_1 + w_y \{ \varphi_2 - \varphi_1 \}$$

where

$$\varphi_1 = \varphi_g(i_g, j_g) + w_x \{ \varphi_g(i_g, j_g + 1) - \varphi_g(i_g, j_g) \}$$

and

$$\varphi_2 = \varphi_g(i_g + 1, j_g) + w_x \{ \varphi_g(i_g + 1, j_g + 1) - \varphi_g(i_g + 1, j_g) \}$$

Req 4.5-1

Step 4.5.2. Interpolate pixel longitudes

Longitude is treated similarly unless the meridian is present:

$$\lambda(i, j) = \lambda_1 + w_y \{ \lambda_2 - \lambda_1 \}$$

where

$$\lambda_1 = \lambda_g(i_g, j_g) + w_x \{ \lambda_g(i_g, j_g + 1) - \lambda_g(i_g, j_g) \}$$

and
\[\lambda_2 = \lambda_g(i_g + 1, j_g) + w_x \left\{ \lambda_g(i_g + 1, j_g + 1) - \lambda_g(i_g + 1, j_g) \right\} \]

A test for the presence of the meridian is that
\[(\lambda_{\text{max}} - \lambda_{\text{min}}) > 180.0 \]
where \(\lambda_{\text{max}} \) and \(\lambda_{\text{min}} \) are respectively the greatest and least of
\[\lambda_g(i_g, 0), \lambda_g(i_g, 22), \lambda_g(i_g + 1, 0), \lambda_g(i_g + 1, 22). \]

In this case 360.0 is added to each of the grid longitudes that is initially negative before it is substituted in the above equations. The resultant interpolated longitude is translated into the range -180.0 to 180.0 degrees by subtracting 360.0 if its value exceeds 180.0.

4.6 Module Definition: Gridded SST / Vegetation Retrieval

4.6.1 Functional Description

To derive the sea surface temperature (SST) or, over land, the land surface temperature (LST) and vegetation index (NDVI), at 1 km resolution, using cloud free data.

The derivation of SSTs uses the 11 and 12 micron channels for day time data and for night time data the 11, 12 and 3.7 micron channels. For each 1 km resolution element two results are obtained, one using the combined nadir and forward views and the other using the nadir view alone.

The SSTs are calculated using preset retrieval coefficients. These coefficients are provided for both nadir only and combined view SSTs and are a function of latitude and viewing angle.

Smoothing is applied by smoothing the difference between the calculated SST and the 11 micron brightness temperature. The effect is to smooth the atmospheric correction.

The LST is calculated using an algorithm developed by Prata and described in Reference RD3. This algorithm is similar to that used for the nadir only SST retrieval, in that it uses the 11 and 12 micron nadir view brightness temperatures in conjunction with pre-defined retrieval coefficients. However, the selection of the retrieval coefficients is more complicated than for the SST retrieval. The coefficients depend on a surface classification and on a seasonal vegetation index, both of which are defined in the form of maps at 0.5 degree resolution, and they also depend weakly on the precipitable water vapour content derived from climatological data. The surface class, vegetation index and precipitable water vapour are supplied as auxiliary data sets in the LST Retrieval Coefficient Data Product. Different coefficients may be supplied for day and night retrievals. Note that smoothing is not applied to the LST values in the present algorithm.

The NVDIs are calculated using the nadir .67 and .87 micron channels and the results are returned in the combined image land pixels.

In cloudy conditions the cloud top temperature is returned in the nadir image field and the cloud top height in the combined view image field.
4.6.2 Interface Definition

<table>
<thead>
<tr>
<th>Parameter ID</th>
<th>Variable</th>
<th>Name</th>
<th>Type</th>
<th>Units</th>
<th>Field size</th>
<th>Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2-AUX1-1</td>
<td>a[i, j]</td>
<td>sst_retrieval_a[i, j]</td>
<td>float</td>
<td>K/100</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX1-2</td>
<td>a[i, j]</td>
<td>sst_retrieval_a[i, j]</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX1-3</td>
<td>a[i, j]</td>
<td>sst_retrieval_a[i, j]</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX1-4</td>
<td>b[i, j]</td>
<td>sst_retrieval_b[i, j]</td>
<td>float</td>
<td>K/100</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX1-5</td>
<td>b[i, j]</td>
<td>sst_retrieval_b[i, j]</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX1-6</td>
<td>b[i, j]</td>
<td>sst_retrieval_b[i, j]</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX1-7</td>
<td>b[i, j]</td>
<td>sst_retrieval_b[i, j]</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX1-8</td>
<td>c[i, j]</td>
<td>sst_retrieval_c[i, j]</td>
<td>float</td>
<td>K/100</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX1-9</td>
<td>c[i, j]</td>
<td>sst_retrieval_c[i, j]</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX1-10</td>
<td>c[i, j]</td>
<td>sst_retrieval_c[i, j]</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX1-11</td>
<td>c[i, j]</td>
<td>sst_retrieval_c[i, j]</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX1-12</td>
<td>c[i, j]</td>
<td>sst_retrieval_c[i, j]</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX1-13</td>
<td>d[i, j]</td>
<td>sst_retrieval_d[i, j]</td>
<td>float</td>
<td>K/100</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX1-14</td>
<td>d[i, j]</td>
<td>sst_retrieval_d[i, j]</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX1-15</td>
<td>d[i, j]</td>
<td>sst_retrieval_d[i, j]</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX1-16</td>
<td>d[i, j]</td>
<td>sst_retrieval_d[i, j]</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX1-17</td>
<td>d[i, j]</td>
<td>sst_retrieval_d[i, j]</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX1-18</td>
<td>d[i, j]</td>
<td>sst_retrieval_d[i, j]</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX1-19</td>
<td>d[i, j]</td>
<td>sst_retrieval_d[i, j]</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX6-1</td>
<td>j</td>
<td>pixel index (j)</td>
<td>float</td>
<td>none</td>
<td>2</td>
<td>512</td>
</tr>
<tr>
<td>L2-AUX6-2</td>
<td>j</td>
<td>pixel index (j)</td>
<td>float</td>
<td>none</td>
<td>2</td>
<td>512</td>
</tr>
<tr>
<td>L2-AUX3-11</td>
<td>TROPICAL_INDEX</td>
<td>float</td>
<td>deg</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L2-AUX3-12</td>
<td>TEMPERATE_INDEX</td>
<td>float</td>
<td>deg</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L2-AUX3-13</td>
<td>POLAR_INDEX</td>
<td>float</td>
<td>deg</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L2-AUX3-17</td>
<td>smooth_fac</td>
<td>float</td>
<td>none</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

The following parameters are required by the Land Surface Temperature algorithm.

<table>
<thead>
<tr>
<th>Parameter ID</th>
<th>Variable</th>
<th>Name</th>
<th>Type</th>
<th>Units</th>
<th>Field size</th>
<th>Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2-AUX10-1</td>
<td>d</td>
<td>Water vapour factor for LST retrieval</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>L2-AUX10-2</td>
<td>m</td>
<td>Angle factor for LST retrieval</td>
<td>float</td>
<td>none</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>L2-AUX10-3</td>
<td>N_CLASS</td>
<td>Number of vegetation classes for LST</td>
<td>float</td>
<td>none</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>L2-AUX5-1</td>
<td>Coefficient A0</td>
<td>Coefficient A0</td>
<td>float</td>
<td>K</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>L2-AUX5-2</td>
<td>Coefficient A1</td>
<td>Coefficient A1</td>
<td>float</td>
<td>K</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>L2-AUX5-3</td>
<td>Coefficient A2</td>
<td>Coefficient A2</td>
<td>float</td>
<td>K</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>L2-AUX5-4</td>
<td>Coefficient A3</td>
<td>Coefficient A3</td>
<td>float</td>
<td>K</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>L2-AUX5-5</td>
<td>Coefficient A4</td>
<td>Coefficient A4</td>
<td>float</td>
<td>K</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>L2-AUX5-6</td>
<td>Coefficient A5</td>
<td>Coefficient A5</td>
<td>float</td>
<td>K</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>L2-AUX6-1</td>
<td>vegetation class index</td>
<td>vegetation class index</td>
<td>float</td>
<td>n/a</td>
<td>2</td>
<td>720</td>
</tr>
<tr>
<td>L2-AUX7-1</td>
<td>vegetation fraction</td>
<td>vegetation fraction</td>
<td>float</td>
<td>0.001</td>
<td>2</td>
<td>720</td>
</tr>
<tr>
<td>L2-AUX8-1</td>
<td>Precipitable water</td>
<td>Precipitable water</td>
<td>float</td>
<td>0.01 mm</td>
<td>2</td>
<td>720</td>
</tr>
<tr>
<td>L2-AUX9-1</td>
<td>Topographic Variance Flag</td>
<td>Topographic Variance Flag</td>
<td>float</td>
<td>n/a</td>
<td>2</td>
<td>720</td>
</tr>
</tbody>
</table>

Table 4-6-1: Input Data including SST Retrieval Coefficients.

<table>
<thead>
<tr>
<th>Parameter ID</th>
<th>Variable</th>
<th>Name</th>
<th>Type</th>
<th>Units</th>
<th>Field size</th>
<th>Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>local</td>
<td>a[i, j]</td>
<td>averaged sst retrieval a coefficients</td>
<td>float</td>
<td>mixed</td>
<td>4</td>
<td>342</td>
</tr>
<tr>
<td>local</td>
<td>b[i, j]</td>
<td>averaged sst retrieval b coefficients</td>
<td>float</td>
<td>mixed</td>
<td>4</td>
<td>456</td>
</tr>
<tr>
<td>local</td>
<td>c[i, j]</td>
<td>averaged sst retrieval c coefficients</td>
<td>float</td>
<td>mixed</td>
<td>4</td>
<td>570</td>
</tr>
<tr>
<td>local</td>
<td>d[i, j]</td>
<td>averaged sst retrieval d coefficients</td>
<td>float</td>
<td>mixed</td>
<td>4</td>
<td>798</td>
</tr>
<tr>
<td>L2-INT-101</td>
<td>l[i, j]</td>
<td>nadir iRGB Brightness Temp.</td>
<td>float</td>
<td>0.01 K</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-102</td>
<td>l[i, j]</td>
<td>nadir iRGB Brightness Temp.</td>
<td>float</td>
<td>0.01 K</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-103</td>
<td>l[i, j]</td>
<td>nadir iRGB Brightness Temp.</td>
<td>float</td>
<td>0.01 K</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-111</td>
<td>l[i, j]</td>
<td>forward iRGB Brightness Temp.</td>
<td>float</td>
<td>0.01 K</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
</tbody>
</table>
ENVISAT PAYLOAD DATA SEGMENT

Commercial in Confidence
AATSR Expert Support Laboratory

Page 36 of 141

L2-INT-112 llr11(i, f, j) forward ir11 Brightness Temp. ss 0.01 K 2 j = 0, 511
L2-INT-113 llr17(i, f, j) forward ir37 Brightness Temp. ss 0.01 K 2 j = 0, 511
L2-INT-105 llr870(n, i, j) regridded nadir v870 Reflectance ss %/100 2 j = 0, 511
L2-INT-106 llr870(n, i, j) regridded nadir v870 Reflectance ss %/100 2 j = 0, 511
L2-INT-115 llr870(f, i, j) regridded forward v870 Reflectance ss %/100 2 j = 0, 511
L2-INT-116 llr870(f, i, j) regridded forward v870 Reflectance ss %/100 2 j = 0, 511
L2-INT-100 nadir_fill_state(i, j) byte n/a 1 j = 0, 511
L2-INT-110 foward_fill_state(i, j) byte n/a 1 j = 0, 511
L2-INT-160 vo(i, j) image_latitude(i, j) float degrees 4 j = 0, 511
L2-INT-121 nadir_band_edge_satellite_elevation(i, k) float degrees 4 k = 0, 10
L2-INT-124 nadir_band_centre_solar_elevation(i, k) float degrees 4 k = 0, 9
L2-INT-141 foward_band_edge_satellite_elevation(i, k) float degrees 4 k = 0, 10
L2-INT-144 foward_band_centre_solar_elevation(i, k) float degrees 4 k = 0, 9
L2-INT-232 nadir_land(i, j) nadir land flag ss n/a 2 j = 0, 511
L2-INT-233 nadir_cloud(i, j) nadir cloud flag ss n/a 2 j = 0, 511
L2-INT-235 nadir_v16_histogram_test(i, j) ss array flag 2 j = 0, 511
L2-INT-236 nadir_v16_spatial_coherence_test(i, j) ss array flag 2 j = 0, 511
L2-INT-242 nadir_ir11_ir12_view_diff_test(i, j) ss array flag 2 j = 0, 511
L2-INT-244 nadir_ir11_ir12_histogram_test(i, j) ss array flag 2 j = 0, 511
L2-INT-248 foward_land(i, j) foward land flag ss n/a 2 j = 0, 511
L2-INT-249 foward_cloud(i, j) foward cloud flag ss n/a 2 j = 0, 511
L2-INT-251 foward_v16_histogram_test(i, j) ss array flag 2 j = 0, 511
L2-INT-252 foward_v16_spatial_coherence_test(i, j) ss array flag 2 j = 0, 511
L2-INT-256 foward_ir11_ir12_view_diff_test(i, j) ss array flag 2 j = 0, 511
L2-INT-260 foward_ir11_ir12_histogram_test(i, j) ss array flag 2 j = 0, 511
L2-INT-60 band(i) number of across track band (or strip) sl none 4 j = 0, 511
L2-INT-61 map(i) across-track mapping sl none 4 j = 0, 512
local i index to image scans sl none 4 1
local j index to image pixels, j = 0, 1, ...511 sl none 4 1
local k index to across-track bands sl none 4 1
local zone latitude zone index, zone = 0, 1, 2 sl none 4 1
local T0 tropical sst float deg. 4 1
local T1 temperate sst float deg. 4 1
local T2 polar sst float deg. 4 1
local w interpolation weight float none 4 1
local smoothed_gst_image(i, j) ss 0.01 K 2 j = 0, 511
L2-INT-270 nadir_image_field(i, j) ss 0.01 K 2 j = 0, 511
L2-INT-271 combined_image_field(i, j) ss mixed 2 j = 0, 511
L2-INT-280 nadir_image_valid(i, j) flag n/a 2 j = 0, 511
L2-INT-281 nadir_only_sst_uses_ir37(i, j) flag n/a 2 j = 0, 511
L2-INT-282 combined_image_valid(i, j) flag n/a 2 j = 0, 511
L2-INT-283 combined_view_sst_uses_ir37(i, j) flag n/a 2 j = 0, 511
L2-INT-284 land(i, j) flag n/a 2 j = 0, 511
L2-INT-285 nadir_view_cloudy(i, j) flag n/a 2 j = 0, 511
L2-INT-286 nadir_view_blanking_pulse(i, j) flag n/a 2 j = 0, 511
L2-INT-287 nadir_view_cosmetico(i, j) flag n/a 2 j = 0, 511
L2-INT-288 foward_view_cloudy(i, j) flag n/a 2 j = 0, 511
L2-INT-289 foward_view_blanking_pulse(i, j) flag n/a 2 j = 0, 511
L2-INT-290 foward_view_cosmetico(i, j) flag n/a 2 j = 0, 511
L2-INT-291 gstv16_cloud_test(i, j) flag n/a 2 j = 0, 511
L2-INT-292 gstv16_nadir_cloud_test(i, j) flag n/a 2 j = 0, 511
L2-INT-293 gstv11_histogram_test(i, j) flag n/a 2 j = 0, 511
L2-INT-294 topographic_varianco(i, j) flag n/a 2 j = 0, 511
L2-INT-295 extended_land(i, j) flag n/a 2 j = 0, 511
L2-INT-26 time(sq) scan UTC double days 6 per sg
L2-INT-161 zi(i, j) image_longitude(i, j) float deg. 4 j = 0, 511
4.6.3 Detailed Structure

Step 4.6.1 Read in the retrieval coefficients.

Step 4.6.1.1 Read in the SST retrieval coefficients.

This is done once at initialisation. Retrieval coefficients are specified for tropical, temperate and polar latitudes and for 38 bands or strips running parallel to the ground track, on each side, corresponding to different viewing angles. Also different sets are needed for day/night and for nadir only/combined view retrievals, as follows.

<table>
<thead>
<tr>
<th>Latitude zone</th>
<th>tropical</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>temperate</td>
</tr>
<tr>
<td>1</td>
<td>polar</td>
</tr>
</tbody>
</table>

Set

- **a** nadir only: day
- **b** nadir only: night
- **c** combined view: day
- **d** combined view: night

First the mapping array must be read in. Open the data set L2-AUX6 and set

\[
\text{map}(j) = [\text{L2-AUX6-2}](j), \ j = 0, 511
\]
Open the file of retrieval coefficients L2-AUX1.

The 'a' coefficient set are read in as follows.
- \(zone = 0, 1, 2 \) (outer loop)
- Across-track band \(k = 0 \) to \(37 \) (inner loop)
 - \(a(zone, k, 0) = [L2-AUX1-1](zone, k) \)
 - \(a(zone, k, 1) = [L2-AUX1-2](zone, k) \)
 - \(a(zone, k, 2) = [L2-AUX1-3](zone, k) \)

Similarly read in the b, c and d sets of coefficients.
- \(b(zone, k, 0:3) = L2-AUX1<-4 - 7>](zone, k) \)
- \(c(zone, k, 0:4) = L2-AUX1<-8 - 12>](zone, k) \)
- \(d(zone, k, 0:6) = L2-AUX1<-13 - 19>](zone, k) \)

Step 4.6.1.2 Read in coefficients and auxiliary tables for LST retrieval.

Step 4.6.1.2.1 Read in coefficients.

For each of the \(N_{CLASS} \) vegetation classes there are two records, for vegetation and for bare soil. Open the file of retrieval coefficients L2-AUX5.

The LST coefficient set is read in as follows.
- for \(class = 0, N_{CLASS} - 1 \) (outer loop)
 - for \(i = 0, 1 \) (inner loop)
 - \(coeff(class, i, 0, 0) = [L2-AUX5-1] \)
 - \(coeff(class, i, 0, 1) = [L2-AUX5-2] \)
 - \(coeff(class, i, 0, 2) = [L2-AUX5-3] \)
 - \(coeff(class, i, 1, 0) = [L2-AUX5-4] \)
 - \(coeff(class, i, 1, 1) = [L2-AUX5-5] \)
 - \(coeff(class, i, 1, 2) = [L2-AUX5-6] \)

(Note: \(i = 0 \) are vegetation coefficients; \(i = 1 \) are coefficients for bare soil.)

Step 4.6.1.2.2 Determine month index.

Using a suitable calendar function, determine the month \((month = 0, \ldots 11)\) in which the data were collected from the scan time of start of data \(time(0)=[L2-INT-26](0)\):

\[month = month(time(0)) \]

Step 4.6.1.2.3 Read in auxiliary files.

Note that in the cases of data sets L2-AUX7 and L2-AUX8 only one plane of data, that corresponding to the current month, is required in memory for a given run of the processor.

Read in Vegetation Class Index: Open the vegetation class file L2-AUX6.

- for each latitude index \(i = 0, 359 \)
 - \(vegetation_class(i, j) = [L2-AUX6-1](j) \) for all \(j \) of record \(i \).

Read in Vegetation Fraction Table: Open the file of vegetation fraction data L2-AUX7.
for each latitude index $i = 0, 359$
 select record $(360 \times \text{month} + i)$
 \[\text{vegetation} _\text{fraction}(i, j) = [L2\text{-AUX7-1}(j)] \text{ for all } j \text{ of selected record.} \]

Read in Precipitable Water Data: Open the file of precipitable water data L2-AUX8.
for each latitude index $i = 0, 359$
 select record $(360 \times \text{month} + i)$
 \[\text{precipitable} _\text{water}(i, j) = [L2\text{-AUX8-1}(j)] \text{ for all } j \text{ of selected record.} \]

Read in Topographic Variance Flag: Open the file of topographic variance flags L2-AUX9.
for each latitude index $i = 0, 359$
 \[\text{topographic} _\text{flag}(i, j) = [L2\text{-AUX9-1}(j)] \text{ for all } j \text{ of record } i. \]

Step 4.6.2 Calculate across-track band number.

The across-track band number for each pixel in the regridded image is given by

\[
\begin{align*}
\text{band}(j) &= 0 \text{ IF } j < 6 \\
\text{band}(j) &= \text{integer part of } (j - 6) / 50 \text{ IF } 6 \leq j < 506 \\
\text{band}(j) &= 9 \text{ IF } j \geq 506
\end{align*}
\]

where j is the pixel across track index.

(Req 4.6-1)

Step 4.6.3 Clear the gsst confidence flags.

The GSST confidence flags L2-INT-280 and L2-INT-282 are set to indicate data invalid for each pixel in the GSST arrays.

\[
\begin{align*}
\text{nadir} _\text{image} _\text{valid}(i, j) &= \text{FALSE} \\
\text{combined} _\text{image} _\text{valid}(i, j) &= \text{FALSE}
\end{align*}
\]

(Req 4.6-2)

(Implementation note: it may be convenient to initialise all the GSST confidence flags L2-INT-280 to L2-INT-293 inclusive at this point, although it is not logically necessary in terms of the way the algorithms are formulated in the following.)

Step 4.6.4 Derive nadir only sea-surface temperature image.

Each pixel (i, j) in the nadir image field is processed as follows.

The latitude and longitude indices are extracted and used to identify the surface classification. The objective here is to identify those pixels that are flagged as sea pixels but represent inland lakes. The extended land flag is set if the pixel is either a land pixel or an inland lake: extended_land = (land OR {(NOT land) AND class = 14})

If $\text{nadir} _\text{land}(i, j) = \text{FALSE}$ then

\[
\begin{align*}
\text{lat} _\text{index} &= \text{integer part of } [(\text{image} _\text{latitude}(i, j) + 90.0) \times 2.0] \\
\text{lon} _\text{index} &= \text{integer part of } [(\text{image} _\text{longitude}(i, j) + 180.0) \times 2.0] \\
\text{class} &= \text{vegetation} _\text{class}(\text{lat} _\text{index}, \text{lon} _\text{index}) \\
\text{extended} _\text{land}(i, j) &= (\text{class} = 14)
\end{align*}
\]

else

\[
\text{extended} _\text{land}(i, j) = \text{nadir} _\text{land}(i, j)
\]
IF over cloud and the extended land flag is not set, and the 11 micron brightness temperature is valid then the 11 micron brightness temperature is used as an estimate of cloud top temperature ie.

\[
\text{if } \text{nadir_cloud}(i, j) \text{ AND NOT extended_land}(i, j) = \text{TRUE} \\
\text{AND } I(ir11, n; i, j) > 0 \\
\text{then} \\
\text{nadir_image_field}(i, j) = I(ir11, n; i, j) \\
\text{nadir_image_valid}(i, j) = \text{TRUE} \\
\text{(Req 4.6-3)}
\]

IF the extended land flag is set then execute Step 4.6.9 below to derive the land surface temperature:

\[
\text{IF } \text{extended_land}(i, j) = \text{TRUE} \\
\text{THEN execute Step 4.6.9} \\
\text{(Req 4.6-4)}
\]

ELSE the pixel is over open sea and NOT cloudy. Determine the nadir-only sea surface temperature SST as follows and assign it to nadir_image_field(i, j).

Step 4.6.4.1

IF the absolute value of the pixel latitude \(\phi(i, j)\) is less than TROPICAL_INDEX retrieve the tropical sea surface temperature (using step 4.6.4.5 below).

Step 4.6.4.2

ELSE IF the absolute value of the pixel latitude is less than TEMPERATE_INDEX but is not less than TROPICAL_INDEX, two retrievals are made using the retrieval coefficients for both the tropical and mid-latitude zones. If these two retrievals are tropical_sst and temperate_sst respectively, the final value for the retrieved sst is given by linear interpolation between them, as follows:

\[
w = \frac{(abs(\phi(i,j)) - TROPICAL_INDEX)}{(TEMPERATE_INDEX - TROPICAL_INDEX)}
\]

\[
SST = \text{tropical_sst} + w \times (\text{temperate_sst} - \text{tropical_sst})
\]

Step 4.6.4.3

ELSE IF the absolute value of the pixel latitude is less than POLAR_INDEX but not less than TEMPERATE_INDEX, two retrievals are made using the retrieval coefficients for the high-latitude and mid-latitude regions. If these two retrievals are polar_sst and temperate_sst respectively, the final value for the retrieved sst is given by

\[
w = \frac{(abs(\phi(i,j)) - TEMPERATE_INDEX)}{(POLAR_INDEX - TEMPERATE_INDEX)}
\]

\[
SST = \text{temperate_sst} + w \times (\text{polar_sst} - \text{temperate_sst})
\]

Step 4.6.4.4

ELSE retrieve the polar sea surface temperature using step 4.6.4.5 below.

Step 4.6.4.5. Retrieve nadir only SST
This step is executed whenever an SST retrieval is called for in Steps 4.6.4.1 to 4.6.4.4. Retrievals use the 11, 12 and 3.7 micron brightness temperatures.

The latitude zone, 0 for tropical, 1 for temperate, 2 for polar.

The across-track band mapping index \(k = \text{map} (j), k = 0 \) to 37.

The nadir view solar elevation angle.

Negative data values indicate invalid data. If either the 11 or 12 micron brightness temperatures are invalid then the calculation is abandoned and the nadir_image_valid flag remains FALSE. Otherwise the calculation can proceed as follows.

Check the nadir solar elevation angle and if the pixel is in night-time (nadir band centre solar elevation\((i, k) \) is \(< 0. \)) and the 3.7 micron brightness temperature is valid use the 3.7 micron channel with the \(b \) coefficient set.

\[
sst = \begin{align*}
b(z, k, 0) & \times 100. + \\
b(z, k, 1) & \times I(ir11, n, i, j) + \\
b(z, k, 2) & \times I(ir12, n, i, j) + \\
b(z, k, 3) & \times I(ir37, n, i, j) \\
nadir_only_sst_uses_ir37(i, j) & = \text{TRUE} \\
nadir_image_valid(i, j) & = \text{TRUE}. \\
\end{align*}
\]

(Req 4.6-7)

If NOT using 3.7 micron channel THEN a 2-channel retrieval is performed and the \(a \) coefficient set is required.

\[
sst = \begin{align*}
a(z, k, 0) & \times 100. + \\
a(z, k, 1) & \times I(ir11, n, i, j) + \\
a(z, k, 2) & \times I(ir12, n, i, j) \\
nadir_only_sst_uses_ir37(i, j) & = \text{FALSE} \\
nadir_image_valid(i, j) & = \text{TRUE}. \\
\end{align*}
\]

(Req 4.6-8)

Step 4.6.5 Derive combined view sea-surface temperature image

Each pixel \((i, j)\) in the image field is processed as follows.

IF the nadir cloud flag [L2-INT-233] for the pixel is set (nadir_cloud\((i, j) = \text{TRUE}\)) and the extended land flag \(\text{extended_land}(i, j) \) is NOT set THEN set

\[
\begin{align*}
\text{combined_image_field}(i, j) &= 0 \\
\text{combined_image_valid}(i, j) &= \text{FALSE} \\
\end{align*}
\]

(Req 4.6-8.1)

(Note: for cloudy pixels, the combined image field is reserved for the cloud top height. However, the algorithm for determining cloud top height is not yet defined, and so the combined image field is currently set to to zero in this case. The eventual algorithm is expected to make use of a look-up table of temperature versus height.)

IF over land \((\text{extended_land}(i, j) = \text{TRUE})\) THEN calculate the NDVI for the pixel (step 4.6.6).

Otherwise the pixel is not cloudy and over sea. Determine the combined view SST as follows and assign it to \(\text{combined_image_field}(i, j) \).
Step 4.6.5.1

IF the absolute value of the pixel latitude is LESS THAN TROPICAL_INDEX retrieve the combined view tropical sea surface temperature. Combined view temperature is derived according to step 4.6.5.5 below.

Step 4.6.5.2

ELSE if the absolute value of the pixel latitude is LESS THAN TEMPERATE_INDEX but is NOT LESS THAN TROPICAL_INDEX, two retrievals are made using the retrieval coefficients for both the tropical and mid-latitude zones. IF these two retrievals are tropical_sst and temperate_sst respectively, the final value for the retrieved sst is given by linear interpolation as follows:

\[
\begin{align*}
 w &= \frac{\text{abs}(\varphi(i, j)) - \text{TROPICAL_INDEX}}{\text{TEMPERATE_INDEX} - \text{TROPICAL_INDEX}} \\
 \text{sst} &= \text{tropical_sst} + w \times (\text{temperate_sst} - \text{tropical_sst})
\end{align*}
\]

(Req 4.6-9)

Step 4.6.5.3

ELSE IF the absolute value of the latitude [L2-INT-160] is less than POLAR_INDEX but not less than TEMPERATE_INDEX, two retrievals are made using the retrieval coefficients for the high-latitude and mid-latitude regions. IF these two retrievals are polar_sst and temperate_sst respectively, the final value for the retrieved sst is given by

\[
\begin{align*}
 w &= \frac{\text{abs}(\varphi(i, j)) - \text{TEMPERATE_INDEX}}{\text{POLAR_INDEX} - \text{TEMPERATE_INDEX}} \\
 \text{sst} &= \text{temperate_sst} + w \times (\text{polar_sst} - \text{temperate_sst})
\end{align*}
\]

(Req 4.6-10)

Step 4.6.5.4

ELSE retrieve the polar combined view sea-surface temperature using step 4.6.5.5 below.

Step 4.6.5.5 Combined view retrieval

This step is executed whenever an SST retrieval is called for in Steps 4.6.5.1 to 4.6.5.4. Combined view retrievals use the nadir and forward 11, 12 and 3.7 micron brightness temperatures; the latitude zone = 0 for tropical, 1 for temperate, 2 for polar; the across track band mapping index number k = 0 to 37; and the nadir and forward view solar elevation angles.

If the 11 or 12 micron brightness temperatures in either the nadir or forward view are invalid then the calculation is abandoned and the combined_image_valid flag remains FALSE. Otherwise the calculation can proceed as follows.

Use the 3.7 micron channel if the data is valid and the pixel is in night-time in both nadir and forward views, ie
\[I(n_{i, j}) > 0 \quad \text{AND} \quad I(f_{i, j}) > 0 \quad \text{AND} \quad \text{nadir_band_centre_solar_elevation}(i, k) < 0 \quad \text{AND} \quad \text{frwrd_band_centre_solar_elevation}(i, k) < 0. \]

In this case use the \(d \) coefficient set.

\[
\begin{align*}
\text{sst} & = d(zone, k, 0) * 100. + \\
d(zone, k, 1) & * I(ir11, n, i, j) + \\
d(zone, k, 2) & * I(ir12, n, i, j) + \\
d(zone, k, 3) & * I(ir37, n, i, j) + \\
d(zone, k, 4) & * I(ir11, f, i, j) + \\
d(zone, k, 5) & * I(ir12, f, i, j) + \\
d(zone, k, 6) & * I(ir37, f, i, j)
\end{align*}
\]

\[
\text{combined_view_uses_ir37}(i, j) = \text{TRUE}. \\
\text{combined_image_valid}(i, j) = \text{NOT frwrd_cloud}(i, j).
\]

(Req 4.6-11)

If not using 3.7 micron channel the \(c \) coefficient set is required.

\[
\begin{align*}
\text{sst} & = c(zone, k, 0) * 100. + \\
c(zone, k, 1) & * I(ir11, n, i, j) + \\
c(zone, k, 2) & * I(ir12, n, i, j) + \\
c(zone, k, 3) & * I(ir11, f, i, j) + \\
c(zone, k, 4) & * I(ir12, f, i, j)
\end{align*}
\]

\[
\text{combined_view_uses_ir37}(i, j) = \text{FALSE}. \\
\text{combined_image_valid}(i, j) = \text{NOT frwrd_cloud}(i, j).
\]

(Req 4.6-12)

Step 4.6.6 Calculate the NDVI.

The NDVI is calculated for extended land pixels where the nadir view is not cloudy and both the .87 micron and .67 micron channels contain valid data.

\[
\begin{align*}
\text{extended_land}(i, j) & = \text{TRUE} \quad \text{AND} \\
\text{nadir_cloud}(i, j) & = \text{FALSE} \quad \text{AND} \\
I(v870, n, i, j) & > 0 \quad \text{AND} \\
I(v670, n, i, j) & > 0
\end{align*}
\]

Then

\[
\text{NDVI}(i, j) = \frac{I(v870, n, i, j) - I(v670, n, i, j)}{I(v870, n, i, j) + I(v670, n, i, j)}
\]

and

\[
\text{combined_image_valid}(i, j) = \text{TRUE}
\]

(Req 4.6-13)

Otherwise set

\[
\text{NDVI}(i, j) = -19999
\]

\[
\text{combined_image_valid}(i, j) = \text{FALSE}
\]

Step 4.6.7 Confidence flags

The following gsst confidence flags are set as appropriate:
land(i, j) = extended_land(i, j)
nadir_view_cloudy(i, j) = nadir_cloud(i, j)
nadir_view_blanking(i, j) = nadir_blanking_pulse(i, j)
nadir_view_cosmetic(i, j) = nadir_cosmetic(i, j)
frwrd_view_cloudy(i, j) = frwrd_cloud(i, j)
frwrd_view_blanking(i, j) = frwrd_blanking_pulse(i, j)
frwrd_view_cosmetic(i, j) = frwrd_cosmetic(i, j)

The following gsst confidence flags will have been set if the relevant calculations have been performed.

nadir_image_valid(i, j)
nadir_only_uses_ir37(i, j)
combined_image_valid(i, j)
combined_view_uses_ir37(i, j)

The following additional cloud flags are set on the basis of the input (GBTR) cloud flags:

If (NOT extended_land(i, j)) then

gsst_v16_cloud_test(i, j) = {nadir_v16_histogram_test(i, j) or
frwrd_v16_histogram_test(i, j) or
frwrd_v16_spatial_coherence_test(i, j) or
nadir_v16_spatial_coherence_test(i, j)}
gsst_nadir_frwrd_cloud_test(i, j) = nadir_ir11_ir12_view_diff_test(i, j)
gsst_ir11_histogram_test(i, j) = {nadir_ir11_ir12_histogram_test(i, j) or
frwrd_ir11_ir12_histogram_test(i, j)}

If the extended land flag is set, these flags will have been set in Step 4.6.9.

Step 4.6.8 Smoothing

Smoothing is applied to both the nadir and combined view SST images. The quantity that is smoothed is the atmospheric correction, defined as the difference between the derived sea-surface temperature and the 11 micron brightness temperature. The smoothing method is a Smooth_fac by Smooth_fac boxcar with checks for valid data and array bounds.

The 11 micron brightness temperature is then added to obtain the final smoothed SST.

Step 4.6.8.1 Smooth Nadir Image

For each pixel i, j in the nadir image the smoothed value is calculated as follows.

First initialize the output array element to the data invalid value.

\[
\text{smoothed_gsst_image}(i, j) = -1.
\]

If the pixel contains a valid SST value ie:

\[
\text{nadir_image_valid}(i, j) = \text{TRUE} \quad \text{AND} \\
\text{nadir_view_cloudy}(i, j) = \text{FALSE} \quad \text{AND} \\
\text{extended_land}(i, j) = \text{FALSE}
\]

then calculate the average atmospheric correction using all the valid SST values in a smooth_fac by Smooth_fac pixel box centred on this pixel. \(ib = i - 1 \ \text{to} \ \ i + 1, \ \text{and} \ \ jb = j - 1 \ \text{to} \ \ j + 1\).

The pixel (ib, jb) in the box has a valid SST value if
If there is at least one valid pixel in the box use these valid pixels to calculate the average value of
nadir_image_field(ib, jb) - I(ir11, n; ib, jb)
then add I(ir11, n; i, j) to the average and store the result in

\[
\text{smoothed_gsst_image}(i, j) = \frac{\sum \text{nadir_image_field} - \sum I\text{(ir11, n; ib, jb)}}{\text{number of valid pixels}} + I\text{(ir11, n; i, j)}
\]

When all the averages have been calculated the valid values in the smoothed image can be copied to the image field array.

\[
\text{IF smoothed_gsst_image}(i, j) > 0 \quad \text{THEN} \\
\text{nadir_image_field}(i, j) = \text{smoothed_gsst_image}(i, j)
\]

Step 4.6.8.2 Smooth Combined Image

The process is repeated for the combined image field. For each pixel i, j in the combined image the smoothed value is calculated as follows. First initialize the output array element to the data invalid value.

\[
\text{smoothed_gsst_image}(i, j) = -1.
\]

If the pixel contains a valid SST value ie:
combined_image_valid(i, j) = TRUE AND
nadir_view_cloudy(i, j) = FALSE AND
extended_land(i, j) = FALSE

then calculate the average atmospheric correction using all the valid SST values in a smooth_fac by Smooth_fac pixel box centred on this pixel. ib = i - 1 to i + 1, and jb = j - 1 to j + 1.

The pixel (ib, jb) in the box has a valid SST value if

\[
\begin{align*}
\text{jb} & \geq 0 \quad \text{AND} \quad \text{jb} < 512 \quad \text{AND} \\
\text{ib} & \geq 0 \quad \text{AND} \quad \text{ib} < \text{nadir_image_size} \quad \text{AND} \\
\text{combined_image_valid}(ib, jb) & = \text{TRUE} \quad \text{AND} \\
\text{nadir_view_cloudy}(ib, jb) & = \text{FALSE} \quad \text{AND} \\
\text{extended_land}(ib, jb) & = \text{FALSE}
\end{align*}
\]

If there is at least one valid pixel in the box use these valid pixels to calculate the average value of
nadir_image_field(ib, jb) - I(ir11, n; ib, jb)
then add I(ir11, n; i, j) to the average and store the result in

\[
\text{smoothed_gsst_image}(i, j) = \frac{\sum \text{nadir_image_field} - \sum I\text{(ir11, n; ib, jb)}}{\text{number of valid pixels}} + I\text{(ir11, n; i, j)}
\]

When all the averages have been calculated the valid values in the smoothed image can be copied to the image field array.
IF smoothed_gsst_image(i, j) > 0 THEN
 combined_image_field(i, j) = smoothed_gsst_image(i, j)

(Req 4.6-21)

Step 4.6.9 Derive Land Surface Temperature Image.

LST retrievals use the nadir view 11 and 12 micron channels in conjunction with retrieval coefficients derived from the tables.

If either the 11 or 12 micron brightness temperature in the nadir view is invalid, the calculation for that pixel is abandoned and the nadir_image_valid flag remains FALSE. In this case set

nadir_image_field(i, j) = I(ir11, n; i, j).

(Req 4.6-22)

Otherwise the calculation proceeds as follows.

Step 4.6.9.1 Determine latitude and longitude indices

lat_index = integer part of [(image_latitude(i, j) + 90.0) × 2.0]
lon_index = integer part of [(image_longitude(i, j) + 180.0) × 2.0]

(Req 4.6-23)

disp_lat_index = integer part of [360 + (image_latitude(i, j) + 90.0) × 2.0 - 0.5] (modulo 360)
disp_lon_index = integer part of [720 + (image_longitude(i, j) + 180.0) × 2.0 - 0.5] (modulo 720)

(Req 4.6-24)

Step 4.6.9.2 Determine solar elevation and day/night flag

sun_elev = nadir_band_centre_solar_elevation(i, band(j))

If sun_elev > 0.0 then
 night = 0 otherwise night = 1

(Req 4.6-25)

Step 4.6.9.3 Determine satellite elevation and non-linear exponent

A linear interpolation may be used to determine the satellite elevation.

w = float(j - 6)/50.0 - band(j)

sat_elev = (1.0 - w) × nadir_band_edge_satellite_elevation(i, band(j)) +
 w × nadir_band_edge_satellite_elevation(i, band(j) + 1)

(Req 4.6-26)

if I(ir11, n; i, j) > I(ir12, n; i, j) then
 n = 1.0 / cos(π × (90 - sat_elev) / (m × 180.0))
else
 n = 1.0

(Req 4.6-27)

Note that m is [L2-AUX10-2] and n is [L2-INT-480].

Step 4.6.9.4 Determine coefficients

f = 0.001 × vegetation_fraction(lat_index, lon_index)
Interpolation of precipitable water:

\[pw_{00} = \text{precipitable_water}(\text{disp_lat_index}, \text{disp_lon_index}) \]
\[pw_{01} = \text{precipitable_water}(\text{disp_lat_index} + 1, \text{disp_lon_index}) \]
\[pw_{10} = \text{precipitable_water}(\text{disp_lat_index}, [\text{disp_lon_index} + 1](\text{modulo} \ 720)) \]
\[pw_{11} = \text{precipitable_water}(\text{disp_lat_index} + 1, [\text{disp_lon_index} + 1](\text{modulo} \ 720)) \]

\[q = \text{fractional\ part\ of}\ [(\text{image_latitude}(i, j) + 90.0) \times 2.0 + 0.5] \]
\[p = \text{fractional\ part\ of}\ [(\text{image_longitude}(i, j) + 180.0) \times 2.0 + 0.5] \]
\[pw = 0.001 \times ((1 - p)(1 - q)pw_{00} + (1 - p)q \times pw_{01} + p(1 - q)pw_{10} + pq \times pw_{11}) \]

\[\text{class} = \text{vegetation_class}(\text{lat_index}, \text{lon_index}) - 1 \]

If \(\text{class} < 0 \) or \(\text{class} > \text{NCLASS} - 1 \) then the index is out of range; the calculation for this pixel is abandoned and the nadir_image_valid flag remains false. In this case set
\[\text{nadir_image_field}(i, j) = I(ir11, n; i, j). \]

Otherwise:

For \(k = 0, 2 \)
\[a(k) = f \times \text{coeff}(\text{class}, 0, \text{night}, k) + (1.0 - f) \times \text{coeff}(\text{class}, 1, \text{night}, k) \]

If \((\text{class} + 1) = 14 \) this is an inland lake pixel. The exponent \(n \) and the precipitable water correction are not used. In this case set
\[n = 1.0. \]

Otherwise, if \((\text{class} + 1) \neq 14 \) correct \(a(0) \) as follows:
\[a(0) = a(0) + d \times (\text{cosec}(\pi \times \text{sat_elev} / 180.0) - 1.0) \times pw \]

Note that \(d \) is \([\text{L2}\text{-AUX10-1}]\).

Step 4.6.9.5 Calculate the land surface temperature.

\[\text{lst} = 100. \times (a(0) + a(1) \times (0.01 \times (I(ir11, n; i, j) - I(ir12, n; i, j))^{*n}) + (a(1) + a(2)) \times (I(ir12, n; i, j) - 27315) + 27315 \]

\[\text{topographic_variance}(i, j) = \text{topographic_flag}(\text{lat_index}, \text{lon_index}) \]

(Note that this is a two-bit flag.)
Trap for lst out of range:

If $lst \geq 32767.5$ then

\[
\text{nadir_image_field}(i, j) = 32767 \\
\text{nadir_image_valid}(i, j) = \text{FALSE}.
\]

else

\[
\text{nadir_image_field}(i, j) = \text{integer part of } (lst + 0.5) \\
\text{nadir_image_valid}(i, j) = \text{TRUE}.
\]

\[\text{(Req 4.6-38)}\]

\[\text{(Req 4.6-39)}\]

Step 4.6.9.6 Update ‘marginal cloud’ flags

For land pixels, the ‘cloud test’ flags have a different meaning. Note that for true land (excluding lake) pixels, these flags should be clear because the relevant tests are not applied to land pixels at Level 1B.

\[
\text{gsst_v16_cloud_test}(i, j) = \text{nadir_cloud}(i, j) \\
\text{gsst_nadir_frwrd_cloud_test}(i, j) = \text{NOT land}(i, j) \\
\text{gsst_ir11_histogram_test}(i, j) = \text{FALSE}
\]

\[\text{(Req 4.6-40)}\]

The first of these is the actual ‘marginal cloud’ flag; it is set if the LST has been computed even though the nadir view pixel was flagged as cloudy. The second acts in practice as a lake flag, while the third is cleared (it will only have been set over an inland lake) for the avoidance of ambiguity.

Implementation Note: Land Surface temperature

Layout of auxiliary files

In this document the latitude and longitude of a pixel $[i, j]$ are represented by $\phi(i, j), \lambda(i, j)$ respectively, with the conventions that

\[-90.0 \leq \phi \leq +90.0 \text{ and} \]
\[-180.0 \leq \lambda < 180.0 \]

It will be convenient in the following to redefine the origin of latitude and longitude so that both are positive. We thus define the shifted co-ordinates

\[
\hat{\phi} = \phi + 90.0 \\
\hat{\lambda} = \lambda + 180.0
\]

The auxiliary files define the surface class and vegetation fraction with a resolution of 0.5 degrees. Thus for each cell of 0.5 degrees in latitude by 0.5 degrees in longitude a surface class and vegetation fraction are defined, that are taken to apply to the whole cell.

Suppose that each cell is identified by the co-ordinates of its origin, defined to be its lower left-hand (i.e. south-west) corner. The cells form a two dimensional array indexed by latitude and longitude indices lat_index and lon_index, such that the origin of the cell indexed by lat_index and lon_index is

\[
\hat{\phi}_0 = \text{lat_index} \times \Delta \phi \\
\hat{\lambda}_0 = \text{lon_index} \times \Delta \lambda
\]
where $\Delta \varphi, \Delta \lambda$ are the cell dimensions in latitude and longitude respectively. It follows that a pixel (i, j) at latitude $\varphi(i, j)$, longitude $\lambda(i, j)$ falls within the cell identified by

\[
\text{lat_index} = \text{int}\left[\frac{\varphi}{\Delta \varphi} \right] = \text{int}\left[\frac{\varphi(i, j) + 90.0}{\Delta \varphi} \right],
\]

\[
\text{lon_index} = \text{int}\left[\frac{\lambda}{\Delta \lambda} \right] = \text{int}\left[\frac{\lambda(i, j) + 180.0}{\Delta \lambda} \right].
\]

where $\text{int}[x]$ represents the integer part of x. In the present case

\[\Delta \varphi = \Delta \lambda = 0.5\text{ degrees},\]

and so (compare Req 4.6-23)

\[
\text{lat_index} = \text{int}[2\varphi(i, j) + 180.0],
\]

\[
\text{lon_index} = \text{int}[2\lambda(i, j) + 360.0].
\]

For example, the cell at 58N, 7E extends over the latitude range 58.0 to 58.5 and the longitude range 7.0 to 7.5, and is indexed by lat_index = 296, lon_index = 374. The surface class for the cell will be found in the array element $\text{vegetation_class(lat_index, lon_index)}$.

However, the precipitable water value is assumed to refer to the centre of the cell. Thus the precipitable water value associated with the cell [296][374] refers to the point at latitude 58.25 N, longitude 7.25 E. This shift must be taken into account in the interpolation of precipitable water. The centre points of the cells are the grid points for the bilinear interpolation of the precipitable water pw.

Interpolation of precipitable water

The water vapour sample corresponding to the cell whose origin is $\hat{\varphi}_0, \hat{\lambda}_0$ refers to the point whose shifted co-ordinates are $\varphi_0 + \Delta \varphi/2, \lambda_0 + \Delta \lambda/2$, and so the water vapour samples form a grid whose origin is at the point $\Delta \varphi/2, \Delta \lambda/2$. The precipitable water is interpolated to the position of the pixel using a bilinear interpolation between the four points of this grid that surround the pixel. These are the corner points of a quadrilateral enclosing the pixel. The origin of this quadrilateral is

\[
\hat{\varphi}_0 = \text{int}\left[\frac{\varphi - \Delta \varphi/2}{\Delta \varphi} \right] \Delta \varphi + \Delta \varphi/2,
\]

\[
\hat{\lambda}_0 = \text{int}\left[\frac{\lambda - \Delta \lambda/2}{\Delta \lambda} \right] \Delta \lambda + \Delta \lambda/2,
\]

and it clearly falls within the cell whose indices are

\[
\text{disp_lat_index} = \text{int}\left[\frac{\varphi - \Delta \varphi/2}{\Delta \varphi} \right],
\]

\[
\text{disp_lon_index} = \text{int}\left[\frac{\lambda - \Delta \lambda/2}{\Delta \lambda} \right].
\]
This pair of equations with $\Delta \phi = \Delta \lambda = 0.5$ is equivalent to the pair of equations Req 4.6-24 except that we have modified the latter so that they always give a positive result. The indices of the four sample points that enter into the interpolation are (ignoring wrap-around)

\begin{align*}
\text{disp}_\text{lat}_\text{index}, \text{disp}_\text{lon}_\text{index} \\
\text{disp}_\text{lat}_\text{index}, \text{disp}_\text{lon}_\text{index} + 1 \\
\text{disp}_\text{lat}_\text{index} + 1, \text{disp}_\text{lon}_\text{index} \\
\text{disp}_\text{lat}_\text{index} + 1, \text{disp}_\text{lon}_\text{index} + 1
\end{align*}

The relationship of $\text{disp}_\text{lat}_\text{index}, \text{disp}_\text{lon}_\text{index}$ to $\text{lat}_\text{index}, \text{lon}_\text{index}$ depends in which quadrant of the cell the pixel lies. In the case that $\Delta \phi = \Delta \lambda = 0.5$, the fractional co-ordinates of the pixel relative to the origin of the cell in which it falls are $\text{cell}_\text{lat}_\text{coord}, \text{cell}_\text{long}_\text{coord}$ given by

\begin{align*}
\text{cell}_\text{lat}_\text{coord} &= (2\phi(i, j) + 180.0) - \text{lat}_\text{index} \\
\text{cell}_\text{long}_\text{coord} &= (2\lambda(i, j) + 360.0) - \text{lon}_\text{index}
\end{align*}

Both $\text{cell}_\text{lat}_\text{coord}, \text{cell}_\text{long}_\text{coord}$ lie in the range $[0, 1]$. Then it follows from the equations for $\text{disp}_\text{lat}_\text{index}, \text{disp}_\text{lon}_\text{index}$ that the indices (in the precipitable water array) of the origin of the interpolation quadrilateral are as follows:

- If $\text{cell}_\text{lat}_\text{coord} < 0.5$ then $\text{disp}_\text{lat}_\text{index} = \text{lat}_\text{index} - 1$ else $\text{disp}_\text{lat}_\text{index} = \text{lat}_\text{index}$
- If $\text{cell}_\text{long}_\text{coord} < 0.5$ then $\text{disp}_\text{lon}_\text{index} = \text{lon}_\text{index} - 1$ else $\text{disp}_\text{lon}_\text{index} = \text{lon}_\text{index}$.

The approach to the precipitable water interpolation actually adopted in the Reference Processor is as follows. The same set of pw sample values can be used for a succession of pixels, and an auxiliary 3 by 3 array is defined, to hold the precipitable water values of the current cell ($\text{lat}_\text{index}, \text{lon}_\text{index}$) and its eight neighbours. If this array is $\text{pw}_\text{coeff}(iy, jx)$ then the array element $\text{pw}_\text{coeff}(1, 1)$ contains the current cell value, and generally for $iy = 0, 1, 2$ and $jx = 0, 1, 2$:

\[\text{pw}_\text{coeff}(iy, jx) = \text{precipitable}_\text{water}(\text{lat}_\text{index} + iy - 1, [\text{lon}_\text{index} + jx - 1](\text{modulo} 720)) \]

The fractional co-ordinates of the pixel within the cell are $\text{cell}_\text{lat}_\text{coord}, \text{cell}_\text{long}_\text{coord}$ as above, both in the range $[0, 1]$. Then the indices in this array of origin of the interpolation quadrilateral are as follows:

- If $\text{cell}_\text{lat}_\text{coord} < 0.5$ then $iy = 0$ else $iy = 1$
- If $\text{cell}_\text{long}_\text{coord} < 0.5$ then $jx = 0$ else $jx = 1$

It is easy to verify that this is equivalent to the formulation in terms of $\text{disp}_\text{lat}_\text{index}, \text{disp}_\text{lon}_\text{index}$ given above. We then have

\begin{align*}
\text{pw00} &= \text{pw}_\text{coeff}(iy, jx) \\
\text{pw01} &= \text{pw}_\text{coeff}(iy + 1, jx) \\
\text{pw10} &= \text{pw}_\text{coeff}(iy, jx + 1)
\end{align*}
Thus the procedure is as follows. For each pixel, its latitude and longitude are computed, and the indices \(\text{lat_index}, \text{lon_index} \) of the cell in which it falls are calculated. If this is the first pixel, or if the computed cell indices differ from those of the last pixel (so it falls in a new cell), the precipitable water values of the centre cell and of its eight neighbours are copied into the 3 by 3 array. The interpolation then proceeds as above.

4.7 Module Definition: Output GSST Records

4.7.1 Functional Description

The GSST product is written to the output medium. First the SPH and ADS records are output, then for each image line, an MDS record is assembled and written.

4.7.2 Interface Definition

<table>
<thead>
<tr>
<th>Parameter ID</th>
<th>Variable</th>
<th>Name</th>
<th>Type</th>
<th>Units</th>
<th>Field size</th>
<th>Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBTR-ADS1-1</td>
<td>Nadir UTC time in MJD format</td>
<td>sl, 2*ul</td>
<td>MJD</td>
<td>12</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS1-2</td>
<td>Attachment flag (always zero for this ADS)</td>
<td>sc, n/a</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS1-3</td>
<td>Spare (null characters)</td>
<td>3*uc</td>
<td>n/a</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS1-4</td>
<td>image scan y coordinate</td>
<td>sl, m</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS1-5</td>
<td>instrument scan number, nadir view</td>
<td>us, none</td>
<td>2</td>
<td>512</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS1-6</td>
<td>pixel number, nadir view</td>
<td>us, none</td>
<td>2</td>
<td>512</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS2-1</td>
<td>Nadir UTC time in MJD format</td>
<td>sl, 2*ul</td>
<td>MJD</td>
<td>12</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS2-2</td>
<td>Attachment flag (always zero for this ADS)</td>
<td>sc, n/a</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS2-3</td>
<td>Spare (null characters)</td>
<td>3*uc</td>
<td>n/a</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS2-4</td>
<td>image scan y coordinate</td>
<td>sl, m</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS2-5</td>
<td>instrument scan number, forward view</td>
<td>us, none</td>
<td>2</td>
<td>512</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS2-6</td>
<td>pixel number, forward view</td>
<td>us, none</td>
<td>2</td>
<td>512</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS3-1</td>
<td>Nadir UTC time in MJD format</td>
<td>sl, 2*ul</td>
<td>MJD</td>
<td>12</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS3-2</td>
<td>Attachment flag (always zero for this ADS)</td>
<td>sc, n/a</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS3-3</td>
<td>Spare (null characters)</td>
<td>3*uc</td>
<td>n/a</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS3-4</td>
<td>image scan y coordinate</td>
<td>sl, m</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS3-5</td>
<td>tie point latitudes</td>
<td>sl, mdeg</td>
<td>4</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS3-6</td>
<td>tie point longitudes</td>
<td>sl, mdeg</td>
<td>4</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS3-7</td>
<td>latitude corrections</td>
<td>ss, mdeg</td>
<td>2</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS3-8</td>
<td>longitude corrections</td>
<td>ss, mdeg</td>
<td>2</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS3-9</td>
<td>Topographic Altitude</td>
<td>ss, metres</td>
<td>2</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS4-1</td>
<td>Nadir UTC time in MJD format</td>
<td>sl, 2*ul</td>
<td>MJD</td>
<td>12</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS4-2</td>
<td>Attachment flag (always zero for this ADS)</td>
<td>sc, n/a</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS4-3</td>
<td>Spare (null characters)</td>
<td>3*uc</td>
<td>n/a</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS4-4</td>
<td>instrument scan number</td>
<td>us, none</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS4-5</td>
<td>tie pixel x coordinate</td>
<td>sl, m</td>
<td>4</td>
<td>94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS4-6</td>
<td>tie pixel y coordinate</td>
<td>sl, m</td>
<td>4</td>
<td>94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS5-1</td>
<td>Nadir UTC time in MJD format</td>
<td>sl, 2*ul</td>
<td>MJD</td>
<td>12</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS5-2</td>
<td>Attachment flag (always zero for this ADS)</td>
<td>sc, n/a</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS5-3</td>
<td>Spare (null characters)</td>
<td>3*uc</td>
<td>n/a</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS5-4</td>
<td>image scan y coordinate</td>
<td>sl, m</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS5-5</td>
<td>tie point solar elevation, nadir view</td>
<td>sl, mdeg</td>
<td>4</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS5-6</td>
<td>tie point satellite elevation, nadir view</td>
<td>sl, mdeg</td>
<td>4</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS5-7</td>
<td>tie point solar azimuth, nadir view</td>
<td>sl, mdeg</td>
<td>4</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS5-8</td>
<td>tie point satellite azimuth, nadir view</td>
<td>sl, mdeg</td>
<td>4</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS6-1</td>
<td>Nadir UTC time in MJD format</td>
<td>sl, 2*ul</td>
<td>MJD</td>
<td>12</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GBTR-ADS6-2</td>
<td>Attachment flag (always zero for this ADS)</td>
<td>sc, n/a</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Parameter ID</td>
<td>Variable Name</td>
<td>Type</td>
<td>Units</td>
<td>Field size</td>
<td>Fields</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>------</td>
<td>-------</td>
<td>------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>L2-INT-270</td>
<td>nadir_image_field(i, j)</td>
<td>ss</td>
<td>0.01 K</td>
<td>2</td>
<td>j = 0, 511</td>
<td></td>
</tr>
<tr>
<td>L2-INT-271</td>
<td>combined_image_field(i, j)</td>
<td>ss</td>
<td>mixed</td>
<td>2</td>
<td>j = 0, 511</td>
<td></td>
</tr>
<tr>
<td>L2-INT-272</td>
<td>gsst_confidence_word(i, j)</td>
<td>ss</td>
<td>flags</td>
<td>2</td>
<td>j = 0, 511</td>
<td></td>
</tr>
<tr>
<td>L2-INT-280</td>
<td>nadir_only_sst_valid(i, j)</td>
<td>flag</td>
<td>n/a</td>
<td>2</td>
<td>j = 0, 511</td>
<td></td>
</tr>
<tr>
<td>L2-INT-281</td>
<td>nadir_only_sst_valid_ir37(i, j)</td>
<td>flag</td>
<td>n/a</td>
<td>2</td>
<td>j = 0, 511</td>
<td></td>
</tr>
<tr>
<td>L2-INT-282</td>
<td>dual_view_sst_valid(i, j)</td>
<td>flag</td>
<td>n/a</td>
<td>2</td>
<td>j = 0, 511</td>
<td></td>
</tr>
<tr>
<td>L2-INT-283</td>
<td>dual_view_sst_valid_ir37(i, j)</td>
<td>flag</td>
<td>n/a</td>
<td>2</td>
<td>j = 0, 511</td>
<td></td>
</tr>
<tr>
<td>L2-INT-284</td>
<td>land(i, j)</td>
<td>flag</td>
<td>n/a</td>
<td>2</td>
<td>j = 0, 511</td>
<td></td>
</tr>
<tr>
<td>L2-INT-285</td>
<td>nadir_view_cloudy(i, j)</td>
<td>flag</td>
<td>n/a</td>
<td>2</td>
<td>j = 0, 511</td>
<td></td>
</tr>
<tr>
<td>L2-INT-286</td>
<td>nadir_view_blanking_pulse(i, j)</td>
<td>flag</td>
<td>n/a</td>
<td>2</td>
<td>j = 0, 511</td>
<td></td>
</tr>
<tr>
<td>L2-INT-287</td>
<td>nadir_view_cloudy(i, j)</td>
<td>flag</td>
<td>n/a</td>
<td>2</td>
<td>j = 0, 511</td>
<td></td>
</tr>
<tr>
<td>L2-INT-288</td>
<td>fwd_view_cloudy(i, j)</td>
<td>flag</td>
<td>n/a</td>
<td>2</td>
<td>j = 0, 511</td>
<td></td>
</tr>
<tr>
<td>L2-INT-289</td>
<td>fwd_view_blanking_pulse(i, j)</td>
<td>flag</td>
<td>n/a</td>
<td>2</td>
<td>j = 0, 511</td>
<td></td>
</tr>
<tr>
<td>L2-INT-290</td>
<td>fwd_view_cloudy(i, j)</td>
<td>flag</td>
<td>n/a</td>
<td>2</td>
<td>j = 0, 511</td>
<td></td>
</tr>
<tr>
<td>L2-INT-291</td>
<td>gsst_v16_cloud_test(i, j)</td>
<td>flag</td>
<td>n/a</td>
<td>2</td>
<td>j = 0, 511</td>
<td></td>
</tr>
<tr>
<td>L2-INT-292</td>
<td>gsst_nadir_fwd_cloud_test(i, j)</td>
<td>flag</td>
<td>n/a</td>
<td>2</td>
<td>j = 0, 511</td>
<td></td>
</tr>
<tr>
<td>L2-INT-293</td>
<td>gsst_ir11_histogram_test(i, j)</td>
<td>flag</td>
<td>n/a</td>
<td>2</td>
<td>j = 0, 511</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.7.2: Internal Data Table - Output GSST Records

<table>
<thead>
<tr>
<th>Parameter ID</th>
<th>Variable Name</th>
<th>Type</th>
<th>Units</th>
<th>Field size</th>
<th>Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSST-MDS1-1</td>
<td>Nadir UTC time in MJD format</td>
<td>sl, 2*ul</td>
<td>MJD</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>GSST-MDS1-2</td>
<td>Record Quality Indicator</td>
<td>sc</td>
<td>n/a</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>GSST-MDS1-3</td>
<td>Spare (null characters)</td>
<td>3*uc</td>
<td>n/a</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>GSST-MDS1-4</td>
<td>image scan y coordinate</td>
<td>sl</td>
<td>m</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>GSST-MDS1-5</td>
<td>confidence words</td>
<td>us</td>
<td>flags</td>
<td>2</td>
<td>512</td>
</tr>
<tr>
<td>GSST-MDS1-6</td>
<td>nadir field</td>
<td>as</td>
<td>K/100</td>
<td>2</td>
<td>512</td>
</tr>
<tr>
<td>GSST-MDS1-7</td>
<td>combined field (Note 1)</td>
<td>as</td>
<td>K/100</td>
<td>2</td>
<td>512</td>
</tr>
<tr>
<td>ADS:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSST-ADS1-1</td>
<td>Nadir UTC time in MJD format</td>
<td>sl, 2*ul</td>
<td>MJD</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>GSST-ADS1-2</td>
<td>Attachment flag (always zero for this ADS)</td>
<td>sc</td>
<td>n/a</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>GSST-ADS1-3</td>
<td>Spare (null characters)</td>
<td>3*uc</td>
<td>n/a</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>GSST-ADS1-4</td>
<td>image scan y coordinate</td>
<td>sl</td>
<td>m</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>GSST-ADS1-5</td>
<td>instrument scan number, nadir view</td>
<td>us</td>
<td>none</td>
<td>2</td>
<td>512</td>
</tr>
<tr>
<td>GSST-ADS1-6</td>
<td>pixel number, nadir view</td>
<td>us</td>
<td>none</td>
<td>2</td>
<td>512</td>
</tr>
<tr>
<td>GSST-ADS2-1</td>
<td>Nadir UTC time in MJD format</td>
<td>sl, 2*ul</td>
<td>MJD</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>GSST-ADS2-2</td>
<td>Attachment flag (always zero for this ADS)</td>
<td>sc</td>
<td>n/a</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>GSST-ADS2-3</td>
<td>Spare (null characters)</td>
<td>3*uc</td>
<td>n/a</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>GSST-ADS2-4</td>
<td>image scan y coordinate</td>
<td>sl</td>
<td>m</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>GSST-ADS2-5</td>
<td>instrument scan number, forward view</td>
<td>us</td>
<td>none</td>
<td>2</td>
<td>512</td>
</tr>
<tr>
<td>GSST-ADS2-6</td>
<td>pixel number, forward view</td>
<td>us</td>
<td>none</td>
<td>2</td>
<td>512</td>
</tr>
<tr>
<td>GSST-ADS3-1</td>
<td>Nadir UTC time in MJD format</td>
<td>sl, 2*ul</td>
<td>MJD</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>GSST-ADS3-2</td>
<td>Attachment flag (always zero for this ADS)</td>
<td>sc</td>
<td>n/a</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 4.7-3: Output Data Table - Output GSST Records

<table>
<thead>
<tr>
<th>ADS Number</th>
<th>Description</th>
<th>Type</th>
<th>Length</th>
<th>Units</th>
<th>Row Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSST-ADS3-3</td>
<td>Spare (null characters)</td>
<td>3*uc</td>
<td>n/a</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>GSST-ADS3-4</td>
<td>Image scan y coordinate</td>
<td>sl</td>
<td>m</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>GSST-ADS3-5</td>
<td>Tie point latitude</td>
<td>sl</td>
<td>mdeg</td>
<td>4</td>
<td>23</td>
</tr>
<tr>
<td>GSST-ADS3-6</td>
<td>Tie point longitude</td>
<td>sl</td>
<td>mdeg</td>
<td>4</td>
<td>23</td>
</tr>
<tr>
<td>GSST-ADS3-7</td>
<td>Latitude corrections</td>
<td>ss</td>
<td>mdeg</td>
<td>2</td>
<td>23</td>
</tr>
<tr>
<td>GSST-ADS3-8</td>
<td>Longitude corrections</td>
<td>ss</td>
<td>mdeg</td>
<td>2</td>
<td>23</td>
</tr>
<tr>
<td>GSST-ADS3-9</td>
<td>Topographic Altitude</td>
<td>ss</td>
<td>metres</td>
<td>2</td>
<td>23</td>
</tr>
<tr>
<td>GSST-ADS4-1</td>
<td>Scan UTC time in MJD format</td>
<td>sl, 2*ul</td>
<td>MJD</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>GSST-ADS4-2</td>
<td>Attachment flag (always zero for this ADS)</td>
<td>sc</td>
<td>n/a</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>GSST-ADS4-3</td>
<td>Spare (null characters)</td>
<td>3*uc</td>
<td>n/a</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>GSST-ADS4-4</td>
<td>Instrument scan number</td>
<td>us</td>
<td>none</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>GSST-ADS4-5</td>
<td>Tie pixel x coordinate</td>
<td>sl</td>
<td>m</td>
<td>4</td>
<td>94</td>
</tr>
<tr>
<td>GSST-ADS4-6</td>
<td>Tie pixel y coordinate</td>
<td>sl</td>
<td>m</td>
<td>4</td>
<td>94</td>
</tr>
<tr>
<td>GSST-ADS5-1</td>
<td>Nadir UTC time in MJD format</td>
<td>sl, 2*ul</td>
<td>MJD</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>GSST-ADS5-2</td>
<td>Attachment flag (always zero for this ADS)</td>
<td>sc</td>
<td>n/a</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>GSST-ADS5-3</td>
<td>Spare (null characters)</td>
<td>3*uc</td>
<td>n/a</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>GSST-ADS5-4</td>
<td>Image scan y coordinate</td>
<td>sl</td>
<td>m</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>GSST-ADS5-5</td>
<td>Tie point solar elevation, nadir view</td>
<td>sl</td>
<td>mdeg</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>GSST-ADS5-6</td>
<td>Tie point satellite elevation, nadir view</td>
<td>sl</td>
<td>mdeg</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>GSST-ADS5-7</td>
<td>Tie point solar azimuth, nadir view</td>
<td>sl</td>
<td>mdeg</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>GSST-ADS5-8</td>
<td>Tie point satellite azimuth, nadir view</td>
<td>sl</td>
<td>mdeg</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>GSST-ADS6-1</td>
<td>Nadir UTC time in MJD format</td>
<td>sl, 2*ul</td>
<td>MJD</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>GSST-ADS6-2</td>
<td>Attachment flag (always zero for this ADS)</td>
<td>sc</td>
<td>n/a</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>GSST-ADS6-3</td>
<td>Spare (null characters)</td>
<td>3*uc</td>
<td>n/a</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>GSST-ADS6-4</td>
<td>Image scan y coordinate</td>
<td>sl</td>
<td>m</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>GSST-ADS6-5</td>
<td>Tie point solar elevation, forward view</td>
<td>sl</td>
<td>mdeg</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>GSST-ADS6-6</td>
<td>Tie point satellite elevation, forward view</td>
<td>sl</td>
<td>mdeg</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>GSST-ADS6-7</td>
<td>Tie point solar azimuth, forward view</td>
<td>sl</td>
<td>mdeg</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>GSST-ADS6-8</td>
<td>Tie point satellite azimuth, forward view</td>
<td>sl</td>
<td>mdeg</td>
<td>4</td>
<td>11</td>
</tr>
</tbody>
</table>

Note 1. The GSST product is switchable, so that the contents of these MDS fields depend on the setting of the forward and nadir cloud flags and the land flag. The units and range of these quantities consequently depend on the flag settings.

4.7.3 Detailed Structure

Step 4.7.1 SPH record.

The SPH record is identical to that of the input (Level 1b) product. The SPH (excluding the Data Set Descriptors) should be read and copied unchanged to the output header. Suitable DSD records for the ADS and MDS defined below should be prepared and appended to the SPH of the level 2 product.

(Req 4.7-1)

Step 4.7.2 Ancillary Data sets.

The Ancillary Data sets ADS #0 to ADS #6 inclusive are identical to the corresponding Data Sets of the Level 1b product, with the exception of four fields of the SQ ADS (ADS #0); see Step 4.7.2.1 below. For each of GSST-ADS<n>, n = 1, 2, ...6, the corresponding records of GBTR-ADS<n> should be read and copied unchanged to the output data set GSST-ADS<n>.

(Req 4.7-2)

Step 4.7.2.1 Summary Quality ADS (ADS #0).

The Summary Quality ADS, ADS #0, shall be identical to the input Summary Quality ADS from the Level 1b (GBTR) Product, but with the addition of the new quantities [GSST-
ADS0-10], [GSST-ADS0-11], [GSST-ADS0-12] and [GSST-ADS0-13] (see [RD2] Table 6-4).

Initialise counters:
n=0
n_cloud = 0
n_land = 0
n_sea = 0
n_ndvi_inv = 0
n_nadir_inv = 0
n_dual_inv = 0

Let ig be the index corresponding to the current ADS record. The quantities in the record indexed by ig relate to image rows indexed by
i = 512 * ig + k, k=0, 511. Then for each output record ig:
for k = 0, 511
 i = 511 * ig + k
for j = 0, 511
(Sums over 512 * 512 pixels:)
if (not unfilled) then
 n = n + 1
 n_cloud = n_cloud + nadir_view_cloudy(i, j)
 if (land(i, j) AND !nadir_view_cloudy(i, j)) then
 n_land = n_land + 1
 end if
 if (land(i, j) AND !nadir_view_cloudy(i, j) AND !combined_image_valid(i, j)) then
 n_ndvi_inv = n_ndvi_inv + 1
 end if
 if (!land(i, j)) AND !nadir_view_cloudy(i, j)) then
 n_sea = n_sea + 1
 end if
 if (!land(i, j) AND !nadir_view_cloudy(i, j) AND !nadir_image_valid(i, j)) then
 n_nadir_inv = n_nadir_inv + 1
 end if
 if (!land(i, j) AND !nadir_view_cloudy(i, j) AND !combined_image_valid(i, j)) then
 n_dual_inv = n_dual_inv + 1
 end if
endif
end for (loop over j)
end for (loop over k)

Each sum above is the number of pixels in the image segment that have the specified property.

(percentage of cloudy pixels:)
[GSST-ADS0-10](ig) = (if n = 0 then 0
else 100.*n_cloud/float(n))

(percentage of NDVI invalid:)
[GSST-ADS0-11](ig) = (if n_land = 0 then 0
else 100.*n_ndvi_inv/float(n_land))

(percentage of SST (nadir view) invalid:)
[GSST-ADS0-12](ig) = (if n_sea = 0 then 0
else 100.*n_nadir_inv/float(n_sea))
(percentage of SST (dual view) invalid):
\[
[\text{GSST-ADS0-13}]_{(ig)} = \begin{cases}
0 & \text{if } \text{n}_\text{sea} = 0 \\
100.0 \times \text{n}_\text{dual}_\text{inv}/\text{float}(\text{n}_\text{sea}) & \text{else}
\end{cases}
\]

Step 4.7.3 Measurement Data Set.

The GSST product includes only one measurement data set. This is to be assembled as follows. For each image scan i:

\[
[\text{GSST-MDS1-1}]_{(i)} = [\text{GBTR-MDS1-1}]_{(i)}
\]

\[
[\text{GSST-MDS1-2}]_{(i)} = [\text{GBTR-MDS1-2}]_{(i)}
\]

\[
[\text{GSST-MDS1-3}]_{(i)} = [\text{GBTR-MDS1-3}]_{(i)}
\]

\[
[\text{GSST-MDS1-4}]_{(i)} = [\text{GBTR-MDS1-4}]_{(i)}
\]

Assemble confidence words for each pixel \(j = 0, 511 \):

For each GSST confidence flag, the corresponding bit of the gsst confidence word is to be set according to the truth value (1 = TRUE; 0 = FALSE) of the flag as follows:

\[
[\text{gsst}_\text{confidence}(i, j)]_{(\text{bit 0})} = \text{nadir}_\text{only}_\text{sst}_\text{valid}(i, j)
\]

\[
[\text{gsst}_\text{confidence}(i, j)]_{(\text{bit 1})} = \text{nadir}_\text{only}_\text{sst}_\text{uses}_\text{ir37}(i, j)
\]

\[
[\text{gsst}_\text{confidence}(i, j)]_{(\text{bit 2})} = \text{dual}_\text{view}_\text{sst}_\text{valid}(i, j)
\]

\[
[\text{gsst}_\text{confidence}(i, j)]_{(\text{bit 3})} = \text{dual}_\text{view}_\text{sst}_\text{uses}_\text{ir37}(i, j)
\]

\[
[\text{gsst}_\text{confidence}(i, j)]_{(\text{bit 4})} = \text{land}(i, j)
\]

\[
[\text{gsst}_\text{confidence}(i, j)]_{(\text{bit 5})} = \text{nadir}_\text{view}_\text{cloudy}(i, j)
\]

\[
[\text{gsst}_\text{confidence}(i, j)]_{(\text{bit 6})} = \text{nadir}_\text{view}_\text{blanking}_\text{pulse}(i, j)
\]

\[
[\text{gsst}_\text{confidence}(i, j)]_{(\text{bit 7})} = \text{nadir}_\text{view}_\text{cosmetic}(i, j)
\]

\[
[\text{gsst}_\text{confidence}(i, j)]_{(\text{bit 8})} = \text{frwrd}_\text{view}_\text{cloudy}(i, j)
\]

\[
[\text{gsst}_\text{confidence}(i, j)]_{(\text{bit 9})} = \text{frwrd}_\text{view}_\text{blanking}_\text{pulse}(i, j)
\]

\[
[\text{gsst}_\text{confidence}(i, j)]_{(\text{bit 10})} = \text{frwrd}_\text{view}_\text{cosmetic}(i, j)
\]

\[
[\text{gsst}_\text{confidence}(i, j)]_{(\text{bit 11})} = \text{v16}_\text{cloud}_\text{test}(i, j)
\]

\[
[\text{gsst}_\text{confidence}(i, j)]_{(\text{bit 12})} = \text{nadir}_\text{frwrd}_\text{cloud}_\text{test}(i, j)
\]

\[
[\text{gsst}_\text{confidence}(i, j)]_{(\text{bit 13})} = \text{ir11}_\text{hist}_\text{cloud}_\text{test}(i, j)
\]

\[
[\text{gsst}_\text{confidence}(i, j)]_{(\text{bit 14})} = [\text{topographic}_\text{variance}(i, j)]_{(\text{bit 0})}
\]

\[
[\text{gsst}_\text{confidence}(i, j)]_{(\text{bit 15})} = [\text{topographic}_\text{variance}(i, j)]_{(\text{bit 1})}
\]

\[
[\text{GSST-MDS1-5}]_{(i, j)} = \text{gsst}_\text{confidence}(i, j)
\]

For each pixel \(j = 0, 511 \) \([\text{GSST-MDS1-6}]_{(i, j)} = \text{nadir}_\text{only}_\text{gsst}_\text{image}(i, j)\)

For each pixel \(j = 0, 511 \) \([\text{GSST-MDS1-7}]_{(i, j)} = \text{dual}_\text{view}_\text{gsst}_\text{image}(i, j)\)

(Req 4.7-3)
4.8 Module Definition: Spatial Averaging (Half Degree Cell)

4.8.1 Functional Description

For the averaged products in half-degree cells, the globe is divided into cells 0.5° in latitude by 0.5° in longitude, and these cells are further subdivided into 9 sub-cells extending 10 arcmin in latitude by 10 arcmin in longitude. For each channel, the average brightness temperature (for the infra-red channels) or reflectance (for the visible channels) is averaged over all pixels of each type that fall within each sub-cell, to give distributions of a brightness temperature and radiance at 10 arc minute resolution. Averages are performed for the forward and nadir views separately, and a separate average is performed for each surface type (land and sea) and cloud state (clear or cloudy). There are thus 4 averages per channel per view. The mean across-track band number in each cell is also derived, for use by the averaged SST algorithm.

4.8.2 Interface Definition

Table 4.8.1: Input Data Table - Spatial Averaging (Half Degree Cell)
L2-INT-144	`fwdr_band_centre_solar_elevation(i, k)`	float	degrees	4	\(k = 0, 9\)	
L2-INT-134	`scn_nadir(i, j)`	nadir view instrument scan number	us	none	4	\(j = 0, 511\)
L2-INT-135	`pxl_fwrd(i, j)`	forward view instrument pixel number	us	none	4	\(j = 0, 511\)
L2-INT-155	`band(j)`	across-track band number	si	none	4	\(j = 0, 511\)
L2-INT-30	`utc(cell)`	cell UTC	double	days	8	per cell
L2-INT-49	`fwdr_day(k, cell)`	forward view day/night flag	ss	flag	2	\(k = 0, 8\)
L2-INT-50	`nadir_solar_elevation(k, cell)`	nadir solar elevation for sub-cell	float	degrees	4	\(k = 0, 8\)
L2-INT-47	`cell_lat(cell)`	cell latitude	si	\(\mu\)deg	4	per cell
L2-INT-48	`cell_long(cell)`	cell longitude	si	\(\mu\)deg	4	per cell
L2-INT-32	`sub_cell_lat(k, cell)`	sub-cell latitude	si	\(\mu\)deg	4	\(k = 0, 8\)
L2-INT-33	`sub_cell_long(k, cell)`	sub-cell longitude	si	\(\mu\)deg	4	\(k = 0, 8\)
L2-INT-95	`sub_cell_valid_pixel_count(ch, k, cell)`	sub-cell valid pixel count	ss	none	2	
L2-INT-43	`\sigma(ch, v, sf, cl, cell)`	standard deviation of the cell average	float	0.001K or 0.01%	4	
L2-INT-41	`A(ch, v, sf, cl, cell)`	cell brightness temperature average (for visible channels ch = 4, 5, 6, 7)	ss	0.01%	2	
L2-INT-35	`n(x, sf, k, cell)`	sub-cell filled pixel count	ss	none	2	
L2-INT-37	`mean_band(k, cell)`	mean across-track band number	ss	none	2	
L2-INT-38	`A(ch, v, sf, cl, cell)`	sub-cell brightness temperature average (for infra-channels ch = 1, 2, 3)	si	0.001K	4	
L2-INT-40	`M(ch, v, sf, cl, cell)`	cell pixel count, ch = 1, ..., 7	ss	none	2	
L2-INT-42	`A(ch, v, sf, cl, cell)`	cell reflectance average (for visible channels ch = 4, 5, 6, 7)	ss	0.01%	2	
L2-INT-36	`sub_cell_total(ch, k, cell)`	sub-cell total, ch = 1, ..., 7	si	n/a	4	
L2-INT-37	`M(ch, v, sf, cl, cell)`	sub-cell valid pixel count, ch = 1, ..., 7	ss	none	2	
L2-INT-38	`A(ch, v, sf, cl, cell)`	sub-cell brightness temperature average (for infra-channels ch = 1, 2, 3)	si	0.001K	4	
L2-INT-39	`M(ch, v, sf, cl, cell)`	sub-cell brightness temperature average (for visible channels ch = 4, 5, 6, 7)	si	0.001K	4	
L2-INT-34	`sub_cell_band(k, cell)`	sub-cell across-track band	ss	none	2	
L2-INT-36	`M(ch, v, sf, cl, cell)`	sub-cell total, ch = 1, ..., 7	si	n/a	4	
Numbering scheme will be adopted for the purpose of indexing and identifying the AATSR channels, the following conventional state index sums, depending on surface type and cloud flag as follows:

For the averaged channel values there are for each channel and for each view four cumulative sums, depending on surface type and cloud flag as follows:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Index (ch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 micron</td>
<td>ir12</td>
</tr>
</tbody>
</table>

As previously noted, the globe is divided into cells 0.5° in latitude by 0.5° in longitude. Each cell can be identified by two numbers defined to be non-negative; the latitude index given by 2*(latitude + 90) and a longitude index 2*(longitude + 180). All internal variables associated with the averaged product algorithms are duplicated for each cell, and should be imagined to be virtually present in memory at all times for the purpose of algorithm definition. How this is to be implemented is not specified here.

Each cell is further subdivided into 9 sub-cells each extending 10 arc minutes in latitude by 10 arc minutes in longitude. The sub-cells within each cell are identified by an index in the range 0 to 8 as follows:

<table>
<thead>
<tr>
<th>index</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

For the averaged channel values there are for each channel and for each view four cumulative sums, depending on surface type and cloud flag as follows:

<table>
<thead>
<tr>
<th>Surface Type</th>
<th>Symbol</th>
<th>Index (ch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sea, clear</td>
<td>sea</td>
<td></td>
</tr>
<tr>
<td>land, clear</td>
<td>land</td>
<td></td>
</tr>
<tr>
<td>sea, cloud</td>
<td></td>
<td></td>
</tr>
<tr>
<td>land, cloud</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To simplify the notation we define a surface type index $sf = 0$ (sea) or 1 (land) and a cloud state index $cl = 0$ (clear) or 1 (cloud).

For the purpose of indexing and identifying the AATSR channels, the following conventional numbering scheme will be adopted.

Table: 4.8.2 Internal Data Table - Spatial Averaging (Half Degree Cell)

<table>
<thead>
<tr>
<th>L2-INT-301</th>
<th>N_land(n; k, cell)</th>
<th>total filled pixels over land for subcell</th>
<th>ss</th>
<th>none</th>
<th>2</th>
<th>k = 0, 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2-INT-302</td>
<td>N_sea(n; k, cell)</td>
<td>total of filled pixels over sea for subcell</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>k = 0, 8</td>
</tr>
<tr>
<td>L2-INT-303</td>
<td>N_total(n; k, cell)</td>
<td>total of filled pixels for subcell, nadir view</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>k = 0, 8</td>
</tr>
<tr>
<td>L2-INT-304</td>
<td>pcs(n; k, cell)</td>
<td>percentage of cloudy pixels over sea</td>
<td>ss</td>
<td>0.01%</td>
<td>2</td>
<td>k = 0, 8</td>
</tr>
<tr>
<td>L2-INT-305</td>
<td>pcl(n; k, cell)</td>
<td>percentage of cloudy pixels over land</td>
<td>ss</td>
<td>0.01%</td>
<td>2</td>
<td>k = 0, 8</td>
</tr>
<tr>
<td>L2-INT-306</td>
<td>N_land(n; cell)</td>
<td>total filled pixels over land for cell</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>L2-INT-307</td>
<td>N_sea(n; cell)</td>
<td>total of filled pixels over sea for cell</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>L2-INT-308</td>
<td>N_total(n; cell)</td>
<td>total of filled pixels for cell, nadir view</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>L2-INT-309</td>
<td>pcs(n; cell)</td>
<td>percentage of cloudy pixels over sea</td>
<td>ss</td>
<td>0.01%</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>L2-INT-310</td>
<td>pcl(n; cell)</td>
<td>percentage of cloudy pixels over land</td>
<td>ss</td>
<td>0.01%</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>L2-INT-311</td>
<td>N_land(f; k, cell)</td>
<td>total filled pixels over land for sub-cell</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>k = 0, 8</td>
</tr>
<tr>
<td>L2-INT-312</td>
<td>N_sea(f; k, cell)</td>
<td>total of filled pixels over sea for subcell</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>k = 0, 8</td>
</tr>
<tr>
<td>L2-INT-313</td>
<td>N_total(f; k, cell)</td>
<td>total of filled pixels for subcell, frwd view</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>k = 0, 8</td>
</tr>
<tr>
<td>L2-INT-314</td>
<td>pcs(f; k, cell)</td>
<td>percentage of cloudy pixels over sea</td>
<td>ss</td>
<td>0.01%</td>
<td>2</td>
<td>k = 0, 8</td>
</tr>
<tr>
<td>L2-INT-315</td>
<td>pcl(f; k, cell)</td>
<td>percentage of cloudy pixels over land</td>
<td>ss</td>
<td>0.01%</td>
<td>2</td>
<td>k = 0, 8</td>
</tr>
<tr>
<td>L2-INT-316</td>
<td>N_land(f; cell)</td>
<td>total filled pixels over land for cell</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>L2-INT-317</td>
<td>N_sea(f; cell)</td>
<td>total of filled pixels over sea for cell</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>L2-INT-318</td>
<td>N_total(f; cell)</td>
<td>total of filled pixels for cell, frwd view</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>L2-INT-319</td>
<td>pcs(f; cell)</td>
<td>percentage of cloudy pixels over sea</td>
<td>ss</td>
<td>0.01%</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>L2-INT-320</td>
<td>pcl(f; cell)</td>
<td>percentage of cloudy pixels over land</td>
<td>ss</td>
<td>0.01%</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>L2-INT-321</td>
<td>sub_cell_index(k, cell)</td>
<td>Along-track index representative of sub-cell</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td>k = 0, 8</td>
</tr>
</tbody>
</table>
Each average is defined by a sum of the form

\[A(ch,v;sf,cl,k,c) = \frac{\sum I(ch,v;i,j)}{M(ch,v;sf,cl,k,c)} \]

where \(v \) indicates the view, either \(f \) (forward) or \(n \) (nadir) and where the sum is over all valid pixels which fall within the cell, are filled (or not unfilled), and have the correct cloud/surface type flag. That is, the sum is over all values of \(i \) and \(j \) such that all four of the following conditions are satisfied;

the co-ordinates of the pixel indexed by \(i \) and \(j \) fall within the sub-cell;

\(<view>_fill_{state}(i,j)\) is NOT UNFILLED_PIXEL;

\(I(ch,v;i,j)\) is valid surface type, cloud state, flags at \(i \) and \(j \) have the correct value.

A total of 56 sums and averages are calculated. A separate group of totals are calculated for each channel and view (nadir and forward), there being 14 channel/view combinations. For each combination of channel and view four totals are maintained, and 4 averages computed, corresponding to the four combinations of the cloud state and surface type flags.

In addition, the mean of the across-track band number is calculated for the clear sea pixels, for use in the Averaged SST determination, and a count of the numbers of pixels in each category is to be maintained.

Step 4.8.1 Derive channel totals for each cell

For each image scan \(i \):

perform steps 4.8.1.1 to 4.8.1.7 for each pixel in the scan (pixel index \(j = 0, 511 \) unless the pixel is unfilled in both images).

Step 4.8.1.1 Identify cell number, subcell index and pixel state

\[cell_{latitude} = (image_{latitude}(i,j) + 90) \times 2 \]

\[cell_{longitude} = (image_{longitude}(i,j) + 180) \times 2 \]

\[cell_{latitude_index} = \text{integer part of } cell_{latitude} \]

\[cell_{longitude_index} = \text{integer part of } cell_{longitude} \]

Define the cell number \(cell \) as a function of \(cell_{latitude_index} \) and \(cell_{longitude_index} \). The relationship between these quantities may be implementation-dependent; \(cell \) is required as an identifier.

The sub-cell index \(k \) is given by

\[k = 3 \times (\text{fractional part of } cell_{latitude}) + 3 \times (\text{fractional part of } cell_{longitude}) \]
where the inclusion of a quantity in square brackets implies that the integer part is to be taken.

If the pixel identified by \((i, j)\) is the first pixel to fall within the cell \(cell\), ensure that all counters and cumulative sums are initialised to zero as follows for each \(ch = 1, 7, v = \text{nadir, frwrd, sf} = 0, 1, cl = 0, 1:\)

\[
S(ch, v; sf, cl, k, cell) = 0.0 \\
M(ch, v; sf, cl, k, cell) = 0 \\
N(v; sf, cl; k, cell) = 0 \\
band_sum(k, cell) = 0, \text{ for each } k = 0, 8 \\
across_track_sum(sf; k, cell) = 0 \text{ for each } k = 0, 8.
\]

Also initialise the latitude and longitude of the sub-cells to exceptional values (in case the cell is intersected by the swath edge, and no pixels fall within a sub-cell):

\[
\text{sub_cell_lat}(k, cell) = -399999999, \\
\text{sub_cell_long}(k, cell) = -399999999, \text{ for each } k = 0, 8.
\]

If the pixel identified by \((i, j)\) is the first pixel to fall within this cell, assemble the cell geolocation and allied information as follows:

The time tag associated with the cell [L2-INT-30] is the instrument scan time of the nadir pixel which first falls within the cell. It is derived from the scan number associated with the pixel, and with the scan times from ADS #4.

First we identify the instrument scan number associated with the pixel (i.e. the number of the scan from which the pixel was regridded). This comes from ADS#1. Given \(i, j\) of the pixel compute

\[
ig = \text{integer part of } (i/\text{NGRANULE})
\]

and extract

\[
s = \text{scn_nadir}(ig, j) + (i - \text{NGRANULE}\times ig) \\
= \text{[L2-INT-134]}(ig, j) + (i - \text{NGRANULE}\times ig) \\
sg = \text{integer part of } \left(\left(s - \text{scan}(0) / \text{NGRANULE} \right) \right)
\]

[Note scan(0) = [L2-INT-27](0) = instrument scan number of the first record of ADS #4.)

If \(sg < 0\), set \(sg = 0\).

If \(sg \geq sg_max\), where \(sg_max\) is the number of the last record in ADS #4, so that \(time(sg + 1)\) and \(scan(sg + 1)\) do not exist, set

\[
sg = sg_max - 1.
\]

This is the index of the scan time from ADS#4 from which the time tag is taken. It has already been converted to processing format in Step 4.2.2. The converted time is

\[
t0 = time(sg)
\]

The time \(t1\) is derived similarly from the time tag of the subsequent record \(sg + 1\).

\[
t1 = time(sg + 1)
\]
Linear interpolation is then used to derive the UTC in processing format.

\[\text{utc}(\text{cell}) = t_0 + (t_1 - t_0)(s - sg*NGRANULE)/(\text{scan}(sg + 1) - \text{scan}(sg)) \]

(Note that the denominator \((\text{scan}(sg + 1) - \text{scan}(sg))\) is equal to \(NGRANULE\) unless \(sg = sg_{\text{max}} - 1\).)

\[\text{cell}_{\text{lat}}(\text{cell}) = (\text{cell}_{\text{latitude}_\text{index}} - 180)*500000 \]
\[\text{cell}_{\text{long}}(\text{cell}) = (\text{cell}_{\text{longitude}_\text{index}} - 360)*500000 \]

Similarly if the pixel identified by \((i, j)\) is the first pixel to fall within the sub-cell \(k\), assemble the sub-cell time tag and geolocation information as follows. First derive the UTC in processing format, \(\text{utc}(k, \text{cell})\), from \(i\) and \(j\) in exactly the same way as described above for the cell. Then

\[\text{sub}_{\text{cell}}_{\text{lat}}(k, \text{cell}) = \text{integer part of } (3*\text{cell}_{\text{latitude}} - 540)*500000/3 \]
\[\text{sub}_{\text{cell}}_{\text{long}}(k, \text{cell}) = \text{integer part of } (3*\text{cell}_{\text{longitude}} - 1080)*500000/3 \]
\[\text{sub}_{\text{cell}}_{\text{band}}(k, \text{cell}) = \text{band}(j) \]
\[\text{sub}_{\text{cell}}_{\text{index}}(k, \text{cell}) = i \]

(This is used in the LST calculation, Section 4.10.)

\[\text{nadir}_{\text{sol}}_{\text{e}}(k, \text{cell}) = \text{nadir}_{\text{band}}_{\text{centre}}_{\text{sol}}_{\text{e}}(i, \text{band}(j)) \]
\[\text{frwrd}_{\text{sol}}_{\text{e}}(k, \text{cell}) = \text{frwrd}_{\text{band}}_{\text{centre}}_{\text{sol}}_{\text{e}}(i, \text{band}(j)) \]

If \(<\text{view}>_{\text{band}}_{\text{centre}}_{\text{sol}}_{\text{e}}(i, \text{band}(j)) > 0.0 \) then

\[<\text{view}>_{\text{day}}(k, \text{cell}) = \text{TRUE} \]
otherwise

\[<\text{view}>_{\text{day}}(k, \text{cell}) = \text{FALSE} \]

where \(<\text{view}> = <\text{frwrd}|\text{nadir}>\) (Req 4.8-1)

Step 4.8.1.2 Process nadir Pixels

Perform steps 4.8.1.3 and 4.8.1.4 to process the nadir pixels unless the nadir pixel is unfilled (i.e. unless \(\text{nadir}_{\text{fill}}_{\text{state}}(i, j) = \text{UNFILLED_PIXEL}\)).

Step 4.8.1.3 Identify the surface type and cloud state associated with the nadir pixel:

\[sf = 0 \text{ if nadir view land flag } [L2\text{-INT-232}](i, j) = \text{FALSE} \]
\[sf = 1 \text{ if nadir view land flag } [L2\text{-INT-232}](i, j) = \text{TRUE} \]
\[cl = 0 \text{ if nadir view cloud flag } [L2\text{-INT-233}](i, j) = \text{FALSE} \]
\[cl = 1 \text{ if nadir view cloud flag } [L2\text{-INT-233}](i, j) = \text{TRUE} \]

Increment the pixel counters associated with the cloud state and surface type just determined:

\[N(r,sf,cl,k,cell) \leftarrow N(r,sf,cl,k,cell) + 1 \]

If \(cl = 0\) then increment the cumulative across-track index as follows:
\textit{across_track_sum(sf; k, cell)} \leftarrow \textit{across_track_sum(sf; k, cell)} + j

\textbf{Step 4.8.1.4 Update nadir view channel totals}

For each channel of the nadir view \textit{ch} perform this step if the corresponding nadir pixel is valid (that is, if \(I(ch, n; i, j) > 0\)):

\[
S(ch, n; sf, cl, k, cell) \leftarrow S(ch, n; sf, cl, k, cell) + I(ch, n; i, j)
\]

\[
M(ch, n; sf, cl, k, cell) \leftarrow M(ch, n; sf, cl, k, cell) + 1
\]

\textbf{Step 4.8.1.5 Process forward Pixels:}

Perform steps 4.8.3.1.6 and 4.8.3.1.7 to process the forward pixels unless the forward pixel is unfilled (i.e. unless \textit{frwrd_fill_state}(i, j) = UNFILLED_PIXEL).

\textbf{Step 4.8.1.6 Identify the surface type and cloud state associated with the forward pixel:}

\(sf = 0\) IF forward view land flag [L2-INT-248](i, j) = FALSE
\(sf = 1\) IF forward view land flag [L2-INT-248](i, j) = TRUE
\(cl = 0\) IF forward view cloud flag [L2-INT-249](i, j) = FALSE
\(cl = 1\) IF forward view cloud flag [L2-INT-249](i, j) = TRUE

Increment the pixel counters associated with the cloud state and surface type just determined:

\[
N(f; sf, cl, k, cell) \leftarrow N(f; sf, cl, k, cell) + 1
\]

\textbf{Step 4.8.1.7 Update forward view channel totals}

For each channel of the forward view, perform the following steps if the corresponding forward pixel is valid (that is, if \(I(ch, f; i, j) > 0\)):

\[
S(ch, f; sf, cl, k, cell) \leftarrow S(ch, f; sf, cl, k, cell) + I(ch, f; i, j)
\]

\[
M(ch, f; sf, cl, k, cell) \leftarrow M(ch, f; sf, cl, k, cell) + 1
\]

\textbf{Step 4.8.2 Derive average values}

When no more pixels remain to be added to the cell, or at the end of the data set, compute the averages. The following equation is evaluated for each channel \((ch = \text{ir12}, \text{ir11}, \text{ir37}, \text{v16}, \text{v870}, \text{v670}, \text{v555})\), for each view \(v = n, f\), for surface type \(sf = 0, 1\) and for cloud state \(cl = 0, 1\).

If \(M(ch, v; sf, cl, k, cell) > 0\)

\[
A(ch, v; sf, cl, k, cell) = 10.0 \cdot S(ch, v; sf, cl, k, cell) / \text{float}(M(ch, v; sf, cl, k, cell))
\]

(note the conversion to units of 0.001 K) otherwise set

\[
A(ch, v; sf, cl, k, cell) = -1.0
\]

The mean in the larger (30 arc minute) cell is given by
\[\tilde{A}(ch, v; sf, cl, cell) = \frac{1}{\mu} \sum_k A(ch, v; sf, cl, k, cell) \text{ if } \mu > 0 \]
\[\tilde{A}(ch, v; sf, cl, cell) = -1 \text{ if } \mu = 0 \]
where the sum is over all \(k \in \{0 \leq k \leq 8\} \) having a valid subcell mean \(A \) and \(\mu \) is the number of such valid means. The number of pixels that contribute to the mean is similarly
\[\tilde{M}(ch, v; sf, cl, cell) = \sum_k M(ch, v; sf, cl, k, cell) \]
The standard deviation of the mean is
\[\sigma(ch, v; sf, cl, cell) = \left\{ \frac{1}{\mu - 1} \sum_k (A(ch, v; sf, cl, k, cell) - \tilde{A}(ch, v; sf, cl, cell))^2 \right\}^{1/2} \]
provided \(\mu > 1 \), otherwise set the standard deviation to \(-1\). In all cases the sum is over subcells having valid means (i.e. the number of contributing pixels \(M \) is positive).

\(\text{Step 4.8.3 Derive Pixel Threshold Failure Flags Words (10 arcminute cells)} \)

For cell \(cell \) and for each sub-cell \(k = 0, 9 \):
For surface type \(sf = 0, 1 \) and for the nadir view \(v = n \):
\[[PFF(n; sf; k, cell)](\text{bit } 0) = 1 \text{ if } M(\text{ir12, n; sf, 0, k, cell}) < \text{[L2-AUX3-1]}, \text{ otherwise } 0 \]
[PFF(n, sf; k, cell)](bit 1) = 1 if \(M(ir11, n; sf, 0, k, cell) < [L2-AUX3-1] \), otherwise 0

[PFF(n, sf; k, cell)](bit 2) = 1 if \(M(ir37, n; sf, 0, k, cell) < [L2-AUX3-1] \), otherwise 0

[PFF(n, sf; k, cell)](bit 3) = 1 if \(M(v16, n; sf, 0, k, cell) < [L2-AUX3-1] \), otherwise 0

[PFF(n, sf; k, cell)](bit 4) = 1 if \(M(v870, n; sf, 0, k, cell) < [L2-AUX3-1] \), otherwise 0

[PFF(n, sf; k, cell)](bit 5) = 1 if \(M(v670, n; sf, 0, k, cell) < [L2-AUX3-1] \), otherwise 0

[PFF(n, sf; k, cell)](bit 6) = 1 if \(M(v555, n; sf, 0, k, cell) < [L2-AUX3-1] \), otherwise 0

[PFF(n, sf; k, cell)](bit 7) = 1 if \(M(ir12, n; sf, 1, k, cell) < [L2-AUX3-1] \), otherwise 0

[PFF(n, sf; k, cell)](bit 8) = 1 if \(M(ir37, n; sf, 1, k, cell) < [L2-AUX3-1] \), otherwise 0

[PFF(n, sf; k, cell)](bit 9) = 1 if \(M(v16, n; sf, 1, k, cell) < [L2-AUX3-1] \), otherwise 0

[PFF(n, sf; k, cell)](bit 10) = 1 if \(M(v870, n; sf, 1, k, cell) < [L2-AUX3-1] \), otherwise 0

[PFF(n, sf; k, cell)](bit 11) = 1 if \(M(v670, n; sf, 1, k, cell) < [L2-AUX3-1] \), otherwise 0

[PFF(n, sf; k, cell)](bit 12) = 1 if \(M(v555, n; sf, 1, k, cell) < [L2-AUX3-1] \), otherwise 0

[PFF(n, sf; k, cell)](bit 13) = 1 if \(n= \text{nadir}_{\text{day}}(k, cell) \) = TRUE, otherwise 0

[PFF(n, sf; k, cell)](bit 14) = 1 if \(n= \text{frwrd}_{\text{day}}(k, cell) \) = TRUE, otherwise 0

[PFF(n, sf; k, cell)](bit 15) = 0

Similarly for surface type \(sf = 0, 1 \) and for the forward view \(v = f \)

Calculate the corresponding word \(PFF(f, sf; k, cell) \):

Set bits 0 to 13 inclusive as above, substituting the view index \(f \) in place of \(n \), and substituting the forward threshold value \([L2-AUX3-2]\) in place of \([L2-AUX3-1]\).

\[PFF(f, sf; k, cell)](bit 14) = 1 \text{ if } frwrd_{\text{day}}(k, cell) = \text{TRUE}, \text{ otherwise } 0 \]

\[PFF(f, sf; k, cell)](bit 15) = 0 \]

(Req 4.8-6)

Step 4.8.4 Derive Pixel Threshold Failure Flags Words (30 arcminute cells)

For cell \(cell \):

For surface type \(sf = 0, 1 \) and for the nadir view \(v = n \):

\[PFF(n, sf; cell)](bit 0) = 1 \text{ if } \hat{M} (ir12, n; sf, 0, cell) < [L2-AUX3-3], \text{ otherwise } 0 \]

\[PFF(n, sf; cell)](bit 1) = 1 \text{ if } \hat{M} (ir11, n; sf, 0, cell) < [L2-AUX3-3], \text{ otherwise } 0 \]

\[PFF(n, sf; cell)](bit 2) = 1 \text{ if } \hat{M} (ir37, n; sf, 0, cell) < [L2-AUX3-3], \text{ otherwise } 0 \]

\[PFF(n, sf; cell)](bit 3) = 1 \text{ if } \hat{M} (v16, n; sf, 0, cell) < [L2-AUX3-3], \text{ otherwise } 0 \]

\[PFF(n, sf; cell)](bit 4) = 1 \text{ if } \hat{M} (v870, n; sf, 0, cell) < [L2-AUX3-3], \text{ otherwise } 0 \]

\[PFF(n, sf; cell)](bit 5) = 1 \text{ if } \hat{M} (v670, n; sf, 0, cell) < [L2-AUX3-3], \text{ otherwise } 0 \]
\[PFF(n, sf; cell) \text{ (bit 6)} = 1 \text{ if } \tilde{M}(v555, n; sf, 0, cell) < [L2-AUX3-3], \text{ otherwise 0} \]
\[PFF(n, sf; cell) \text{ (bit 7)} = 1 \text{ if } \tilde{M}(ir12, n; sf, 1, cell) < [L2-AUX3-3], \text{ otherwise 0} \]
\[PFF(n, sf; cell) \text{ (bit 8)} = 1 \text{ if } \tilde{M}(ir11, n; sf, 1, cell) < [L2-AUX3-3], \text{ otherwise 0} \]
\[PFF(n, sf; cell) \text{ (bit 9)} = 1 \text{ if } \tilde{M}(ir37, n; sf, 1, cell) < [L2-AUX3-3], \text{ otherwise 0} \]
\[PFF(n, sf; cell) \text{ (bit 10)} = 1 \text{ if } \tilde{M}(v16, n; sf, 1, cell) < [L2-AUX3-3], \text{ otherwise 0} \]
\[PFF(n, sf; cell) \text{ (bit 11)} = 1 \text{ if } \tilde{M}(v870, n; sf, 1, cell) < [L2-AUX3-3], \text{ otherwise 0} \]
\[PFF(n, sf; cell) \text{ (bit 12)} = 1 \text{ if } \tilde{M}(v670, n; sf, 1, cell) < [L2-AUX3-3], \text{ otherwise 0} \]
\[PFF(n, sf; cell) \text{ (bit 13)} = 1 \text{ if } \tilde{M}(v555, n; sf, 1, cell) < [L2-AUX3-3], \text{ otherwise 0} \]
\[PFF(n, sf; cell) \text{ (bit 14)} = 1 \text{ if } \text{nadir}_\text{day}(k, cell) = \text{TRUE} \text{ for some } k, \text{ otherwise 0} \]
\[PFF(n, sf; cell) \text{ (bit 15)} = 0 \]
(Req 4.8-8)

Similarly for surface type \(sf = 0, 1 \) and for the forward view \(v = f \)

Calculate the corresponding word \(PFF(f, sf; cell) \):

Set bits 0 to 13 inclusive as above, substituting the view index \(f \) in place of \(n \), and substituting the forward threshold value \([L2-AUX3-4] \) in place of \([L2-AUX3-3] \).

\[PFF(f, sf; k, cell) \text{ (bit 14)} = 1 \text{ if } \text{frwrd}_\text{day}(k, cell) = \text{TRUE} \text{ for some } k, \text{ otherwise 0} \]
\[PFF(f, sf; k, cell) \text{ (bit 15)} = 0 \]

Step 4.8.5. Derive pixel counts for cell

For each cell \(cell \) and for each view \(v = n, f \):

For each subcell \(k = 0, 8 \):

Total of filled pixels over land:
\[
N_{\text{land}}(v; k, cell) = N(v; 1, 0, k, cell) + N(v; 1, 1, k, cell) \]
(Req 4.8-9)

Total of filled pixels over sea:
\[
N_{\text{sea}}(v; k, cell) = N(v; 0, 0, k, cell) + N(v; 0, 1, k, cell) \]
(Req 4.8-10)

Total of filled pixels:
\[
N_{\text{total}}(v; k, cell) = N_{\text{land}}(v; k, cell) + N_{\text{sea}}(v; k, cell) \]
(Req 4.8-11)

Derive cloudy pixel percentages for each subcell:
\[
\text{pcs}(v; k, cell) = 10000 \times \frac{N(v; 0, 1, k, cell)}{N_{\text{sea}}(v; k, cell)} \]
\[
\text{pcl}(v; k, cell) = 10000 \times \frac{N(v; 1, 1, k, cell)}{N_{\text{land}}(v; k, cell)} \]
(Req 4.8-12)
Derive aggregate counts:

Total of filled pixels over land:

\[N_{\text{land}}(v; \text{cell}) = \sum_{k=0}^{8} N_{\text{land}}(v; k, \text{cell}) \]

(Req 4.8-13)

Total of filled pixels over sea:

\[N_{\text{sea}}(v; \text{cell}) = \sum_{k=0}^{8} N_{\text{sea}}(v; k, \text{cell}) \]

(Req 4.8-14)

Total of filled pixels:

\[N_{\text{total}}(v; \text{cell}) = N_{\text{land}}(v; \text{cell}) + N_{\text{sea}}(v; \text{cell}) \]

(Req 4.8-15)

Derive cloudy pixel percentages for the cell:

\[\text{pcs}(v; \text{cell}) = 10000 \times \left(\sum_{k=0}^{8} N(v; 0, 1, k, \text{cell}) \right) / N_{\text{sea}}(v; \text{cell}) \]

(Req 4.8-16)

\[\text{pcl}(v; \text{cell}) = 10000 \times \left(\sum_{k=0}^{8} N(v; 1, 1, k, \text{cell}) \right) / N_{\text{land}}(v; \text{cell}) \]

(Req 4.8-16)

end for (cell, v)

4.9 Module Definition: Averaged SST Retrieval (Half Degree Cell)

4.9.1 Functional Description

This module derives the averaged SST from the averaged brightness temperatures determined using the module described in Section 4.8 above.

4.9.2 Interface Definition

Averaged SST Retrieval Coefficients

<table>
<thead>
<tr>
<th>Parameter ID</th>
<th>Variable</th>
<th>Name</th>
<th>Type</th>
<th>Units</th>
<th>Field size</th>
<th>Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2-AUX2-1</td>
<td>a[0][0]</td>
<td>averaged sst retrieval a[3][3][0]</td>
<td>float</td>
<td>0.01K</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX2-2</td>
<td>a[0][1]</td>
<td>averaged sst retrieval a[3][3][1]</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX2-3</td>
<td>a[0][2]</td>
<td>averaged sst retrieval a[3][3][2]</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX2-4</td>
<td>b[0][0]</td>
<td>averaged sst retrieval b[3][3][0]</td>
<td>float</td>
<td>0.01K</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX2-5</td>
<td>b[0][1]</td>
<td>averaged sst retrieval b[3][3][1]</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX2-6</td>
<td>b[0][2]</td>
<td>averaged sst retrieval b[3][3][2]</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX2-7</td>
<td>b[0][3]</td>
<td>averaged sst retrieval b[3][3][3]</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX2-8</td>
<td>c[0][0]</td>
<td>averaged sst retrieval c[3][3][0]</td>
<td>float</td>
<td>0.01K</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX2-9</td>
<td>c[0][1]</td>
<td>averaged sst retrieval c[3][3][1]</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX2-10</td>
<td>c[0][2]</td>
<td>averaged sst retrieval c[3][3][2]</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>114</td>
</tr>
</tbody>
</table>

Commercial In Confidence
AATSR Product Algorithm Detailed Documentation
Table 4-9-1: Input Data Table - Averaged SST Retrieval Coefficients

<table>
<thead>
<tr>
<th>Parameter ID</th>
<th>Variable</th>
<th>Name</th>
<th>Type</th>
<th>Units</th>
<th>Field size</th>
<th>Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2-INT-30</td>
<td>utc(k, cell)</td>
<td>cell UTC</td>
<td>double</td>
<td>days</td>
<td>8</td>
<td>per cell</td>
</tr>
<tr>
<td>L2-INT-31</td>
<td>utc(k, cell)</td>
<td>sub-cell UTC</td>
<td>double</td>
<td>days</td>
<td>8</td>
<td>k = 0, 8</td>
</tr>
<tr>
<td>L2-INT-32</td>
<td>sub_cell_lat(k, cell)</td>
<td>sub-cell latitude</td>
<td>si</td>
<td>µdeg</td>
<td>4</td>
<td>k = 0, 8</td>
</tr>
<tr>
<td>L2-INT-33</td>
<td>sub_cell_long(k, cell)</td>
<td>sub-cell longitude</td>
<td>si</td>
<td>µdeg</td>
<td>4</td>
<td>k = 0, 8</td>
</tr>
<tr>
<td>L2-INT-37</td>
<td>mean_band(k, cell)</td>
<td>mean across-track band number</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>k = 0, 8</td>
</tr>
<tr>
<td>L2-INT-36</td>
<td>s(ch, v, sf, cl, k, cell)</td>
<td>sub-cell total, ch = 1, ..., 7</td>
<td>si</td>
<td>n/a</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>L2-INT-38</td>
<td>M(ch, v, sf, cl, k, cell)</td>
<td>sub-cell pixel count, ch = 1, ..., 7</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>L2-INT-40</td>
<td>A(ch, v, sf, cl, k, cell)</td>
<td>sub-cell brightness temperature average (for infra-red channels ch = 1, 2, 3)</td>
<td>ss</td>
<td>0.01K</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>L2-INT-41</td>
<td>A(ch, v, sf, cl, k, cell)</td>
<td>cell brightness temperature average (for infra-red channels ch = 1, 2, 3)</td>
<td>ss</td>
<td>0.01K</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>L2-INT-43</td>
<td>r(ch, v, sf, cl, k, cell)</td>
<td>standard deviation of the cell average</td>
<td>float</td>
<td>0.01K or 0.01%</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>L2-INT-49</td>
<td>nadir_day(k, cell)</td>
<td>nadir view sub-cell day/night flag</td>
<td>ss</td>
<td>flag</td>
<td>2</td>
<td>k = 0, 8</td>
</tr>
<tr>
<td>L2-INT-50</td>
<td>fwdrd_day(k, cell)</td>
<td>forward view sub-cell day/night flag</td>
<td>ss</td>
<td>flag</td>
<td>2</td>
<td>k = 0, 8</td>
</tr>
<tr>
<td>L2-INT-45</td>
<td>nadir_solar_el(k, cell)</td>
<td>nadir solar elevation for sub-cell</td>
<td>float</td>
<td>degrees</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>L2-INT-46</td>
<td>fwdrd_solar_el(k, cell)</td>
<td>fwdrd solar elevation for sub-cell</td>
<td>float</td>
<td>degrees</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>local</td>
<td>index to latitude zone: i = 0, 1, 2</td>
<td>si</td>
<td>none</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>local</td>
<td>index to across-track bands j = 0, 9</td>
<td>si</td>
<td>none</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>local</td>
<td>q</td>
<td>index to coefficient set</td>
<td>si</td>
<td>none</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>L2-INT-359</td>
<td>across_track_mean(sf, k, cell)</td>
<td>mean across-track pixel index, subcell k</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>k = 0, 8</td>
</tr>
<tr>
<td>L2-INT-360</td>
<td>a(i, j, q)</td>
<td>averaged sst retrieval a coefficients</td>
<td>float</td>
<td>mixed</td>
<td>4</td>
<td>342</td>
</tr>
<tr>
<td>L2-INT-361</td>
<td>b(i, j, q)</td>
<td>averaged sst retrieval b coefficients</td>
<td>float</td>
<td>mixed</td>
<td>4</td>
<td>456</td>
</tr>
<tr>
<td>L2-INT-362</td>
<td>c(i, j, q)</td>
<td>averaged sst retrieval c coefficients</td>
<td>float</td>
<td>mixed</td>
<td>4</td>
<td>570</td>
</tr>
<tr>
<td>L2-INT-363</td>
<td>d(i, j, q)</td>
<td>averaged sst retrieval d coefficients</td>
<td>float</td>
<td>mixed</td>
<td>4</td>
<td>736</td>
</tr>
<tr>
<td>L2-INT-366</td>
<td>nadir_pixeluses(ch, k, cell)</td>
<td>nadir_pixeluses(ch, k, cell)</td>
<td>ss</td>
<td>flag</td>
<td>2</td>
<td>k = 0, 8</td>
</tr>
<tr>
<td>L2-INT-367</td>
<td>sst_mean_pixel(sf, cell)</td>
<td>mean across-track pixel index, cell</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>per cell</td>
</tr>
<tr>
<td>local</td>
<td>latitude</td>
<td>temporary latitude</td>
<td>float</td>
<td>degrees</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>L2-INT-53</td>
<td>T_nadir(cell)</td>
<td>nadir view sst</td>
<td>ss</td>
<td>0.01K</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>L2-INT-54</td>
<td>T_nadir(k, cell)</td>
<td>nadir view sst</td>
<td>ss</td>
<td>0.01K</td>
<td>2</td>
<td>k = 0, 8</td>
</tr>
<tr>
<td>L2-INT-55</td>
<td>T_dual(cell)</td>
<td>dual view sst</td>
<td>ss</td>
<td>0.01K</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Both dual-view and nadir only sea surface temperatures are derived.

In the processing, each half-degree cell is represented by a structure containing, or is associated with, the necessary intermediate and output variables including the averaged brightness temperatures for each 10 arc-minute cell contained within the larger cell. All cells should be virtually present in memory, but how this is achieved is a matter for the implementer.

Note on notation: In the following we adopt the following abbreviated notation for the average brightness temperatures.

\[
T_{\text{ch, n} K \text{ cell}} = \frac{S(\text{ch, n}; 0,0,k,\text{cell})}{M(\text{ch, n}; 0,0,k,\text{cell})}
\]

\[
T_{\text{ch, f} \text{ frwd}} = \frac{S(\text{ch, f}; 0,0,k,\text{cell})}{M(\text{ch, f}; 0,0,k,\text{cell})}
\]

where \(ch \) indicates one of the seven channels. This notation is adopted to reduce the proliferation of indices; note that where it is used, a dependence on \(k \) and \(\text{cell} \) is implied. Note also that the above quantities must be computed using a floating point computation, although \(S \) and \(M \) are of type integer, to ensure that sufficient precision is maintained. Substitution of the quantities \(A(ch, f; 0, 0, k, \text{cell}) \) would not ensure this.

This processing is applied to cells when the processing of Step 4.8.1 is complete; i.e. no more pixels remain to be added to the cell.

The processing to derive averaged SST is done as follows:

Step 4.9.1 Read look-up tables.

On first entry, input the look-up tables of averaged SST retrieval coefficients.

This is done once at initialisation. Retrieval coefficients are specified for three latitude zones (tropical, temperate and polar) and for 38 bands or strips running parallel to the ground track, and corresponding to different viewing angles. Distinct sets of coefficients are supplied for day/night and for nadir only/dual view retrievals, as follows.
Before reading the retrieval coefficients ensure that the mapping array \(map(j) \) \([L2-INT-61]\) is available. This has been read in during Step 4.6.1. If it is desired to re-input it independently in this module then proceed as before. Open the data set L2-AUX6 and set \(map(j) = [L2-AUX6-2]_j, j = 0, 511 \) (Note that \([L2-AUX6-1]_j = j, j = 0, 511\).)

Open the file of retrieval coefficients to access data set L2-AUX2.

For each latitude zone \(i = 0, 1, 2 \) (outer loop) and for each across-track band \(j = 0 \) to 37 (inner loop);

Read in next record of file.

Extract the \(a \) coefficients \([L2-INT-360]\) as follows
\[
\begin{align*}
 a(i, j, 0) &= [L2-AUX2-1]_j, \\
 a(i, j, 1) &= [L2-AUX2-2]_j, \\
 a(i, j, 2) &= [L2-AUX2-3]_j
\end{align*}
\]

Similarly extract in the \(b \), \(c \) and \(d \) sets of coefficients:
\[
\begin{align*}
 b(i, j, q) &= [L2-AUX2-<4 + q>], q = 0, 1, 2, 3; \\
 c(i, j, q) &= [L2-AUX2-<8 + q>], q = 0, 1, 2, 3, 4; \\
 d(i, j, q) &= [L2-AUX2-<13 + q>], q = 0, 1, 2, 3, 4, 5, 6.
\end{align*}
\]

(Req 4.9-1)

Step 4.9.2 Nadir view average.

Calculate the nadir view averaged SST value for each of the 10-arcmin cells. Note that in the following, if the flags \(nadir_asst_uses_ir37 \), \(dual_asst_uses_ir37 \) are initialised to the value \(FALSE \), then Reqs. 4-9-2a, 4-9-9a are logically redundant.

Step 4.9.2.1

Determine the minimum number of pixels required for the cell, for the nadir view, using the latitude value representative of the cell. This is (in degrees)
\[
latitude = sub_cell_lat(k, cell) * 10^6
\]

The latitude dependent threshold is
\[
minpn = 340 * \text{Nadir_Pixels_Threshold} * \cos ((\pi/180.)*\text{latitude}) + 1.
\]

If \(M(ir12, n; 0, 0, k, cell) \geq minpn \) and \(M(ir11, n; 0, 0, k, cell) \geq minpn \) proceed to calculate the retrieved sst as below, otherwise set
\[
T_{nadir}(k, cell) = -1.0
\]

(Req 4.9-2)

\(nadir_asst_uses_ir37(k, cell) = FALSE \)

(Req 4-9-2a)

Step 4.9.2.2
For night-time data, if \(\text{nadir}_\text{day}(k, \text{cell}) = \text{FALSE} \), test whether the ratio of pixels with valid 3.7 \(\mu \)m data is greater or less than the threshold value and use the appropriate (three or two channel) SST algorithm. The 3.7 micron channel is valid, so the three-channel algorithm can be used, if

\[
\text{float}\{M(\text{ir37}, n; 0, 0, k, \text{cell})\} / \text{float}\{M(\text{ir11}, n; 0, 0, k, \text{cell})\} \geq \text{IR37}_\text{THRESH}.
\]

Otherwise use the two-channel algorithm. The two-channel algorithm is always used for day-time data, that is, if \(\text{nadir}_\text{day}(k, \text{cell}) = \text{TRUE} \).

Step 4.9.2.3

Calculate the averaged SST using the nadir-view retrieval coefficients for the appropriate across-track band given by \(j = \text{map}(\text{across}_\text{track_mean}(0; k, \text{cell})) \) and for the two or three channel algorithm as appropriate, for each latitude zone \(i = 0, 1, 2 \):

Step 4.9.2.3.1

Perform this step if the 3.7 micron channel is not available for use.

The equations for use with the nadir view are

\[
T_{\text{sst}, i}^{\text{nadir}} = 100.0a_0 + a_1T_{\text{ir11}}^{\text{nadir}} + a_2T_{\text{ir12}}^{\text{nadir}}
\]

where

\[
a_q = a(i, j, q) \quad \text{(Req 4.9-3)}
\]

(Here and elsewhere in this module the factor of 100 is to ensure consistency of units between the brightness temperatures, in units of 0.01K, and the leading coefficient, in K.)

Set

\[
\text{nadir}_\text{asst}_\text{uses}_\text{ir37}(k, \text{cell}) = \text{FALSE} \quad \text{(Req 4.9-3.1)}
\]

Step 4.9.2.3.2

Perform this step IF the 3.7 micron channel is to be used.

The equations for use with the nadir view are

\[
T_{\text{sst}, i}^{\text{nadir}} = 100.0b_0 + b_1T_{\text{ir11}}^{\text{nadir}} + b_2T_{\text{ir12}}^{\text{nadir}} + b_3T_{\text{ir37}}^{\text{nadir}}
\]

where

\[
b_q = b(i, j, q) \quad \text{(Req 4.9-4)}
\]

(As before, the factor of 100 is to ensure consistency of units.)

Set

\[
\text{nadir}_\text{asst}_\text{uses}_\text{ir37}(k, \text{cell}) = \text{TRUE} \quad \text{(Req 4.9-4.1)}
\]
Step 4.9.2.4

Return latitude-corrected SST (with linear interpolation).

If the cell is in the polar or tropical zone, return the corresponding retrieval. If the cell is in the temperate zone, use linear interpolation with respect to latitude to derive the averaged SST from the values for the temperate zone and the appropriate adjacent zone.

IF \(\text{abs(latitude)} < \text{TROPICAL_INDEX} \) then

\[
T_{\text{nadir}}(k,\text{cell}) = T_{\text{nadir,0}}
\]

(Req 4.9-5)

IF \(\text{TROPICAL_INDEX} \leq \text{abs(latitude)} < \text{TEMPERATE_INDEX} \), the final value for the retrieved sst is given by

\[
T_{\text{nadir}}(k,\text{cell}) = T_{\text{nadir,0}} + w \cdot (T_{\text{nadir,1}} - T_{\text{nadir,0}})
\]

(Req 4.9-6)

where

\[w = \frac{(\text{abs(latitude)} - \text{TROPICAL_INDEX})}{(\text{TEMPERATE_INDEX} - \text{TROPICAL_INDEX})}\]

IF the \(\text{TEMPERATE_INDEX} \leq \text{abs(latitude)} < \text{POLAR_INDEX} \) the but NOT LESS than, the final value for the retrieved sst is given by

\[
T_{\text{nadir}}(k,\text{cell}) = T_{\text{nadir,1}} + w \cdot (T_{\text{nadir,2}} - T_{\text{nadir,1}})
\]

(Req 4.9-7)

where

\[w = \frac{(\text{abs(latitude)} - \text{TEMPERATE_INDEX})}{(\text{POLAR_INDEX} - \text{TEMPERATE_INDEX})}\]

IF POLAR_INDEX \(\leq \text{abs(latitude)} \)

\[
T_{\text{nadir}}(k,\text{cell}) = T_{\text{nadir,2}}
\]

(Req 4.9-8)

Step 4.9.3 Dual view average.

Calculate the dual view averaged SST value for the 10-arcmin cells.

Step 4.9.3.1

Determine the minimum numbers of pixels required for the cell, for both views, using the latitude value representative of the cell. The latitude dependent threshold for the nadir view is \(\text{minpn} \) calculated as above. That for the forward view is.

\[\text{minpf} = 340 \times \text{FRWRD_PIXELS_THRESH} \times \cos ((\pi/180.)*\text{latitude}) + 1.\]

IF the number of valid pixels in the either view is LESS THAN the threshold value calculated, move to the next 10-arcmin cell.
IF

\[M(ir12, n; 0, 0, k, cell) \geq \text{minpn} \] and \[M(ir11, n; 0, 0, k, cell) \geq \text{minpn} \]

AND

\[M(ir12, f; 0, 0, k, cell) \geq \text{minpf} \] and \[M(ir11, f; 0, 0, k, cell) \geq \text{minpf} \]

proceed to calculate the retrieved SST as below, otherwise set

\[T_{\text{dual}}(k, cell) = -1. \] (Req 4.9-9)

\[\text{dual_asst_uses_ir37}(k, cell) = \text{FALSE} \] (Req 4-9-9a)

Step 4.9.3.2

For night-time data, defined by the condition

\[\text{(nadir_day}(k, cell) = \text{FALSE and frwrd_day}(k, cell) = \text{FALSE}), \]

test whether the ratio of pixels with valid 3.7 µm data in each view is greater or less than the threshold value and use the appropriate (two or three channel) SST algorithm. The 3.7 micron channel is valid if

\[
\frac{\text{float}\{M(ir37, n; 0, 0, k, cell) + M(ir37, f; 0, 0, k, cell)\}}{\text{float}\{M(ir11, n; 0, 0, k, cell) + M(ir11, f; 0, 0, k, cell)\}} \geq \text{IR37_THRESH}.
\]

Otherwise use the two-channel algorithm. The two-channel algorithm is always used for day-time data, defined by the condition

\[\text{(nadir_day}(k, cell) = \text{TRUE or frwrd_day}(k, cell) = \text{TRUE}). \] (Req 4.9-10)

Step 4.9.3.3

Calculate the averaged SST using the dual-view retrieval coefficients for the appropriate across-track band given by \[j = \text{map}(\text{across_track_mean}(0; k, cell)) \] and for the two or three channel algorithm as appropriate, for each latitude zone.

(Req 4.9-11)

Step 4.9.3.3.1

Perform this step if the 3.7 micron channel is not available for use.

The algorithm using both views is given by

\[T_{\text{dual}}^{\text{sst}, i} = 100.0c_0 + c_1T_{ir11}^{\text{nadir}} + c_2T_{ir12}^{\text{nadir}} + c_3T_{ir11}^{\text{frwrd}} + c_4T_{ir12}^{\text{frwrd}} \] (Req 4.9-12)

where

\[c_q = c(i, j, q). \]

Set

\[\text{dual_asst_uses_ir37}(k, cell) = \text{FALSE} \] (Req 4.9-12.1)
Step 4.9.3.2

Perform this step if the 3.7 micron channel is to be used.

\[
T_{\text{sstr},i}^{\text{dual}} = 100.0d_0 + d_1^{\text{nadir}} + d_2^{\text{nadir}} + d_3^{\text{frwrd}} + d_4^{\text{frwrd}} + d_5^{\text{frwrd}} + d_6^{\text{frwrd}}
\]

(Req 4.9-13)

where

\[d_q = d(i, j, q)\].

Set

\[\text{dual_asst_uses_ir37}(k, \text{cell}) = \text{TRUE}\]

(Req 4.9-13.1)

Step 4.9.3.4

Return latitude-corrected SST (with linear interpolation).

IF \(\text{abs(latitude)} < \text{TROPICAL_INDEX}\) THEN

\[T_{\text{dual}}(k, \text{cell}) = T_{\text{sstr},0}^{\text{dual}}\]

(Req 4.9-14)

IF \(\text{TROPICAL_INDEX} \leq \text{abs(latitude)} < \text{TEMPERATE_INDEX}\), the final value for the retrieved sst is given by

\[T_{\text{dual}}(k, \text{cell}) = T_{\text{sstr},0}^{\text{dual}} + w \cdot (T_{\text{sstr},1}^{\text{dual}} - T_{\text{sstr},0}^{\text{dual}})\]

(Req 4.9-15)

where

\[w = \frac{(\text{abs(latitude)} - \text{TROPICAL_INDEX})}{(\text{TEMPERATE_INDEX} - \text{TROPICAL_INDEX})}\]

IF \(\text{TEMPERATE_INDEX} \leq \text{abs(latitude)} < \text{POLAR_INDEX}\) the final value for the retrieved sst is given by

\[T_{\text{dual}}(k, \text{cell}) = T_{\text{sstr},1}^{\text{dual}} + w \cdot (T_{\text{sstr},2}^{\text{dual}} - T_{\text{sstr},1}^{\text{dual}})\]

(Req 4.9-16)

where

\[w = \frac{(\text{abs(latitude)} - \text{TEMPERATE_INDEX})}{(\text{POLAR_INDEX} - \text{TEMPERATE_INDEX})}\]

IF \(\text{POLAR_INDEX} \leq \text{abs(latitude)}\)

\[T_{\text{dual}}(k, \text{cell}) = T_{\text{sstr},2}^{\text{dual}}\]

(Req 4.9-17)

Step 4.9.4
For up to nine 10-arcmin cells within the half-degree cell, derive the mean nadir view SST for the half-degree cell, and the standard deviation of the 10-arcmin SST values. Repeat for the dual-view retrieval. That is

\[T_{\text{nadir}}(\text{cell}) = \frac{1}{\mu_1} \sum_{k} T_{\text{nadir}}(k, \text{cell}) \]

\[T_{\text{dual}}(\text{cell}) = \frac{1}{\mu_2} \sum_{k} T_{\text{dual}}(k, \text{cell}) \]

(Req 4.9-18)

where in each case the sum is over all values of \(k \) for which the respective sub-cell temperature is valid (i.e. has a positive value), and where \(\mu_1 \) and \(\mu_2 \) are the numbers of such valid temperatures in the nadir and forward views, respectively. If either of the values \(\mu_1 \) or \(\mu_2 \) is zero, set the corresponding temperature to –1.

The mean across-track pixel number to be associated with the 30 arc minute SST is [L2-INT-369]

\[\text{sst_mean_pixel}(0; \text{cell}) = \frac{1}{\mu_1} \sum_{k} \text{across_track_mean}(0; k, \text{cell}) \text{ if } \mu_1 > 0 \]

\[\text{sst_mean_pixel}(0; \text{cell}) = -1 \text{ if } \mu_1 = 0 \]

where the sum is over all \(k \in \{0 \leq k \leq 8\} \) for which corresponding SST \(T_{\text{nadir}}(k, \text{cell}) \) is valid (not equal to –1.)

Step 4.9.5 Prepare the confidence flag words for the cell.

The confidence flag word for the sub-cell indexed by \((k, \text{cell})\) should be prepared as follows:

Set bit 0 if 3-channel algorithm was used at Step 4.9.2.2.2, i.e. if \(\text{nadir_asst_uses_ir37}(k, \text{cell}) = \text{TRUE} \), otherwise clear bit.

Set bit 1 if 3-channel algorithm was used at Step 4.9.2.3.2, i.e. if \(\text{dual_asst_uses_ir37}(k, \text{cell}) = \text{TRUE} \), otherwise clear bit.

Set bit 2 if \(\text{nadir_day}(k, \text{cell}) \) from §4.8.3 is TRUE, otherwise clear bit.

Set bit 3 if \(\text{frwrd_day}(k, \text{cell}) \) from §4.8.3 is TRUE, otherwise clear bit.

The confidence flag word for the half-degree cell indexed by \text{cell} - to go in AST MDS#1 - will be derived by ORing together the words for those sub-cells \((k, \text{cell})\), \(k = 0, \ldots, 8 \), for which a valid temperature was derived.

(Req 4.9-19)

4.10 Module Definition: Averaged LST and NDVI Retrieval (Half Degree Cell)

4.10.1 Functional Description

The Land Surface Temperature (LST) and Normalised Difference Vegetation Index (NDVI) are calculated for each sub-cell for which average reflectances over land have been
calculated. The averaged LST and NDVI over all the subcells, and their standard deviation, are also computed.

4.10.2 Interface Definition

<table>
<thead>
<tr>
<th>Parameter ID</th>
<th>Variable Name</th>
<th>Type</th>
<th>Units</th>
<th>Field size</th>
<th>Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2-AUX3-14</td>
<td>NADIR_PIXELS THRESH</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>L2-AUX5-1</td>
<td>Coefficient A0 (day-time) for LST</td>
<td>float</td>
<td>K</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>L2-AUX5-2</td>
<td>Coefficient A1 (day-time) for LST</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>L2-AUX5-3</td>
<td>Coefficient A2 (day-time) for LST</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>L2-AUX5-4</td>
<td>Coefficient A0 (night-time) for LST</td>
<td>float</td>
<td>K</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>L2-AUX5-5</td>
<td>Coefficient A1 (night-time) for LST</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>L2-AUX5-6</td>
<td>Coefficient A2 (night-time) for LST</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>L2-AUX6-1</td>
<td>Vegetation class index [360][720] for LST</td>
<td>ss</td>
<td>n/a</td>
<td>2</td>
<td>720</td>
</tr>
<tr>
<td>L2-AUX7-1</td>
<td>Vegetation fraction[12][360][720]</td>
<td>ss</td>
<td>0.001</td>
<td>2</td>
<td>720</td>
</tr>
<tr>
<td>L2-AUX8-1</td>
<td>Precipitable water[12][360][720]</td>
<td>ss</td>
<td>0.01 mm</td>
<td>2</td>
<td>720</td>
</tr>
<tr>
<td>L2-AUX9-1</td>
<td>Topographic Variance Flag[360][720]</td>
<td>ss</td>
<td>n/a</td>
<td>2</td>
<td>720</td>
</tr>
<tr>
<td>L2-AUX10-1</td>
<td>d</td>
<td>Water vapour factor for LST retrieval</td>
<td>float</td>
<td>none</td>
<td>4</td>
</tr>
<tr>
<td>L2-AUX10-2</td>
<td>m</td>
<td>Angle factor for LST retrieval</td>
<td>ss</td>
<td>none</td>
<td>2</td>
</tr>
<tr>
<td>L2-AUX10-3</td>
<td>number of vegetation classes for LST</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 4.10-1: Input Data Table - LST Retrieval LUTs and auxiliary parameters

<table>
<thead>
<tr>
<th>Parameter ID</th>
<th>Variable Name</th>
<th>Type</th>
<th>Units</th>
<th>Field size</th>
<th>Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2-AUX10-1</td>
<td>d</td>
<td>Water vapour factor for LST retrieval</td>
<td>float</td>
<td>none</td>
<td>4</td>
</tr>
<tr>
<td>L2-AUX10-2</td>
<td>m</td>
<td>Angle factor for LST retrieval</td>
<td>ss</td>
<td>none</td>
<td>2</td>
</tr>
<tr>
<td>L2-AUX10-3</td>
<td>N_CLASS</td>
<td>Number of vegetation classes for LST</td>
<td>ss</td>
<td>none</td>
<td>2</td>
</tr>
</tbody>
</table>

The following parameters are required by the Land Surface Temperature algorithm:

<table>
<thead>
<tr>
<th>Field</th>
<th>Name</th>
<th>Type</th>
<th>Units</th>
<th>Field size</th>
<th>Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>time (sg)</td>
<td>scan UTC</td>
<td>double</td>
<td>days</td>
<td>8</td>
<td>per cell</td>
</tr>
<tr>
<td>cell_lat(cell)</td>
<td>cell latitude</td>
<td>sl</td>
<td>deg</td>
<td>4</td>
<td>per cell</td>
</tr>
<tr>
<td>cell_long(cell)</td>
<td>cell longitude</td>
<td>sl</td>
<td>deg</td>
<td>4</td>
<td>per cell</td>
</tr>
<tr>
<td>vegetation_class(lat_index, lon_index)</td>
<td>vegetation class index</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>360 x 720</td>
</tr>
<tr>
<td>vegetation_fraction(lat_index, lon_index)</td>
<td>vegetation fraction index</td>
<td>ss</td>
<td>0.001</td>
<td>4</td>
<td>360 x 720</td>
</tr>
<tr>
<td>precipitable_water(lat_index, lon_index)</td>
<td>precipitable water index</td>
<td>ss</td>
<td>0.01 mm</td>
<td>2</td>
<td>360 x 720</td>
</tr>
<tr>
<td>Topographic_flag(lat_index, lon_index)</td>
<td>Topographic flag index</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>360 x 720</td>
</tr>
<tr>
<td>lat_index</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lon_index</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index to month: month = 0, 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Commercial In Confidence

AATSR Product Algorithm Detailed Documentation
4.10.3 Detailed Structure

The following processing is applied to cells when the processing of Step 4.8.1 is complete; i.e. no more pixels remain to be added to the cell.

Step 4.10.1 Calculate subcell NDVIs.

NDVI is defined by

\[
NDVI(k, cell) = 10000 \frac{A(v870, n; 1, 0, k, cell) - A(v670, n; 1, 0, k, cell)}{A(v870, n; 1, 0, k, cell) + A(v670, n; 1, 0, k, cell)}
\]

(Req 4.10-1)

provided both values are valid (not exceptional). Otherwise set

\[
NDVI(k, cell) = -19999.
\]
The number of pixels contributing to the sub-cell mean, \(N_1(k, \text{cell}) \), provided as a confidence indicator, is the smaller of \(M(v870, n; 1, 0, k, \text{cell}) \) and \(M(v670, n; 1, 0, k, \text{cell}) \).

Step 4.10.2 Calculate cell NDVI.

The mean in the larger (30 arc minute) cell is given by

\[
\langle \text{NDVI} \rangle(\text{cell}) = \frac{1}{\mu} \sum_k \text{NDVI}(k, \text{cell})
\]

where the sum is over all \(k \in \{0 \leq k \leq 8\} \) having a valid sub-cell mean \(\text{NDVI} \) and \(\mu \) is the number of such valid means. The number of pixels that contribute to the mean is similarly the smaller of \(\tilde{M}(v870, n;1,0,\text{cell}), \tilde{M}(v670, n;1,0,\text{cell}) \).

The standard deviation of the mean is

\[
\sigma(\text{NDVI}; \text{cell}) = \left\{ \frac{1}{\mu - 1} \sum_k (\text{NDVI}(k, \text{cell}) - \langle \text{NDVI} \rangle(\text{cell}))^2 \right\}^{1/2}
\]

in all cases the sum is over sub-cells having valid means.

If the number of valid subcell means \(\mu \) is zero, set

\[<\text{NDVI}> (\text{cell}) = -19999. \]

If the number of valid subcell means \(\mu \leq 1 \), so that a valid standard deviation cannot be calculated, set

\[\sigma(\text{NDVI}; \text{cell}) = -19999. \]

Step 4.10.3 Read in coefficients and auxiliary tables for LST retrieval.

The coefficients for LST retrieval are identical to those used for the full resolution product, as read in by Step 4.6.1.2 (Section 4.6.3). If these coefficients are still available in the processor, there is no need to repeat the following steps.

Step 4.10.3.1 Read in coefficients

For each of the \(N_{\text{CLASS}} \) vegetation classes there are two records, for vegetation and for bare soil. Open the file of retrieval coefficients L2-AUX5.

The LST coefficient set is read in as follows.

for \(\text{class} = 0, N_{\text{CLASS}} - 1 \) (outer loop)
for \(i = 0, 1 \) (inner loop)

\[
\text{coeff}(\text{class}, i, 0, 0) = [L2-AUX5-1]
\]
\[
\text{coeff}(\text{class}, i, 0, 1) = [L2-AUX5-2]
\]
\[
\text{coeff}(\text{class}, i, 0, 2) = [L2-AUX5-3]
\]
\[
\text{coeff}(\text{class}, i, 1, 0) = [L2-AUX5-4]
\]
coeff(class, i, 1, 1) = [L2-AUX5-5]
coeff(class, i, 1, 2) = [L2-AUX5-6]

(Req 4.10-5)

Step 4.10.3.2 Determine month index
Using a suitable calendar function, determine the month (month = 0, … 11) in which the data were collected from the scan time of start of data time(0)=[L2-INT-26](0):

month = month(time(0))

(Req 4.10-6)

Step 4.10.3.3 Read in auxiliary files
Note that in the cases of data sets L2-AUX7 and L2-AUX8 only one plane of data, that corresponding to the current month, is required in memory for a given run of the processor.

Read in Vegetation Class Index: Open the vegetation class file L2-AUX6.
for each latitude index i = 0, 359
vegetation_class(i, j) = [L2-AUX6-1](j) for all j of record i.

(Req 4.10-7)

Read in Vegetation Fraction Table: Open the file of vegetation fraction data L2-AUX7.
for each latitude index i = 0, 359
select record (360 × month + i)
vegetation_fraction(i, j) = [L2-AUX7-1](j) for all j of selected record.

(Req 4.10-8)

Read in Precipitable Water Data: Open the file of precipitable water data L2-AUX8.
for each latitude index i = 0, 359
select record (360 × month + i)
precipitable_water(i, j) = [L2-AUX8-1](j) for all j of selected record.

(Req 4.10-9)

Read in Topographic Variance Flag: Open the file of topographic variance flags L2-AUX9.
for each latitude index i = 0, 359
topographic_flag(i, j) = [L2-AUX9-1](j) for all j of record i.

(Req 4.10-10)

Step 4.10.4 Derive Land Surface Temperature for sub-cells
LST retrieval uses the nadir view 11 and 12 micron channels in conjunction with retrieval coefficients derived from the tables.

Note that as in Section 4.9 we adopt an abbreviated notation for the average brightness temperatures in this section.

\[
T_{nadir}^{ch, sf} = \frac{\text{float}(S(ch, n; sf, 0, k, cell))}{\text{float}(M(ch, n; sf, 0, k, cell))}
\]

where \(ch \) indicates one of the long-wavelength infra-red channels, and where \(sf \) is the surface type flag. This notation is slightly more complex than that used in Section 4.9 because it is
necessary to distinguish between land and sea averages. Where this notation it is used, a
dependence on k and cell is implied. As in Section 4.9, these quantities must be computed
using a floating point computation, although S and M are of type integer, to ensure that
sufficient precision is maintained.

The calculation proceeds as follows for each cell in turn.

Step 4.10.4.1 Determine latitude and longitude indices

$\text{lat_index} = \left[\frac{\text{cell_lat(}cell\text{)}}{500000}\right] + 180$

$\text{lon_index} = \left[\frac{\text{cell_lon(}cell\text{)}}{500000}\right] + 360$

(Req 4.10-11)

Note: Because cell_lat and cell_long are defined (Step 4.8.1.1) as integer multiples of
500000, the above integer divisions should be exact, and the values of lat_index and
lon_index should equal the values of cell$_\text{latitude_index}$ and cell$_\text{longitude_index}$
respectively that were computed locally for the same cell in Step 4.8.1.1.

Extract the vegetation class for the cell:

$\text{class} = \text{vegetation_class(}\text{lat_index, lon_index}\text{)}$

(Req 4.10-12)

Step 4.10.4.2 Test for valid data

For each sub-cell $k = 0, \ldots, 8$, if either the 11 or 12 micron brightness temperature in the nadir
view is invalid, the calculation is abandoned, and the LST is set to -1. The criterion for
invalid data is the same as that used for the SST processing, as follows.

Determine the minimum number of pixels required for the cell, for the nadir view, using the
latitude of the cell. This is (in degrees)

$\text{latitude} = \text{sub_cell_lat(}k, cell\text{)} \times 10^{-6}$

The latitude dependent threshold is

$\text{minpn} = 340 \times \text{NADIR_PIXELS_THRESH} \times \cos((\pi/180)\times\text{latitude}) + 1.$

(Req 4.10-13)

Identify whether the land or ‘sea’ brightness temperatures are required. Inland lakes are
flagged as sea in the current land/sea data-base, so must be treated accordingly.

If $\text{class} = 14$ then $\text{sf} = 0$ (sea) otherwise $\text{sf} = 1$ (land).

If $M(\text{ir12, n; sf, 0, k, cell}) \geq \text{minpn}$ and $M(\text{ir11, n; sf, 0, k, cell}) \geq \text{minpn}$ proceed to calculate
the retrieved LST as below, otherwise set

$T_{\text{land}}(k, cell) = -1.0$

(Req 4.10-14)

If the 11 and 12 micron nadir brightness temperatures are valid, Steps 4.10.4.3 to 4.10.4.5 are
to be repeated for each sub-cell $k = 0, \ldots, 8$ in the cell.

Step 4.10.4.3 Determine day/night flag, satellite elevation and non-linear exponent
If $\text{nadir_day}(k, \text{cell}) = \text{TRUE}$ then
\[
\text{night} = 0 \ \text{else} \ \text{night} = 1
\]
(Req 4.10-15)

A linear interpolation is used to determine the satellite elevation:
\[
\begin{align*}
\text{sat_elev} &= (1.0 - w) \times \text{nadir_band_edge_satellite_elevation}(i, \text{band}(j)) + \\
&\quad w \times \text{nadir_band_edge_satellite_elevation}(i, \text{band}(j) + 1)
\end{align*}
\]
(Req 4.10-16)

Calculate the non-linear exponent:
\[
\text{n} = 1.0 / \cos(\pi \times (90 - \text{sat_elev}) / (m \times 180.0))
\]
(Req 4.10-17)

Note that m is [L2-AUX10-2] and n is [L2-INT-480].

Step 4.10.4.4 Determine coefficients

\[
f = 0.001 \times \text{vegetation_fraction}(\text{lat_index}, \text{lon_index})
\]
(Req 4.10-18)

\[
\text{ky} = \text{integer\ part\ of} \ [k/3]
\]

\[
\text{kx} = k - 3*\text{ky}
\]
(Req 4.10-19)

If $\text{ky} = 0$ and $\text{lat_index} > 0$ then $\text{disp_lat_index} = \text{lat_index} - 1$
\[
\text{else} \ \text{disp_lat_index} = \text{lat_index}
\]

If $\text{kx} = 0$ then $\text{disp_lon_index} = [720 + \text{lon_index} - 1](\text{modulo} 720)$
\[
\text{else} \ \text{disp_lon_index} = \text{lon_index}
\]
(Req 4.10-20)

Interpolate precipitable water:
\[
\text{pw}00 = \text{precipitable_water}(\text{disp_lat_index}, \text{disp_lon_index})
\]

\[
\text{pw}01 = \text{precipitable_water}(\text{disp_lat_index}+1, \text{disp_lon_index})
\]

\[
\text{pw}10 = \text{precipitable_water}(\text{disp_lat_index}, [\text{disp_lon_index}+1](\text{modulo} 720))
\]

\[
\text{pw}11 = \text{precipitable_water}(\text{disp_lat_index}+1, [\text{disp_lon_index}+1](\text{modulo} 720))
\]
(Req 4.10-21)

If $\text{ky} = 0$ then $q = (2.0 / 3.0)$ else $q = (\text{ky} - 1) / 3.0$

If $\text{kx} = 0$ then $p = (2.0 / 3.0)$ else $p = (\text{kx} - 1) / 3.0$

\[
\text{pw} = 0.001 \times ((1 - p)(1 - q)\text{pw}00 + (1 - p)q \times \text{pw}01 + p(1 - q)\text{pw}10 + pq \times \text{pw}11)
\]
(Req 4.10-22)

\[
\text{class} = \text{vegetation_class}(\text{lat_index}, \text{lon_index}) - 1
\]
If \(\text{class} < 0 \) or \(\text{class} > NCLASS - 1 \) then the index is out of range; the calculation for this sub-cell is abandoned and the nadir field should be set to an exception value of -1.0:

\[
T_{\text{land}}(k, \text{cell}) = -1.0
\]

Otherwise

for \(k = 0, 2 \)

\[
a(k) = f \times \text{coeff}(\text{class}, 0, \text{night}, k) + (1.0 - f) \times \text{coeff}(\text{class}, 1, \text{night}, k)
\]

If \((\text{class} + 1) = 14 \) this cell is flagged as an inland lake in the vegetation class database. The exponent \(n \) and the precipitable water correction are not used, and the correct brightness temperature average to be used is that for pixels flagged as sea. Set \(n = 1.0 \).

Otherwise if \((\text{class} + 1) \neq 14 \) correct \(a(0) \) as follows:

\[
a(0) = a(0) + d \times (\text{cosec}(\pi \times \text{sat_elev} / 180.0) - 1.0) \times \text{pw}
\]

(Req 4.10-26)

Step 4.10.4.5 Calculate the land surface temperature.

Note that the surface flag index \(sf_i \) retains the value assigned in Step 4.10.4.2.

If \(T_{\text{nadir}}^{\text{dir}}_{ir1, sf} > T_{\text{nadir}}^{\text{dir}}_{ir1, sf} \) then

\[
\text{lst} = 100. \times (a(0) + a(1) \times (T_{\text{nadir}}^{\text{dir}}_{ir1, sf} - T_{\text{nadir}}^{\text{dir}}_{ir1, sf}))^{n} + (a(1) + a(2)) \times (T_{\text{nadir}}^{\text{dir}}_{ir1, sf} - 27315) + 27315
\]

(Req 4.10-27)

else

\[
\text{lst} = 100. \times a(0) + a(1) \times (T_{\text{nadir}}^{\text{dir}}_{ir1, sf} - T_{\text{nadir}}^{\text{dir}}_{ir1, sf}) + (a(1) + a(2)) \times (T_{\text{nadir}}^{\text{dir}}_{ir1, sf} - 27315) + 27315
\]

(Req 4.10-28)

Set appropriate bits on AST confidence word \(\text{ast_conf}(1; k, \text{cell}) \):

Set bit 2 if \(\text{nadir_day}(k, \text{cell}) \) from §4.8.3 is TRUE, otherwise clear bit.

(Req 4.10-29)

Set bit 3 if \(\text{frwrd_day}(k, \text{cell}) \) from §4.8.3 is TRUE, otherwise clear bit.

(Req 4.10-30)

Set bits 4 and 5 to the topographic variance flags:

\[[\text{ast_conf}(1; k, \text{cell})](\text{bits 4:5}) = \text{topographic_flag}(\text{lat_index}, \text{lon_index}) \]
(Note that this is a two-bit flag.)

Trap for LST out of range:

If $lst \geq 32767.5$ then

$$T\text{_land}(k, cell) = -1$$

else

$$T\text{_land}(k, cell) = \text{integer part of } (lst + 0.5)$$

Step 4.10.5 Calculate 30 arc min average

For up to nine 10-arcmin cells within the half-degree cell, derive the mean LST [L2-INT-493] for the half-degree cell, and the standard deviation [L2-INT-494] of the 10-arcmin LST values.

$$T\text{_land}(cell) = \frac{1}{\mu} \sum_k T\text{_land}(k, cell)$$

where the sum is over all values of k for which the respective sub-cell LST is valid (i.e. has a positive value), and where μ is the number of valid temperatures. If μ is zero, set the corresponding temperature to -1. To calculate the standard deviation [L2-INT-494] use an expression analogous to Req 4.10-3.

The mean across-track pixel number to be associated with the 30 arc minute LST is [L2-INT-369]

$$\text{sst_mean_pixel}(1; cell) = \frac{1}{\mu} \sum_k \text{across_track_mean}(1; k, cell) \text{ if } \mu > 0$$

$$\text{sst_mean_pixel}(1; cell) = -1 \text{ if } \mu = 0$$

where the sum is over all $k \in \{0 \leq k \leq 8\}$ for which corresponding LST $T\text{_land}(k, cell)$ is valid (not equal to -1).

Derive the confidence flag word $\text{ast_conf}(1; cell)$ for the half-degree cell indexed by $cell$ by ORing together the words for those sub-cells $(k, cell)$, $k = 0, \ldots, 8$, for which a valid temperature was derived. (Note that the topographic variance bits will be the same for all sub-cells in the cell.)

4.11 Module Definition: Spatially Averaged Cloud Parameters (Half Degree Cell)

4.11.1 Functional Description

This module is to provide physical information on the cloud state additional to the results of the cloud flagging provided by the cloud clearing algorithms. The product is based on the same half-degree cells defined above. The frequency distribution of brightness temperature for the cloudy pixels within the cell is given together with representative parameters and an
estimate of the cloud-top temperature. The latter is interpreted as the mean brightness temperature of the coldest 25% of the cloudy pixels in the cell.

For each half-degree cell, information is given for the nadir and forward views separately. The information consists of the number of cloudy and cloud-free pixels falling within the cell, a histogram of the 11 micron brightness temperatures of the cloudy pixels, and various statistical parameters derived from the histogram. The 11 micron channel is used as the basis of the product following the practice of ATSR and ATSR-2.

The product is generated as follows. Two histograms are generated of the frequency distribution of 11 micron brightness temperature, for cloudy pixels over sea and land respectively. The histograms represent the brightness temperature at 0.1 K resolution between 190 K and 290 K. Thus each contains 1000 bins where the first bin contains the number of pixels with temperatures in the range 190.0 to 190.1 K, and the last bin contains the number of pixels with temperatures in the range 289.9 to 290.0 K. The cloud state of each filled pixel falling within the cell is inspected. If it is clear, a count of the number of clear pixels is incremented; if it is cloudy, the 11 micron channel BT is inspected and the count in the appropriate histogram bin is incremented. Note that cosmetic fill pixels are included in the processing.

As each pixel is inspected, a test is made to determine whether its 11 micron BT is lower than the lowest value previously encountered, and if so to store the location of the pixel. Then when the histogram is complete the identity of the minimum pixel will be known, and can be used to extract its channel values.

Once the histogram is complete for a given cell, that is once all the pixels falling within the cell have been inspected, the cloud temperature and coverage results are derived from it. Firstly the total number of cloudy pixels detected is computed by summing the histogram samples. If this total is less than 20 no further derivations are performed. If 20 or more cloudy pixels have been identified and included in the histogram, the mean 11 micron brightness temperature and its standard deviation are calculated from the histogram.

The histogram is searched for the lowest temperature represented by the histogram. This is the temperature corresponding to the first non-zero bin of the histogram. Next, the cloud-top temperature is estimated. The histogram bin containing the 25th percentile is identified; this is the first bin (as the histogram is searched in the direction of ascending temperature) for which the cumulative total of the bins up to and including itself exceeds 25% of the total number of cloudy pixels. The mean temperature represented by the bins up to and including this bin is calculated.

[Note that the cloud top temperature so derived may represent the mean of slightly more than 25% of the cloudy pixels, since the cumulative total including the 25th percentile bin may exceed 25%.]

Finally the percentage cloud cover is calculated from the ratio of cloudy pixels to total pixels.

4.11.2 Interface Definition

<table>
<thead>
<tr>
<th>Parameter ID</th>
<th>Variable Name</th>
<th>Type</th>
<th>Units</th>
<th>Field size</th>
<th>Fields</th>
</tr>
</thead>
</table>

Commercial In Confidence
AATSR Product Algorithm Detailed Documentation
L2-INT-101	lir12, n, i, j	regridded nadir l12 Brightness Temperature	ss	0.01K	2	j = 0, 511
L2-INT-102	lir11, n, i, j	regridded nadir l11 Brightness Temperature	ss	0.01K	2	j = 0, 511
L2-INT-103	lir37, n, i, j	regridded nadir l37 Brightness Temperature	ss	0.01K	2	j = 0, 511
L2-INT-104	lirv16, n, i, j	regridded nadir l16 Reflectance	ss	0.01%	2	j = 0, 511
L2-INT-105	lirv870, n, i, j	regridded nadir v870 Reflectance	ss	0.01%	2	j = 0, 511
L2-INT-106	lirv670, n, i, j	regridded nadir v670 Reflectance	ss	0.01%	2	j = 0, 511
L2-INT-107	lirv655, n, i, j	regridded nadir v655 Reflectance	ss	0.01%	2	j = 0, 511
L2-INT-111	lir12, f, i, j	regridded forward l12 Brightness Temperature	ss	0.01K	2	j = 0, 511
L2-INT-112	lir11, f, i, j	regridded forward l11 Brightness Temperature	ss	0.01K	2	j = 0, 511
L2-INT-113	lir37, f, i, j	regridded forward l37 Brightness Temperature	ss	0.01K	2	j = 0, 511
L2-INT-114	lirv16, f, i, j	regridded forward v16 Reflectance	ss	0.01%	2	j = 0, 511
L2-INT-115	lirv870, f, i, j	regridded forward v870 Reflectance	ss	0.01%	2	j = 0, 511
L2-INT-116	lirv670, f, i, j	regridded forward v670 Reflectance	ss	0.01%	2	j = 0, 511
L2-INT-117	lirv655, f, i, j	regridded forward v655 Reflectance	ss	0.01%	2	j = 0, 511
L2-INT-100	nadir_fill_state(i, j)	nadir fill state indicator	byte	none	1	j = 0, 511
L2-INT-110	fwd_fill_state(i, j)	fwd fill state indicator	byte	none	1	j = 0, 511
L2-INT-232	nadir_land(i, j)	nadir land/sea flag	ss	array flag	2	j = 0, 511
L2-INT-233	nadir_cloudy(i, j)	nadir cloudy flag	ss	array flag	2	j = 0, 511
L2-INT-246	fwd_land(i, j)	forward land/sea flag	ss	array flag	2	j = 0, 511
L2-INT-249	fwd_land_cloudy(i, j)	forward land/sea flag	ss	array flag	2	j = 0, 511
L2-INT-160	image_latitude(i, j)	image pixel latitude	float	degrees	4	
L2-INT-161	image_longitude(i, j)	image pixel longitude	float	degrees	4	
local	k	histogram bin counter k = 0, 999	sl	none	4	
local	K	25th percentile count	ss	none	2	
cell	cell number	sl	none	4		
Brightness temperature or reflectance, as appropriate, of channel ch, view v, for cloudy pixel having minimum 11 micron BT over surface type sf.		ss	0.01K or 0.01%	2		
L2-INT-325	across_track_band	across-track band	ss	none	2	per cell
L2-INT-328	nadir_clear_land	total of clear land pixels, nadir view	sl	none	4	per cell
L2-INT-329	fwd_clear_land	total of clear land pixels, forward view	sl	none	4	per cell
L2-INT-330	nadir_cloudy_land	total of cloudy land pixels, nadir view	sl	none	4	per cell
L2-INT-331	fwd_cloudy_land	total of cloudy land pixels, forward view	sl	none	4	per cell
L2-INT-332	nadir_hist_land(k)	nadir histogram (land cell)	ss	none	2	1000
L2-INT-333	fwd_hist_land(k)	forward histogram (land cell)	ss	none	2	1000
L2-INT-335	bt_cloud_top	cloud top temperature (over land)	ss	0.01K	2	per cell
L2-INT-336	bt_percent_cloudy	percentage cloudy pixels (over land)	ss	0.01%	2	per cell
L2-INT-337	bt_cloud_top	cloud top temperature (over land)	ss	0.01K	2	per cell
L2-INT-338	bt_percent_cloudy	percentage cloudy pixels (over land)	ss	0.01%	2	per cell
L2-INT-344	nadir_clear_sea	total of clear sea pixels, nadir view	sl	none	4	per cell
L2-INT-345	fwd_clear_sea	total of clear sea pixels, forward view	sl	none	4	per cell
L2-INT-346	nadir_cloudy_sea	total of cloudy sea pixels, nadir view	sl	none	4	per cell
L2-INT-347	fwd_cloudy_sea	total of cloudy sea pixels, forward view	sl	none	4	per cell
L2-INT-348	nadir_hist_sea(k)	nadir histogram (sea cell)	ss	none	2	1000
L2-INT-349	fwd_hist_sea(k)	forward histogram (sea cell)	ss	none	2	1000
L2-INT-351	bt_cloud_top	cloud top temperature (over sea)	ss	0.01K	2	per cell
L2-INT-352	bt_percent_cloudy	percentage cloudy pixels (over sea)	ss	0.01%	2	per cell
L2-INT-353	bt_cloud_top	cloud top temperature (over sea)	ss	0.01K	2	per cell
L2-INT-354	bt_percent_cloudy	percentage cloudy pixels (over sea)	ss	0.01%	2	per cell
Table 4-11-1: Internal Data Table - Spatially Averaged Cloud Parameters (Half Degree Cell)

4.11.3 Detailed Structure

Step 4.11.1 Derive histogram for each cell.

Each image row \(i \) and pixel \(j \) is used as follows.

Step 4.11.1.1 Identify cell number.

Identify the half-degree cell number \(\text{cell} \) within which the pixel indexed by \(i \) and \(j \) falls exactly as in Section 4.8.3, Step 4.8.1.1

IF this is the first pixel to fall within a given cell, clear the histogram arrays:

\[
<\text{view}>_{\text{histogram}}_<\text{surface}>(\text{cell}, k) = 0 \text{ for all } k = 0, 999,
\]

initialise the clear pixel counters

\[
<\text{view}>_{\text{clear}}_<\text{surface}> = 0,
\]

AND initialise associated variables for each channel \(\text{ch} \):

\[
I_{\min}(\text{ch}, v, sf; \text{cell}) = 29000 \text{ if } \text{ch} = \text{ir12}, \text{ir11}, \text{ir37}
\]

\[
I_{\min}(\text{ch}, v, sf; \text{cell}) = 10000 \text{ if } \text{ch} = v16, v870, v670, v555
\]

FOR each view \(<v> = \text{nadir}, \text{frwrd}, \text{and for each surface type } <sf> = \text{land, sea}.\)

(Req 4.11-1)

Step 4.11.1.2 Process the image pixel.

Process the image pixel at \(i, j \) for both nadir and forward views, as follows,

(a) IF the pixel is unfilled, do nothing.

(b) IF the pixel is over sea, and is clear, increment \(<\text{view}>_{\text{clear}}_<\text{sea} \).

(c) IF the pixel is over sea, and is cloudy, check the 11 micron brightness temperature. If the 11 micron brightness temperature

\[
T_{11} = I(ir11, v; i, j)
\]

is valid, and if \(19000 \leq T_{11} < 29000 \), increment the element of the histogram array

\[
<\text{view}>_{\text{histogram}}_<\text{sea}(\text{cell}, k) \text{ specified by index}
\]

\[
k = \text{integer part of } (T_{11}/10 - 1900)
\]

IF \(T_{11} < I_{\min}(\text{ir11}, v, sf; \text{cell}) \) THEN set

\[
I_{\min}(\text{ch}, v, sf; \text{cell}) = I(ch, v; i, j)
\]

for each channel \(\text{ch} \).

(d) IF the pixel is over land, treat similarly but increment the land counters and histogram arrays \(<\text{view}>_{\text{clear}}_<\text{land} \) and \(<\text{view}>_{\text{histogram}}_<\text{sea}(\text{cell}, k) \) in place of the corresponding sea variables.

(Req 4.11-2)
Step 4.11.2 Process histograms.

In this step the following notation is used.

\[N_{v, sf}^{\text{cloud}}(cell) \] \hspace{1cm} <view>_cloudy_<surface>

\[F_{v, sf}(cell; k) \] \hspace{1cm} <view>_hist_<surface>(cell, k)

where <view> = nadir | frwrd

and <surface> = sea | land

\[T_{v, sf}^{ct}(cell) \] \hspace{1cm} [bt_cloud_top](v, sf)

When all four histograms are complete, find the number of cloudy pixels in each. For each view \(v = n, f \) and for each surface type \(sf \):

\[N_{v, sf}^{\text{cloud}}(cell) = \sum_{k=0}^{999} F_{v, sf}(cell; k) \] (Req 4.11-3)

If the number of cloudy pixels found is less than 20, proceed to the next cell. Otherwise proceed as follows:

Calculate the position of the 25th percentile

\[K = N_{v, sf}^{\text{cloud}}(cell) / 4 \] (Req 4.11-4)

and find the index \(k \) such that

\[\sum_{k=0}^{k'-1} F_{v, sf}(cell; k) < K \leq \sum_{k=0}^{k'} F_{v, sf}(cell; k) \] (Req 4.11-5)

Then the cloud-top temperature is given by

\[T_{v, sf}^{ct}(cell) = 19000 + 10 \cdot \sum_{k=0}^{k'} (k + 0.5) \cdot F_{v, sf}(cell; k) / \sum_{k=0}^{k'} F_{v, sf}(cell; k) \] (Req 4.11-6)

and the percentage of cloudy pixels for each view and surface type is given by

\[\text{bt_percent_cloudy} = 10000 \cdot \frac{N_{v, sf}^{\text{cloud}}(cell)}{N_{v, sf}^{\text{cell}}(cell) + <view>_clear_<surface>(cell)} \] (Req 4.11-7)

4.12 Module Definition: Spatial Averaging (50 km Cell)

4.12.1 Functional Description

For the averaged products in 50 km cells, the swath is divided into cells nominally 50 km square, and these cells are further subdivided into 9 square sub-cells of nominal dimension 17 km. For each channel, the average brightness temperature (for the infra-red channels) or radiance (for the visible channels) is averaged over all pixels of each type that fall within
each sub-cell, to give distributions of a brightness temperature and radiance at 17 km nominal resolution. Averages are performed for the forward and nadir views separately, and a separate average is performed for each surface type (land and sea) and cloud state (clear or cloudy). There are thus 4 averages per channel per view. The mean across each sub-cell is calculated to give distributions of brightness temperature and radiance at 17 km nominal resolution.

4.12.2 Interface Definition

Table 4.12-1: Input Data Table - Spatial Averaging, 50 km cell.

<table>
<thead>
<tr>
<th>Parameter ID</th>
<th>Variable</th>
<th>Name</th>
<th>Type</th>
<th>Units</th>
<th>Field size</th>
<th>Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2-AUX3-9</td>
<td>NGRANULE</td>
<td>Granule Size</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>L2-AUX3-10</td>
<td>AX, AY</td>
<td>AST Cell dimension</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>L2-AUX3-5</td>
<td>Threshold for ABT flag, 17 km cell nadir view</td>
<td>sl</td>
<td>n/a</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L2-AUX3-6</td>
<td>Threshold for ABT flag, 17 km cell forward view</td>
<td>sl</td>
<td>n/a</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L2-AUX3-7</td>
<td>Threshold for ABT flag, 50 km cell nadir view</td>
<td>sl</td>
<td>n/a</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L2-AUX3-8</td>
<td>Threshold for ABT flag, 50 km cell forward view</td>
<td>sl</td>
<td>n/a</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L2-AUX3-18</td>
<td>MAX CELLS X</td>
<td>Number of 50 km cells across-track</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>L2-AUX3-19</td>
<td>MAX CELLS Y</td>
<td>Number of 50 km cells along-track</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>L2-AUX3-20</td>
<td>MX, j</td>
<td>Across-track origin of 50 km cells</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 4.12-2: Input Data Table - Spatial Averaging, 50 km cell.

<table>
<thead>
<tr>
<th>Parameter ID</th>
<th>Variable</th>
<th>Name</th>
<th>Type</th>
<th>Units</th>
<th>Field size</th>
<th>Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2-INT-101</td>
<td>4(1, n, i, j)</td>
<td>nadir ir12 Brightness Temperature</td>
<td>ss</td>
<td>0.01K</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-102</td>
<td>4(2, n, i, j)</td>
<td>nadir ir11 Brightness Temperature</td>
<td>ss</td>
<td>0.01K</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-103</td>
<td>4(3, n, i, j)</td>
<td>nadir ir37 Brightness Temperature</td>
<td>ss</td>
<td>0.01K</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-104</td>
<td>4(4, n, i, j)</td>
<td>nadir v16 Reflectance</td>
<td>ss</td>
<td>0.01%</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-105</td>
<td>4(5, n, i, j)</td>
<td>nadir v870 Reflectance</td>
<td>ss</td>
<td>0.01%</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-106</td>
<td>4(6, n, i, j)</td>
<td>nadir v670 Reflectance</td>
<td>ss</td>
<td>0.01%</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-107</td>
<td>4(7, n, i, j)</td>
<td>nadir v555 Reflectance</td>
<td>ss</td>
<td>0.01%</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-111</td>
<td>4(1, f, i, j)</td>
<td>forward ir12 Brightness Temperature</td>
<td>ss</td>
<td>0.01K</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-112</td>
<td>4(2, f, i, j)</td>
<td>forward ir11 Brightness Temperature</td>
<td>ss</td>
<td>0.01K</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-113</td>
<td>4(3, f, i, j)</td>
<td>forward ir37 Brightness Temperature</td>
<td>ss</td>
<td>0.01K</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-114</td>
<td>4(4, f, i, j)</td>
<td>forward v16 Reflectance</td>
<td>ss</td>
<td>0.01%</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-115</td>
<td>4(5, f, i, j)</td>
<td>forward v870 Reflectance</td>
<td>ss</td>
<td>0.01%</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-116</td>
<td>4(6, f, i, j)</td>
<td>forward v670 Reflectance</td>
<td>ss</td>
<td>0.01%</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-117</td>
<td>4(7, f, i, j)</td>
<td>forward v555 Reflectance</td>
<td>ss</td>
<td>0.01%</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-119</td>
<td>forward_fill_state(i, j)</td>
<td>nadir fill state indicator</td>
<td>byte</td>
<td>none</td>
<td>1</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-120</td>
<td>forward_fill_state(i, j)</td>
<td>forward fill state indicator</td>
<td>byte</td>
<td>none</td>
<td>1</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-121</td>
<td>nadir_land(i, j)</td>
<td>nadir view land flag</td>
<td>ss</td>
<td>array</td>
<td>flag</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-123</td>
<td>nadir_cloud(i, j)</td>
<td>nadir view cloud flag</td>
<td>ss</td>
<td>array</td>
<td>flag</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-124</td>
<td>fwdrd_land(i, j)</td>
<td>forward view land flag</td>
<td>ss</td>
<td>array</td>
<td>flag</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-125</td>
<td>fwdrd_cloud(i, j)</td>
<td>forward view cloud flag</td>
<td>ss</td>
<td>array</td>
<td>flag</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-126</td>
<td>image_latitude(i, j)</td>
<td>image pixel latitude</td>
<td>float degrees</td>
<td>4</td>
<td>j = 0, 511</td>
<td></td>
</tr>
<tr>
<td>L2-INT-127</td>
<td>image_longitude(i, j)</td>
<td>image pixel longitude</td>
<td>float degrees</td>
<td>4</td>
<td>j = 0, 511</td>
<td></td>
</tr>
<tr>
<td>L2-INT-128</td>
<td>nadir_band_centre_solar_elevation(i, k')</td>
<td>nadir band centre solar elevation(i, k')</td>
<td>float degrees</td>
<td>4</td>
<td>k' = 0, 9</td>
<td></td>
</tr>
<tr>
<td>L2-INT-129</td>
<td>fwdrd_band_centre_solar_elevation(i, k')</td>
<td>forward band centre solar elevation(i, k')</td>
<td>float degrees</td>
<td>4</td>
<td>k' = 0, 9</td>
<td></td>
</tr>
<tr>
<td>L2-INT-130</td>
<td>cell_latitude</td>
<td>pixel latitude transformed to cell units</td>
<td>float</td>
<td>cell</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>L2-INT-131</td>
<td>cell_longitude</td>
<td>pixel longitude transformed to cell units</td>
<td>float</td>
<td>cell</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>L2-INT-25</td>
<td>time[s]</td>
<td>scan UTC</td>
<td>double</td>
<td>days</td>
<td>8 per sg</td>
<td></td>
</tr>
<tr>
<td>L2-INT-132</td>
<td>scan_nadirflag(i, j)</td>
<td>nadir view instrument scan number</td>
<td>us</td>
<td>none</td>
<td>4</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-133</td>
<td>pxl_nadirflag(i, j)</td>
<td>nadir view instrument pixel number</td>
<td>us</td>
<td>none</td>
<td>4</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-134</td>
<td>scan_fwd flag(i, j)</td>
<td>forward view instrument scan number</td>
<td>us</td>
<td>none</td>
<td>4</td>
<td>j = 0, 511</td>
</tr>
</tbody>
</table>

L2-INT-155	pxl_fwrd(g, j)	forward instrument pixel number	us	none	4	j = 0, 511
L2-INT-600	band(i)	across-track band number	sl	none	4	512
local	i	image scan index	sl	none	4	
local	j	pixel index	sl	none	4	
local	ch	channel identifier	sl	none	4	
v	view identifier (nadir / forward)	sl	none	4		
sf	surface type identifier	sl	none	4		
cl	cloud state identifier	sl	none	4		
local	s	index to instrument scans	sl	none	4	
local	sg	index to ADS #4 records	sl	none	4	
local	k	sub-cell number	sl	none	4	
local	l	50 km cell index	sl	none	4	
local	m	50 km cell index	sl	none	4	
L2-INT-20	utcl(m, l)	50 km cell UTC	double	days	8	per cell
L2-INT-21	utccl(k, l, m)	57 km sub-cell UTC	double	days	8	k = 0, 8
L2-INT-62	sub_cell_lat(k, l, m)	sub-cell latitude (17 km)	sl	µdeg	4	
L2-INT-63	sub_cell_long(k, l, m)	sub-cell longitude	sl	µdeg	4	
L2-INT-64	sub_cell_band(k, l, m)	sub-cell across-track band	ss	none	2	
L2-INT-75	nadir_solar_el(k, l, m)	nadir solar elevation for sub-cell	float	degrees	4	
L2-INT-76	fwdr_solar_el(k, l, m)	fwdr solar elevation for sub-cell	float	degrees	4	
L2-INT-77	cell_lat(k, l)	cell latitude (50 km)	sl	µdeg	4	
L2-INT-78	cell_long(l, m)	cell longitude (50 km)	sl	µdeg	4	
L2-INT-79	nadir_day(k, l, m)	nadir view sub-cell day/night flag	ss	flag	2	k = 0, 8
L2-INT-80	fwdr_day(k, l, m)	forward view sub-cell day/night flag	ss	flag	2	k = 0, 8
L2-INT-66	S(ch, v; sf, cl, k, l, m)	sub-cell total ch = 1, ..., 7	si	n/a	4	
L2-INT-67	M(ch, v; sf, cl, k, l, m)	ch = 1, 2, 3, 4, 5, 6, 7	ss	none	2	
L2-INT-68	A(ch, v; sf, cl, k, l, m)	sub-cell brightness temperature average (For infra-red channels ch = 1, 2, 3)	si	0.001K	4	
L2-INT-69	A(ch, v; sf, cl, k, l, m)	sub-cell reflectance average (For visible channels ch = 4, 5, 6, 7)	ss	0.01%	2	
L2-INT-70	M(ch, v; sf, cl, l, m)	50 km cell pixel count, ch = 1, ..., 7	ss	none	2	
L2-INT-71	A(ch, v; sf, cl, l, m)	50 km cell brightness temperature average (For infra-red channels ch = 1, 2, 3)	si	0.001K	4	
L2-INT-72	A(ch, v; sf, cl, l, m)	50 km cell reflectance average (For visible channels ch = 4, 5, 6, 7)	ss	0.01%	2	
L2-INT-73	σ(ch, v; sf, cl, l, m)	standard deviation of the 50 km cell average	float	0.001K or 0.01%	4	
L2-INT-455	Nv; sf, cl, k, l, m	sub-cell filled pixel count	ss	none	2	
L2-INT-456	band_sum(k, l, m)	cumulative across-track band sum	si	none	4	
L2-INT-457	mean_band(k, l, m)	mean across-track band number	ss	none	2	
L2-INT-458	across_track_sum(sf, k, l, m)	cumulative sum of across-track pixel index	ss	none	2	
L2-INT-459	across_track_pixel(sf, k, l, m)	mean across-track pixel index, subcell k	ss	none	2	
L2-INT-468	across_track_mean(sf, k, l, m)	mean across-track pixel index, cell l, m	ss	none	2	
local	µ	number of sub-cells contributing to mean	sl	none	4	
L2-INT-81	PFF(v; sf, k, l, m)	Pixel threshold failure flags word, 30 arc minute cell	ss	flags	2	
L2-INT-82	PFF(v; sf, k, l, m)	Pixel threshold failure flags word, 10 arc minute sub-cell	ss	flags	2	
L2-INT-401	N_land; n; k, l, m	total filled pixels over land for subcell	ss	none	2	k = 0, 8
L2-INT-402	N_sea; n; k, l, m	total of filled pixels over sea for subcell	ss	none	2	k = 0, 8
L2-INT-403	N_total; n; k, l, m	total of filled pixels for subcell, nadir view	ss	none	2	k = 0, 8
L2-INT-404	pcs(n; k, l, m)	percentage of cloudy pixels over sea	ss	0.01%	2	k = 0, 8
L2-INT-405	pol(n; k, l, m)	percentage of cloudy pixels over land	ss	0.01%	2	k = 0, 8
L2-INT-406	N_total; n; k, l, m	total filled pixels over land for cell	ss	none	2	
L2-INT-407	N_sea; n; k, l, m	total of filled pixels over sea for cell	ss	none	2	
L2-INT-408	N_total; n; k, l, m	total of filled pixels for cell, nadir view	ss	none	2	
4.12.3 Detailed Structure

Each 50 km cell can be identified by a pair of indices \(l \) and \(m \) that are proportional, respectively, to the \(y \) and \(x \) co-ordinates of the lower left-hand corner of the cell. Thus if these co-ordinates are \(X \) and \(Y \), then

\[
X = (m - 5) \Delta X; \quad (m = 0, 1, \ldots, MAX_CELLS_X - 1)
\]

\[
Y = l \Delta Y; \quad (l = 0, 1, \ldots, MAX_CELLS_Y - 1)
\]

where \(\Delta X \) and \(\Delta Y \) are the dimensions of the cell. All internal variables associated with the averaged product algorithms are duplicated for each cell, and should be imagined to be virtually present in memory at all times for the purpose of algorithm definition.

Each cell is further subdivided into 9 sub-cells of dimensions \((\Delta X/3) \) and \((\Delta Y/3) \). The sub-cells within each cell are identified by an index \(k \) in the range 0 to 8 as follows:

<table>
<thead>
<tr>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

For the averaged channel values there are for each channel and for each view four cumulative sums, depending on surface type and cloud flag as follows:

- **sea, clear**
- **sea, cloud**
- **land, clear**
- **land, cloud**

We define a surface type flag = 0 (sea) or 1 (land) and a cloud state flag = 0 (clear) or 1 (cloud). For the purpose of indexing and identifying the AATSR channels, the following conventional numbering scheme will be adopted.

<table>
<thead>
<tr>
<th>Channel</th>
<th>Symbol</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 micron</td>
<td>(\text{ir12})</td>
<td>1</td>
</tr>
<tr>
<td>11 micron</td>
<td>(\text{ir11})</td>
<td>2</td>
</tr>
<tr>
<td>3.7 micron</td>
<td>(\text{ir37})</td>
<td>3</td>
</tr>
<tr>
<td>1.6 micron</td>
<td>(\text{v16})</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 4.12-2: Internal Data Table - Spatial Averaging, 50 km cell.
Each average is defined by a sum of the form

\[A(ch, v; sf, cl, k, l, m) = \left(\sum I(ch, v; i, j) \right) / M(ch, v; sf, cl, k, l, m) \]

where the sum is over all valid pixels which fall within the cell, are filled (or not unfilled), are valid and have the correct cloud/surface type flag. That is, the sum is over all values of \(i \) and \(j \) such that all four of the following conditions are satisfied;

- the pixel indexed by \(i \) and \(j \) falls within the sub-cell;
- \(\text{pixel_fill_state}(i, j) \) is not unfilled;
- \(I(ch, v; i, j) \) is valid
- surface type, cloud state, flags at \(i \) and \(j \) have the correct value.

A total of 56 sums and averages are calculated. A separate group of totals are calculated for each channel and view (nadir and forward), there being 14 channel/view combinations. For each combination of channel and view four totals are maintained, and 4 averages computed, corresponding to the four combinations of the cloud state and surface type flags.

for \(l = 0, 1, \ldots \) while not end of data
for \(m = 0, \text{MAX_CELLS_X} - 1 \)

Step 4.12.1 Derive channel totals for each cell

Perform steps 4.12.1.1 to 4.12.1.7 for each pixel that falls within the cell identified by indices \(l, m \) unless the pixel is unfilled in both images:

for \(i' = 0, \Delta Y - 1 \)
for \(j' = 0, \Delta X - 1 \)
\[
\begin{align*}
 i &= \Delta Y \cdot l + i' \\
 j &= \Delta X \cdot m + j_0 + j'
\end{align*}
\]

(Req 4.12-1)

Step 4.12.1.1 Identify cell and subcell indices and pixel state

Identify the \(i, j \) co-ordinates of the lower left corner of the cell; these are the minimum values of \(i, j \) that are still greater than \(l\Delta Y, m\Delta X + MX \) respectively.

\[
\begin{align*}
 \text{cell_lat}(l, m) &= 1000000. \times \text{image_latitude}(i, j) \\
 \text{cell_long}(l, m) &= 1000000. \times \text{image_longitude}(i, j)
\end{align*}
\]

evaluated at those values of \(i, j \).

The sub-cell index \(k \) is given by

\[k = 3 \times [i'/\Delta Y] + [j'/\Delta X] \]

where the inclusion of a quantity in square brackets implies that the integer part is to be taken.
If the pixel identified by \((i, j)\) is the first pixel (i.e. the leftmost) to fall within the cell \(l, m\), ensure that all counters and cumulative sums are initialised to zero as follows:

\[
S(ch, v; sf, cl, k, l, m) = 0.0 \\
M(ch, v; sf, cl, k, l, m) = 0 \\
N(v; sf, cl; k, l, m) = 0 \\
band_sum(k, l, m) = 0 \\
across_track_sum(sf; k, l, m) = 0 \text{ for each } k = 0, 8.
\]

If the pixel identified by \((i, j)\) is the first pixel to fall within this sub-cell, assemble the cell geolocation and allied information as follows:

The time tag associated with the sub-cell \([L2\text{-INT-21}]\) is derived from the scan number associated with the pixel \(i, j\), and with the scan times from ADS #4. Starting from the indices \(i, j\), derive the UTC time of the pixel in exactly the same way as described for the derivation of \(utc(cell)\) in Section 4.8.4 (Step 4.8.1.1), and assign it to \(utc(k, l, m)\) \([L2\text{-INT-21}]\).

If \(k = 0\) assign \([L2\text{-INT-20}]\)

\[utc(l, m) = utc(k, l, m).\]

Assign the cell positional information:

\[
sub_cell_lat(k, l, m) = 1000000. * \text{image_latitude}(i, j) \\
sub_cell_long(k, l, m) = 1000000. * \text{image_longitude}(i, j) \\
sub_cell_band(k, l, m) = \text{band}(j) \\
sub_cell_index(k, l, m) = i + [\Delta Y/6]
\]

(This is used in the LST calculation, Section 4.14. Note that in practice \([\Delta Y/6]\) equals 8, which is half the sub-cell dimension. The resulting along-track index refers to the mid-point of the sub-cell.)

\[
nadir_solar_el(k, l, m) = \text{nadir_band_centre_solar_elevation}(i, \text{band}(j)) \\
frwrd_solar_el(k, l, m) = \text{frwrd_band_centre_solar_elevation}(i, \text{band}(j)) \\
mean_band(k, l, m) = \text{band}(j + \Delta X/6)
\]

If \(<view>_\text{band_centre_solar_elevation}(i, \text{band}(j)) > 0.0\) then

\(<view>_\text{day}(k, l, m) = \text{TRUE}\)

otherwise

\(<view>_\text{day}(k, l, m) = \text{FALSE}\)

where \(<view> = \langle\text{nadir} | \text{frwrd}\rangle\).

(Req 4.12-1)

Step 4.12.1.2 Process nadir Pixels
Perform steps 4.12.3.1.3 and 4.12.3.1.4 to process the nadir pixels unless the nadir pixel is unfilled (i.e. unless \(\text{nadir_fill_state}(i, j) = \text{UNFILLED_PIXEL} \)) or \(m \) (computed as above) is out of range.

Step 4.12.1.3 Identify the surface type and cloud state associated with the nadir pixel:

\[
\begin{align*}
sf &= 0 \text{ if nadir view land flag } [L2-INT-232](i, j) = \text{FALSE} \\
sf &= 1 \text{ if nadir view land flag } [L2-INT-232](i, j) = \text{TRUE} \\
cl &= 0 \text{ if nadir view cloud flag } [L2-INT-233](i, j) = \text{FALSE} \\
cl &= 1 \text{ if nadir view cloud flag } [L2-INT-233](i, j) = \text{TRUE}.
\end{align*}
\]

Increment the pixel counters associated with the cloud state and surface type just determined:

\[
N(n; sf, cl, k, l, m) \leftarrow N(n; sf, cl, k, l, m) + 1
\]

If \(cl = 0 \) then increment the cumulative across-track index as follows:

\[
\text{across_track_sum}(sf; k, l, m) \leftarrow \text{across_track_sum}(sf; k, l, m) + j
\]

Step 4.12.1.4 Update nadir view channel totals

For each channel of the nadir view \(ch \) perform this step if the corresponding nadir pixel is valid:

\[
S(ch, n; sf, cl, k, l, m) \leftarrow S(ch, n; sf, cl, k, l, m) + I(ch, n; i, j) \\
M(ch, n; sf, cl, k, l, m) \leftarrow M(ch, n; sf, cl, k, l, m) + 1
\]

Step 4.12.1.5 Process forward Pixels:

Perform steps 4.12.3.1.6 and 4.12.3.1.7 to process the forward pixels unless the forward pixel is unfilled (i.e. unless \(\text{frwrd_fill_state}(i, j) = \text{UNFILLED_PIXEL} \)).

Step 4.12.1.6 Identify the surface type and cloud state associated with the forward pixel:

\[
\begin{align*}
sf &= 0 \text{ if frwrd cloud state land flag } [L2-INT-248](i, j) = \text{FALSE} \\
sf &= 1 \text{ if frwrd cloud state land flag } [L2-INT-248](i, j) = \text{TRUE} \\
cl &= 0 \text{ if frwrd cloud state cloud flag } [L2-INT-249](i, j) = \text{FALSE} \\
cl &= 1 \text{ if frwrd cloud state cloud flag } [L2-INT-249](i, j) = \text{TRUE}.
\end{align*}
\]

Increment the pixel counters associated with the cloud state and surface type just determined:

\[
N(f; sf, cl, k, l, m) \leftarrow N(f; sf, cl, k, l, m) + 1
\]

Step 4.12.1.7 Update forward view channel totals

For each channel of the forward view, perform the following steps if the corresponding forward pixel is valid:

\[
S(ch, f; sf, cl, k, l, m) \leftarrow S(ch, f; sf, cl, k, l, m) + I(ch, f; i, j) \\
M(ch, f; sf, cl, k, l, m) \leftarrow M(ch, f; sf, cl, k, l, m) + 1
\]
end for (loop over j’)
end for (loop over i’)

Step 4.12.2 Derive average values.

When no more pixels remain to be added to the cell, or at the end of the data set, compute the averages. The following equation is evaluated for each channel \(ch = \text{ir12, ir11, ir37, v16, v870, v670, v555}\), for each view \(v = n, f\), for surface type \(sf = 0, 1\) and for cloud state \(cl = 0, 1\)

If \(M\{ch, v; sf, cl, k, l, m\} > 0\)

\[
A(ch, v; sf, cl, k, l, m) = 10 \cdot S(ch, v; sf, cl, k, l, m) / M(ch, v; sf, cl, k, l, m)
\]

(note the conversion to units of 0.001 K) otherwise set

\[
A(ch, v; sf, cl, k, l, m) = -1.0
\]

The mean in the larger (50 km) cell is given by

\[
\bar{A}(ch, v; sf, cl, l, m) = \frac{1}{\mu} \sum_k A(ch, v; sf, cl, k, l, m) \text{ if } \mu > 0
\]

\[
\bar{A}(ch, v; sf, cl, l, m) = -1 \text{ if } \mu = 0
\]

where the sum is over all \(k \in \{0 \leq k \leq 8\}\) having a valid subcell mean \(A\) and \(\mu\) is the number of such valid means. The number of pixels that contribute to the mean is similarly

\[
\bar{M}(ch, v; sf, cl, l, m) = \sum_k M(ch, v; sf, cl, k, l, m)
\]

The standard deviation of the mean is

\[
\sigma(ch, v; sf, cl, l, m) = \left\{ \frac{1}{\mu - 1} \sum_k (A(ch, v; sf, cl, k, l, m) - \bar{A}(ch, v; sf, cl, l, m))^2 \right\}^{1/2}
\]

provided \(\mu > 1\), otherwise set the standard deviation to -1. In all cases the sum is over sub-cells having valid means (i.e the number of contributing pixels \(M\) is positive).

(Req 4.12-3)

The mean across-track pixel number [L2-INT-459] is calculated for each sub-cell \(k = 0, 8\) and for each surface type \(sf = 0, 1\):

If \(N(n; sf, 0, k, l, m) > 0\) then set

\[
\text{across_track_mean}(sf, k, l, m) = \text{integer part of} \left(\frac{\text{across_track_sum}(sf; k, l, m)}{N(n; sf, 0, k, l, m)} \right)
\]

otherwise set

\[
\text{across_track_mean}(sf, k, l, m) = -1
\]

The mean to be associated with the 30 arc minute cell is [L2-INT-468]
across_track_mean(sf; l, m) = \frac{1}{\mu} \sum_k across_track_mean(sf; k, l, m) \text{ if } \mu > 0

across_track_mean(sf; l, m) = -1 \text{ if } \mu = 0

where the sum is over all \(k \in \{0 \leq k \leq 8\} \) for which the number of contributing pixels

\(N(n; sf, 0, k, l, m) > 0 \)

and \(\mu \) is the number of valid \(k \).

(Req 4.12-3.1)

Step 4.12.3 Derive Pixel Threshold Failure Flags Words (17 km cell)

For cell \(l, m \) and for each sub-cell \(k = 0, 9 \):

For surface type \(sf = 0, 1 \) and for the nadir view \(v = n \):

\[
\begin{align*}
[PFF(n, sf; k, l, m)](bit 0) &= 1 \text{ if } M(ir12, n; sf, 0, k, l, m) < [L2-AUX3-5], \text{ otherwise } 0 \\
[PFF(n, sf; k, l, m)](bit 1) &= 1 \text{ if } M(ir11, n; sf, 0, k, l, m) < [L2-AUX3-5], \text{ otherwise } 0 \\
[PFF(n, sf; k, l, m)](bit 2) &= 1 \text{ if } M(ir37, n; sf, 0, k, l, m) < [L2-AUX3-5], \text{ otherwise } 0 \\
[PFF(n, sf; k, l, m)](bit 3) &= 1 \text{ if } M(v16, n; sf, 0, k, l, m) < [L2-AUX3-5], \text{ otherwise } 0 \\
[PFF(n, sf; k, l, m)](bit 4) &= 1 \text{ if } M(v870, n; sf, 0, k, l, m) < [L2-AUX3-5], \text{ otherwise } 0 \\
[PFF(n, sf; k, l, m)](bit 5) &= 1 \text{ if } M(v670, n; sf, 0, k, l, m) < [L2-AUX3-5], \text{ otherwise } 0 \\
[PFF(n, sf; k, l, m)](bit 6) &= 1 \text{ if } M(v555, n; sf, 0, k, l, m) < [L2-AUX3-5], \text{ otherwise } 0 \\
[PFF(n, sf; k, l, m)](bit 7) &= 1 \text{ if } M(ir12, n; sf, 1, k, l, m) < [L2-AUX3-5], \text{ otherwise } 0 \\
[PFF(n, sf; k, l, m)](bit 8) &= 1 \text{ if } M(ir11, n; sf, 1, k, l, m) < [L2-AUX3-5], \text{ otherwise } 0 \\
[PFF(n, sf; k, l, m)](bit 9) &= 1 \text{ if } M(ir37, n; sf, 1, k, l, m) < [L2-AUX3-5], \text{ otherwise } 0 \\
[PFF(n, sf; k, l, m)](bit 10) &= 1 \text{ if } M(v16, n; sf, 1, k, l, m) < [L2-AUX3-5], \text{ otherwise } 0 \\
[PFF(n, sf; k, l, m)](bit 11) &= 1 \text{ if } M(v870, n; sf, 1, k, l, m) < [L2-AUX3-5], \text{ otherwise } 0 \\
[PFF(n, sf; k, l, m)](bit 12) &= 1 \text{ if } M(v670, n; sf, 1, k, l, m) < [L2-AUX3-5], \text{ otherwise } 0 \\
[PFF(n, sf; k, l, m)](bit 13) &= 1 \text{ if } M(v555, n; sf, 1, k, l, m) < [L2-AUX3-5], \text{ otherwise } 0 \\
[PFF(n, sf; k, l, m)](bit 14) &= 1 \text{ if } \text{nadir_day}(k, l, m) = \text{TRUE}, \text{ otherwise } 0 \\
[PFF(n, sf; k, l, m)](bit 15) &= 0
\end{align*}
\]

(Req 4.12-4)

Similarly for surface type \(sf = 0, 1 \) and for the forward view \(v = f \)

Calculate the corresponding word \(PFF(f, sf; k, l, m) \):

Set bits 0 to 13 inclusive as above, substituting the view index \(f \) in place of \(n \), and substituting the forward threshold value \([L2-AUX3-6]\) in place of \([L2-AUX3-5]\).

\[
[PFF(f, sf; k, l, m)](bit 14) = 1 \text{ if } \text{frwrd_day}(k, l, m) = \text{TRUE}, \text{ otherwise } 0
\]
Step 4.12.4 Derive Pixel Threshold Failure Flags Words (50 km cells)

For each cell \(l, m\):

For surface type \(sf = 0, 1\) and for the nadir view \(v = n\):

\[
PFF(n, sf; l, m)(\text{bit } 0) = 1 \text{ if }
\tilde{M}(ir_{12}, n; sf, 0, l, m) < [L2-AUX3-7], \text{ otherwise } 0
\]

\[
PFF(n, sf; l, m)(\text{bit } 1) = 1 \text{ if }
\tilde{M}(ir_{11}, n; sf, 0, l, m) < [L2-AUX3-7], \text{ otherwise } 0
\]

\[
PFF(n, sf; l, m)(\text{bit } 2) = 1 \text{ if }
\tilde{M}(ir_{37}, n; sf, 0, l, m) < [L2-AUX3-7], \text{ otherwise } 0
\]

\[
PFF(n, sf; l, m)(\text{bit } 3) = 1 \text{ if }
\tilde{M}(v_{16}, n; sf, 0, l, m) < [L2-AUX3-7], \text{ otherwise } 0
\]

\[
PFF(n, sf; l, m)(\text{bit } 4) = 1 \text{ if }
\tilde{M}(v_{870}, n; sf, 0, l, m) < [L2-AUX3-7], \text{ otherwise } 0
\]

\[
PFF(n, sf; l, m)(\text{bit } 5) = 1 \text{ if }
\tilde{M}(v_{670}, n; sf, 0, l, m) < [L2-AUX3-7], \text{ otherwise } 0
\]

\[
PFF(n, sf; l, m)(\text{bit } 6) = 1 \text{ if }
\tilde{M}(v_{555}, n; sf, 0, l, m) < [L2-AUX3-7], \text{ otherwise } 0
\]

\[
PFF(n, sf; l, m)(\text{bit } 7) = 1 \text{ if }
\tilde{M}(v_{12}, n; sf, 1, l, m) < [L2-AUX3-7], \text{ otherwise } 0
\]

\[
PFF(n, sf; l, m)(\text{bit } 8) = 1 \text{ if }
\tilde{M}(v_{870}, n; sf, 1, l, m) < [L2-AUX3-7], \text{ otherwise } 0
\]

\[
PFF(n, sf; l, m)(\text{bit } 9) = 1 \text{ if }
\tilde{M}(v_{670}, n; sf, 1, l, m) < [L2-AUX3-7], \text{ otherwise } 0
\]

\[
PFF(n, sf; l, m)(\text{bit } 10) = 1 \text{ if }
\tilde{M}(v_{16}, n; sf, 1, l, m) < [L2-AUX3-7], \text{ otherwise } 0
\]

\[
PFF(n, sf; l, m)(\text{bit } 11) = 1 \text{ if }
\tilde{M}(v_{870}, n; sf, 1, l, m) < [L2-AUX3-7], \text{ otherwise } 0
\]

\[
PFF(n, sf; l, m)(\text{bit } 12) = 1 \text{ if }
\tilde{M}(v_{670}, n; sf, 1, l, m) < [L2-AUX3-7], \text{ otherwise } 0
\]

\[
PFF(n, sf; l, m)(\text{bit } 13) = 1 \text{ if }
\tilde{M}(v_{555}, n; sf, 1, l, m) < [L2-AUX3-7], \text{ otherwise } 0
\]

\[
PFF(n, sf; l, m)(\text{bit } 14) = 1 \text{ if } \text{nadir_day}(k, l, m) = \text{TRUE for some } k, \text{ otherwise } 0
\]

\[
PFF(n, sf; l, m)(\text{bit } 15) = 0
\]

(Req 4.12-5)

Similarly for surface type \(sf = 0, 1\) and for the forward view \(v = f\)

Calculate the corresponding word \(PFF(f, sf; l, m)\):

Set bits 0 to 13 inclusive as above, substituting the view index \(f\) in place of \(n\), and substituting the forward threshold value \([L2-AUX3-8]\) in place of \([L2-AUX3-7]\).

\[
PFF(f, sf; k, l, m)(\text{bit } 14) = 1 \text{ if } \text{frwrd_day}(k, l, m) = \text{TRUE for some } k, \text{ otherwise } 0
\]

\[
PFF(f, sf; k, l, m)(\text{bit } 15) = 0
\]

(Req 4.12-6)

Step 4.12.5. Derive pixel counts for cell

For each cell \(l, m\) and for each view \(v = n, f\):

For each subcell \(k = 0, 8\):
Total of filled pixels over land:
\[N_{\text{land}}(v; k, l, m) = N(v; 1, 0, k, l, m) + N(v; 1, 1, k, l, m) \]
(Req 4.12-7)

Total of filled pixels over sea:
\[N_{\text{sea}}(v; k, l, m) = N(v; 0, 0, k, l, m) + N(v; 0, 1, k, l, m) \]
(Req 4.12-8)

Total of filled pixels:
\[N_{\text{total}}(v; k, l, m) = N_{\text{land}}(v; k, l, m) + N_{\text{sea}}(v; k, l, m) \]
(Req 4.12-9)

Derive cloudy pixel percentages for each sub-cell:
\[\text{pcs}(v; k, l, m) = 10000 \times \frac{N(v; 0, 1, k, l, m)}{N_{\text{sea}}(v; k, l, m)} \]
\[\text{pcl}(v; k, l, m) = 10000 \times \frac{N(v; 1, 1, k, l, m)}{N_{\text{land}}(v; k, l, m)} \]
(Req 4.12-10)

end for \((k)\)

Derive aggregate counts:
Total of filled pixels over land:
\[N_{\text{land}}(v; l, m) = \sum_{k=0}^{8} N_{\text{land}}(v; k, l, m) \]
(Req 4.12-11)

Total of filled pixels over sea:
\[N_{\text{sea}}(v; l, m) = \sum_{k=0}^{8} N_{\text{sea}}(v; k, l, m) \]
(Req 4.12-12)

Total of filled pixels:
\[N_{\text{total}}(v; l, m) = N_{\text{land}}(v; l, m) + N_{\text{sea}}(v; l, m) \]
(Req 4.12-13)

Derive cloudy pixel percentages for the cell:
\[\text{pcs}(v; l, m) = 10000 \times \left(\sum_{k=0}^{8} \frac{N(v; 0, 1, k, l, m)}{N_{\text{sea}}(v; l, m)} \right) \]
\[\text{pcl}(v; l, m) = 10000 \times \left(\sum_{k=0}^{8} \frac{N(v; 1, 1, k, l, m)}{N_{\text{land}}(v; l, m)} \right) \]
(Req 4.12-14)

end for \((l, m, v)\)
4.13 Module Definition: Averaged SST Retrieval (50 km Cell)

4.13.1 Functional Description

This module derives the averaged SST from the averaged brightness temperatures determined using the module described in Section 4.12 above.

4.13.2 Interface Definition

<table>
<thead>
<tr>
<th>Parameter ID</th>
<th>Variable</th>
<th>Name</th>
<th>Type</th>
<th>Units</th>
<th>Field size</th>
<th>Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2-AUX2-1</td>
<td>a[0][0]</td>
<td>averaged sst retrieval</td>
<td>float</td>
<td>K/100</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX2-2</td>
<td>a[0][1]</td>
<td>averaged sst retrieval</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX2-3</td>
<td>a[0][2]</td>
<td>averaged sst retrieval</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX2-4</td>
<td>b[0][0]</td>
<td>averaged sst retrieval</td>
<td>float</td>
<td>K/100</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX2-5</td>
<td>b[0][1]</td>
<td>averaged sst retrieval</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX2-6</td>
<td>b[0][2]</td>
<td>averaged sst retrieval</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX2-7</td>
<td>b[0][3]</td>
<td>averaged sst retrieval</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX2-8</td>
<td>c[0][0]</td>
<td>averaged sst retrieval</td>
<td>float</td>
<td>K/100</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX2-9</td>
<td>c[0][1]</td>
<td>averaged sst retrieval</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX2-10</td>
<td>c[0][2]</td>
<td>averaged sst retrieval</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX2-11</td>
<td>c[0][3]</td>
<td>averaged sst retrieval</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX2-12</td>
<td>c[0][4]</td>
<td>averaged sst retrieval</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX2-13</td>
<td>d[0][0]</td>
<td>averaged sst retrieval</td>
<td>float</td>
<td>K/100</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX2-14</td>
<td>d[0][1]</td>
<td>averaged sst retrieval</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX2-15</td>
<td>d[0][2]</td>
<td>averaged sst retrieval</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX2-16</td>
<td>d[0][3]</td>
<td>averaged sst retrieval</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX2-17</td>
<td>d[0][4]</td>
<td>averaged sst retrieval</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX2-18</td>
<td>d[0][5]</td>
<td>averaged sst retrieval</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX2-19</td>
<td>d[0][6]</td>
<td>averaged sst retrieval</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>114</td>
</tr>
<tr>
<td>L2-AUX6-1</td>
<td>j</td>
<td>pixel index</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>512</td>
</tr>
<tr>
<td>L2-AUX6-2</td>
<td>map(j)</td>
<td>Across-track band index</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>512</td>
</tr>
<tr>
<td>L2-AUX3-10</td>
<td>ast</td>
<td>AST Cell dimension</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>L2-AUX3-11</td>
<td>trop</td>
<td>TROPICAL_INDEX</td>
<td>float</td>
<td>degrees</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>L2-AUX3-12</td>
<td>tem</td>
<td>TEMPERATE_INDEX</td>
<td>float</td>
<td>degrees</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>L2-AUX3-13</td>
<td>pol</td>
<td>POLAR_INDEX</td>
<td>float</td>
<td>degrees</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>L2-AUX3-14</td>
<td>nad</td>
<td>NADIR_PIXELS_THRESH</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>L2-AUX3-15</td>
<td>frw</td>
<td>FRWRD_PIXELS_THRESH</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>L2-AUX3-16</td>
<td>r3</td>
<td>IR37_THRESH</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 4.13.1: Input Data Table - Averaged SST Retrieval
Note on notation: In the following we adopt the following abbreviated notation for the associated with, the necessary intermediate and output variables including the averaged sst retrieval coefficients.

L2-INT-73	\(\sigma(ch; v, sf, cl, l, m) \)	standard deviation of the cell average	float	0.01K or 0.01%	4	
L2-INT-79	nadir_day(k, l, m)	nadir view sub-cell day/night flag	ss	flag	2	k = 0, 8
L2-INT-80	fward_day(k, l, m)	forward view sub-cell day/night flag	ss	flag	2	k = 0, 8
L2-INT-81	b(i, j, q)	averaged sst retrieval a coefficients	float	mixed	4	342
L2-INT-82	c(i, j, q)	averaged sst retrieval b coefficients	float	mixed	4	456
L2-INT-83	d(i, j, q)	averaged sst retrieval c coefficients	float	mixed	4	570
L2-INT-87	\(\sigma_{nadir}(ASST; l, m) \)	standard deviation of nadir view ASST	ss	flag	2	k = 0, 8

Table 4.13-2: Internal Data Table - Averaged SST Retrieval

4.13.3 Detailed Structure

Both dual-view and nadir only sea surface temperatures are derived.

In the processing, each half-degree cell is represented by a structure containing, or is associated with, the necessary intermediate and output variables including the averaged brightness temperatures for each 10 arc-minute cell contained within the larger cell. All cells should be virtually present in memory, but how this is achieved is a matter for the implementer.

Note on notation: In the following we adopt the following abbreviated notation for the average brightness temperatures.

\[
\tau_{ch}^{\text{nadir}} = \frac{\text{float}(S(ch,n;0,0,k,l,m))}{\text{float}(M(ch,n;0,0,k,l,m))}
\]
where \(ch \) indicates one of the seven channels. This notation is adopted to reduce the proliferation of indices; note that where it is used, a dependence on \(k, l \) and \(m \) is implied. Note also that the above quantities must be computed using a floating point computation, although \(S \) and \(M \) are of type integer, to ensure that sufficient precision is maintained. Substitution of the quantities \(A(ch, f; 0, 0, k, l, m) \) would not ensure this.

Processing is applied to cells for which the processing of Step 4.12.1 is complete; i.e. no more pixels remain to be added to the cell.

The processing to derive averaged SST is done as follows:

Step 4.13.1 Read look-up tables.

On first entry, input the look-up tables of averaged SST retrieval coefficients.

This is done once at initialisation. Retrieval coefficients are specified for three latitude zones (tropical, temperate and polar) and for 38 bands or strips running parallel to the ground track, and corresponding to different viewing angles. Distinct sets of coefficients are supplied for day/night and for nadir only/dual view retrievals, as follows.

<table>
<thead>
<tr>
<th>Index</th>
<th>Zone</th>
<th>Set</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>tropical</td>
<td>a</td>
<td>nadir only, day</td>
</tr>
<tr>
<td>1</td>
<td>temperate</td>
<td>b</td>
<td>nadir only, night</td>
</tr>
<tr>
<td>2</td>
<td>polar</td>
<td>c</td>
<td>dual view, day</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d</td>
<td>dual view, night</td>
</tr>
</tbody>
</table>

Before reading the retrieval coefficients ensure that the mapping array \(map(j) \) \([L2-INT-61]\) is available. This has been read in during Step 4.6.1. If it is desired to re-input it independently in this module then proceed as before: Open the data set \(L2-AUX6 \) and set

\[map(j) = [L2-AUX6-2](j), j = 0, 511 \]

(Note that \([L2-AUX6-1](j) = j, j = 0, 511\).)

Open the file of retrieval coefficients to access data set \(L2-AUX2 \).

For each latitude zone \(i = 0, 1, 2 \) (outer loop) and for each across-track band \(j = 0 \) to 37 (inner loop);

Read in next record of file.

Extract the \(a \) coefficients \([L2-INT-460]\) as follows

\[a(i, j, 0) = [L2-AUX2-1] \]
\[a(i, j, 1) = [L2-AUX2-2] \]
\[a(i, j, 2) = [L2-AUX2-3] \]

Similarly extract in the \(b, c \) and \(d \) sets of coefficients:

\[b(i, j, q) = [L2-AUX2-<4 + q>], q = 0, 1, 2, 3; \]
\[c(i, j, q) = [L2-AUX2-<8 + q>], q = 0, 1, 2, 3 4; \]
\[d(i, j, q) = [L2-AUX2-<13 + q>], q = 0, 1, 2, 3, 4, 5, 6. \]

(Note that if the retrieval coefficients have already been read in at Step 4.9.1 and are still available, they need not be read again. Instead the values \([L2-INT-460]\) to \([L2-INT-363]\) may...
be equated to [L2-INT-360] to [L2-INT-363] respectively. There is only one set of averaged retrieval coefficients.)

(Req 4.13-1)

Step 4.13.2 Nadir view average.

Calculate the nadir view averaged SST value for each of the 10-arcmin cells. Note that in the following, if the flags \textit{nadir_asst_uses_ir37}, \textit{dual_asst_uses_ir37} are initialised to the value \textit{FALSE}, then Reqs. 4-13-2a, 4-13-9a are logically redundant.

Step 4.13.2.1

Determine the minimum number of pixels required for the cell, for the nadir. This is

\[\text{minpn} = 340 \times \text{NADIR_PIXELS_THRESH} + 1. \]

(No latitude dependence is required here as sub-cell size is independent of latitude.)

If \(M(\text{ir12}, n; 0, 0, k, l, m) \geq \text{minpn} \) and \(M(\text{ir11}, n; 0, 0, k, l, m) \geq \text{minpn} \) proceed to calculate the retrieved sst as below, otherwise set

\[T_{\text{nadir}}(k, l, m) = -1.0 \]

\[\text{nadir_asst_uses_ir37}(k, l, m) = \text{FALSE} \]

(Req 4.13-2)

(Req 4-13-2a)

Step 4.13.2.2

For night-time data, if \(\text{nadir_day}(k, l, m) = \text{FALSE} \), test whether the ratio of pixels with valid 3.7 µm data is greater or less than the threshold value and use the appropriate (two or three channel) SST algorithm. The 3.7 micron channel is valid if

\[\text{float}\{M(\text{ir37}, n; 0, 0, k, l, m)\} / \text{float}\{M(\text{ir11}, n; 0, 0, k, l, m)\} \geq \text{IR37_THRESH}. \]

Otherwise use the two-channel algorithm. The two-channel algorithm is always used for day-time data, that is, if \(\text{nadir_day}(k, l, m) = \text{TRUE} \).

Step 4.13.2.3

Calculate the averaged SST using the nadir-view retrieval coefficients for the appropriate across-track band given by \(j = \text{map}(\text{across_track_mean}(0; k, l, m)) \) and for the two or three channel algorithm as appropriate, for each latitude zone \(i = 0, 1, 2 \):

Step 4.13.2.3.1

Perform this step if the 3.7 micron channel is not available for use.

The equation for use with the nadir view is

\[T_{\text{nadir}}^{\text{sst}, i} = 100.0a_0 + a_1T_{\text{nadir}}^{\text{ir11}} + a_2T_{\text{nadir}}^{\text{ir12}} \]

where

\[a_q = a(i, j, q). \]

(Req 4.13-3)
(Here and elsewhere in this module the factor of 100 is to ensure consistency of units between the brightness temperatures, in units of 0.01K, and the leading coefficient, in K.)

Set
\[\text{nadir_asst_uses_ir37}(k, l, m) = \text{FALSE} \]

(Req 4.13-3.1)

Step 4.13.2.3.2

Perform this step if the 3.7 micron channel is to be used.

The equation for use with the nadir view is
\[T_{\text{nadir}}^{s} = 100.0b_0 + b_1 T_{\text{ir}11}^{\text{nadir}} + b_2 T_{\text{ir}12}^{\text{nadir}} + b_3 T_{\text{ir}37}^{\text{nadir}} \]

where
\[b_q = b(i, j, q). \]

(Req 4.13-4)

(As before, the factor of 100 is to ensure consistency of units.)

Set
\[\text{nadir_asst_uses_ir37}(k, l, m) = \text{TRUE} \]

(Req 4.13-4.1)

Step 4.13.2.4

Return latitude-corrected SST (with linear interpolation).

If the cell is in the polar or tropical zone, return the corresponding retrieval. If the cell is in the temperate zone, use linear interpolation with respect to latitude to derive the averaged SST from the values for the temperate zone and the appropriate adjacent zone.

If \(\text{abs(latitude)} < \text{TROPICAL_INDEX} \) then
\[T_{\text{nadir}}(k, l, m) = T_{\text{sst},0}^{\text{nadir}} \]

(Req 4.13-5)

If \(\text{TROPICAL_INDEX} \leq \text{abs(latitude)} < \text{TEMPERATE_INDEX} \), the final value for the retrieved \(\text{sst} \) is given by
\[T_{\text{nadir}}(k, l, m) = T_{\text{sst},0}^{\text{nadir}} + w \cdot (T_{\text{sst},1}^{\text{nadir}} - T_{\text{sst},0}^{\text{nadir}}) \]

(Req 4.13-6)

where
\[w = \frac{(\text{abs(latitude)} - \text{TROPICAL_INDEX})}{(\text{TEMPERATE_INDEX} - \text{TROPICAL_INDEX})} \]

If the \(\text{TEMPERATE_INDEX} \leq \text{abs(latitude)} < \text{POLAR_INDEX} \), but not less than, the final value for the retrieved \(\text{sst} \) is given by
\[T_{\text{nadir}}(k, l, m) = T_{\text{sst},1}^{\text{nadir}} + w \cdot (T_{\text{sst},2}^{\text{nadir}} - T_{\text{sst},1}^{\text{nadir}}) \]

(Req 4.13-7)

where
\[w = \frac{(\text{abs(latitude)} - \text{TEMPERATE_INDEX})}{(\text{POLAR_INDEX} - \text{TEMPERATE_INDEX})} \]

If \(\text{POLAR_INDEX} \leq \text{abs(latitude)} \)

\[T_{\text{nadir}}(k,l,m) = T_{\text{sst,2}} \]

(Req 4.13-8)

Step 4.13.3 Dual view average.

Calculate the dual view averaged SST value for the 10-arcmin cells.

Step 4.13.3.1

Determine the minimum numbers of pixels required for the cell, for both. The threshold for the nadir view is \(\text{minpn} \) calculated as above. That for the forward view is

\[\text{minpf} = 340 \times \text{FRWRD_PIXELS_THRESH} + 1. \]

If the number of valid pixels in the either view is less than the threshold value calculated, move to the next 17 km cell.

If

\[M(ir_{12}, n; 0, 0, k, l, m) \geq \text{minpn} \text{ and } M(ir_{11}, n; 0, 0, k, l, m) \geq \text{minpn} \]

and

\[M(ir_{12}, f; 0, 0, k, l, m) \geq \text{minpf} \text{ and } M(ir_{11}, f; 0, 0, k, l, m) \geq \text{minpf} \]

proceed to calculate the retrieved sst as below, otherwise set

\[T_{\text{dual}}(k, l, m) = -1. \]

(Req 4.13-9)

\[\text{dual_asst_uses_ir37}(k, l, m) = \text{FALSE} \]

(Req 4-13-9a)

Step 4.13.3.2

For night-time data, defined by the condition

\(\text{nadir_day}(k, l, m) = \text{FALSE} \text{ and } \text{frwrd_day}(k, l, m) = \text{FALSE} \),

test whether the ratio of pixels with valid 3.7 µm data in the two views is greater or less than the threshold value and use the appropriate (two or three channel) SST algorithm. The 3.7 micron channel is valid if

\[\text{float}\{M(ir_{37}, n; 0, 0, k, l, m) + M(ir_{37}, f; 0, 0, k, l, m)\} / \text{float}\{M(ir_{11}, n; 0, 0, k, l, m) + M(ir_{11}, f; 0, 0, k, l, m)\} \geq \text{IR37_THRESH}. \]

Otherwise use the two-channel algorithm. The two-channel algorithm is always used for day-time data, defined by the condition

\(\text{nadir_day}(k, l, m) = \text{TRUE} \text{ or } \text{frwrd_day}(k, l, m) = \text{TRUE} \).

(Req 4.13-10)

Step 4.13.3.3
Calculate the averaged SST using the dual-view retrieval coefficients for the appropriate across-track band given by $j = \text{map(across_track_mean(0; k, l, m)}$ and for the two or three channel algorithm as appropriate, for each latitude zone.

(Req 4.13-11)

Step 4.13.3.3.1

Perform this step if the 3.7 micron channel is not available for use.

The algorithm using both views is given by

$$T_{\text{sst},i}^{\text{dual}} = 100.0c_0 + c_1T_{\mu_1}^{\text{nadir}} + c_2T_{\mu_2}^{\text{nadir}} + c_3T_{\mu_3}^{\text{frwrd}} + c_4T_{\mu_3}^{\text{frwrd}}$$ (Req 4.13-12)

where

$$c_q = c(i, j, q).$$

Set

$$\text{dual_asst_uses_ir37}(k, l, m) = \text{FALSE}$$

(Req 4.13-12.1)

Step 4.13.3.3.2

Perform this step if the 3.7 micron channel is to be used.

$$T_{\text{sst},i}^{\text{dual}} = 100.0d_0 + d_1T_{\mu_1}^{\text{nadir}} + d_2T_{\mu_2}^{\text{nadir}} + d_3T_{\mu_3}^{\text{frwrd}} + d_4T_{\mu_3}^{\text{frwrd}} + d_5T_{\mu_3}^{\text{frwrd}}$$ (Req 4.13-13)

where

$$d_q = d(i, j, q).$$

Set

$$\text{dual_asst_uses_ir37}(k, l, m) = \text{TRUE}$$

(Req 4.13-13.1)

Step 4.13.3.4

Return latitude-corrected SST (with linear interpolation).

If $\text{abs(latitude)} < \text{TROPICAL_INDEX}$ then

$$T_{\text{-_ dual}}(k, l, m) = T_{\text{sst,0}}^{\text{dual}}$$ (Req 4.13-14)

If $\text{TROPICAL_INDEX} \leq \text{abs(latitude)} < \text{TEMPERATE_INDEX}$, the final value for the retrieved sst is given by

$$T_{\text{-_ dual}}(k, l, m) = T_{\text{sst,0}}^{\text{dual}} + w \cdot (T_{\text{sst,1}}^{\text{dual}} - T_{\text{sst,0}}^{\text{dual}})$$ (Req 4.13-15)

where

$$w = \frac{(\text{abs(latitude)} - \text{TROPICAL_INDEX})}{(\text{TEMPERATE_INDEX} - \text{TROPICAL_INDEX})}$$
If the TEMPERATE_INDEX ≤ abs(latitude) < POLAR_INDEX the but not less than, the final value for the retrieved SST is given by

\[T_{\text{dual}}(k,l,m) = T_{\text{sst,1}}^{\text{dual}} + w \cdot (T_{\text{sst,2}}^{\text{dual}} - T_{\text{sst,1}}^{\text{dual}}) \]

(Req 4.13-16)

where

\[w = \frac{(\text{abs(latitude)} - \text{TEMPERATE_INDEX})}{(\text{POLAR_INDEX} - \text{TEMPERATE_INDEX})} \]

If POLAR_INDEX ≤ abs(latitude)

\[T_{\text{dual}}(k,l,m) = T_{\text{sst,2}}^{\text{dual}} \]

(Req 4.13-17)

Step 4.13.4

From up to nine 17 km cells within the 50 km cell, derive the mean nadir view SST for the 50 km cell, and the standard deviation of the 17 km SST values. Repeat for the dual-view retrieval. That is

\[T_{\text{nadir}}(l,m) = \frac{1}{\mu_1} \sum_k T_{\text{nadir}}(k,l,m) \]

\[T_{\text{dual}}(l,m) = \frac{1}{\mu_2} \sum_k T_{\text{dual}}(k,l,m) \]

(Req 4.13-18)

where in each case the sum is over all values of k for which the respective sub-cell temperature is valid (i.e. has a positive value), and where \(\mu_1 \) and \(\mu_2 \) are the numbers of such valid temperatures in the nadir and forward views respectively. If either of the values \(\mu_1 \) or \(\mu_2 \) is zero, set the corresponding temperature to \(-1\).

The mean across-track pixel number to be associated with the 50 km SST is \([L2-INT-469]\)

\[sst_mean_pixel(0; l, m) = \frac{1}{\mu_1} \sum_k \text{across}_track_mean(0; k, l, m) \text{ if } \mu_1 > 0 \]

\[sst_mean_pixel(0; l, m) = -1 \text{ if } \mu_1 = 0 \]

where the sum is over all \(k \in \{0 \leq k \leq 8\} \) for which corresponding SST \(T_{\text{nadir}}(k, l, m) \) is valid (not equal to \(-1\)).

Step 4.13.5 Prepare the confidence flag word for the cell.

The confidence flag word for the sub-cell indexed by \((k, l, m) \) should be prepared as follows:

- Set bit 0 if 3-channel algorithm was used at Step 4.13.2.2.2, i.e. if \(\text{nadir_asst_uses_ir37}(k, l, m) = \text{TRUE} \), otherwise clear bit.

- Set bit 1 if 3-channel algorithm was used at Step 4.13.2.3.2, i.e. if \(\text{dual_asst_uses_ir37}(k, l, m) = \text{TRUE} \), otherwise clear bit.

- Set bit 2 if \(\text{nadir_day}(k, l, m) \) from §4.12.3 is TRUE, otherwise clear bit.
Set bit 3 if \(frwd_day(k, l, m) \) from §4.12.3 is TRUE, otherwise clear bit.

The confidence flag word for the half-degree cell indexed by \(l, m \) will be derived by ORing together the words for those sub-cells \((k, l, m), k = 0, \ldots, 8\), for which a valid temperature was derived.

(Req 4.13-19)

4.14 Module Definition: Averaged LST and NDVI Retrieval (50 km Cell)

4.14.1 Functional Description

The Land Surface Temperature (LST) and Normalised Difference Vegetation Index (NDVI) are calculated for each sub-cell for which average reflectances over land have been calculated. The averaged LST and NDVI over all the subcells, and their standard deviation, are also computed.

4.14.2 Interface Definition

<table>
<thead>
<tr>
<th>Parameter ID</th>
<th>Variable</th>
<th>Name</th>
<th>Type</th>
<th>Units</th>
<th>Field size</th>
<th>Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2-AUX3-14</td>
<td>NADIR_PIXELS_THRESH</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L2-AUX5-1</td>
<td>Coefficient A0 (day-time) for LST</td>
<td>float</td>
<td>K</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L2-AUX5-2</td>
<td>Coefficient A1 (day-time) for LST</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L2-AUX5-3</td>
<td>Coefficient A2 (day-time) for LST</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L2-AUX5-4</td>
<td>Coefficient A0 (night-time) for LST</td>
<td>float</td>
<td>K</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L2-AUX5-5</td>
<td>Coefficient A1 (night-time) for LST</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L2-AUX5-6</td>
<td>Coefficient A2 (night-time) for LST</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L2-AUX6-1</td>
<td>Vegetation class index ([360][720]) for LST</td>
<td>ss</td>
<td>n/a</td>
<td>2</td>
<td>720</td>
<td></td>
</tr>
<tr>
<td>L2-AUX7-1</td>
<td>Vegetation fraction([12][360][720])</td>
<td>ss</td>
<td>0.001</td>
<td>2</td>
<td>720</td>
<td></td>
</tr>
<tr>
<td>L2-AUX8-1</td>
<td>Precipitable water([12][360][720])</td>
<td>ss</td>
<td>0.01 mm</td>
<td>2</td>
<td>720</td>
<td></td>
</tr>
<tr>
<td>L2-AUX9-1</td>
<td>Topographic Variance Flag([360][720])</td>
<td>ss</td>
<td>n/a</td>
<td>2</td>
<td>720</td>
<td></td>
</tr>
<tr>
<td>L2-AUX10-1</td>
<td>(d) Water vapour factor for LST retrieval</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L2-AUX10-2</td>
<td>(m) Angle factor for LST retrieval</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L2-AUX10-3</td>
<td>N_CLASS Number of vegetation classes for LST</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.14-1: Input Data Table - LST Retrieval LUTs and auxiliary parameters

<table>
<thead>
<tr>
<th>Parameter ID</th>
<th>Variable</th>
<th>Name</th>
<th>Type</th>
<th>Units</th>
<th>Field size</th>
<th>Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>sub-cell number (k = 0, \ldots, 8)</td>
<td>si</td>
<td>none</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>l</td>
<td>along-track 50 km cell index</td>
<td>si</td>
<td>none</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>across-track 50 km cell index</td>
<td>si</td>
<td>none</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L2-INT-69</td>
<td>(A(v870, n; 0, k, l, m)) sub-cell reflectance average, 0.87 micron channel, nadir view, clear, land</td>
<td>ss</td>
<td>0.01%</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-67</td>
<td>(M(v870, n; 0, 0, k, l, m)) sub-cell pixel count, 0.87 micron channel, nadir view, clear, land</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-69</td>
<td>(A(v670, n; 0, k, l, m)) sub-cell reflectance average, 0.670 micron channel, nadir view, clear, land</td>
<td>ss</td>
<td>0.01%</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-67</td>
<td>(M(v670, n; 0, 0, k, l, m)) sub-cell pixel count, 0.670 micron channel, nadir view, clear, land</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-95</td>
<td>(\text{NDVI}(k, l, m)) Averaged NDVI in 10-arcmin cells</td>
<td>ss</td>
<td>0.0001</td>
<td>2</td>
<td>(k = 0, 8)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-96</td>
<td>(<\text{NDVI}(l, m)) mean NDVI</td>
<td>ss</td>
<td>0.0001</td>
<td>2</td>
<td>per cell</td>
<td></td>
</tr>
<tr>
<td>L2-INT-97</td>
<td>(\sigma(\text{NDVI}, l, m)) standard deviation of NDVI</td>
<td>ss</td>
<td>0.0001</td>
<td>2</td>
<td>per cell</td>
<td></td>
</tr>
<tr>
<td>local (\mu)</td>
<td>number of sub-cells contributing to cell mean</td>
<td>si</td>
<td>none</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-98</td>
<td>(N(l, m)) Number of pixels in NDVI average, half degree cell</td>
<td>us</td>
<td>none</td>
<td>2</td>
<td>per cell</td>
<td></td>
</tr>
<tr>
<td>L2-INT-99</td>
<td>N(k, l, m)</td>
<td>Number of pixels in NDVI average, 10 arc min cells</td>
<td>us</td>
<td>none</td>
<td>2</td>
<td>k = 0, 8</td>
</tr>
<tr>
<td>L2-INT-464</td>
<td>ast_conf(1; k, l, m)</td>
<td>AST confidence word for land sub-cell</td>
<td>sl</td>
<td>flags</td>
<td>4</td>
<td>k = 0, 8</td>
</tr>
<tr>
<td>L2-INT-465</td>
<td>ast_conf(1; l, m)</td>
<td>AST confidence word for land cell l, m</td>
<td>sl</td>
<td>flags</td>
<td>4</td>
<td>per cell</td>
</tr>
</tbody>
</table>

The following parameters are required by the Land Surface Temperature algorithm:

L2-INT-26	time(sg)	scan UTC	double	days	8	per sg	
L2-INT-77	cell_lat[i], m	cell latitude (50 km)	sl	μdeg	4	per cell	
L2-INT-78	cell_long[i], m	cell longitude (50 km)	sl	μdeg	4	per cell	
L2-INT-470	vegetation_fraction(lat_index, lon_index)	vegetation fraction	ss	none	2	360 × 720	
L2-INT-471	precipitable_water(lat_index, lon_index)	Precipitable Water	ss	0.001	4	360 × 720	
L2-INT-472	Topographic_flag(lat_index, lon_index)	Topographic Flag	ss	none	2	360 × 720	
L2-INT-474	lat_index	Latitude index	sl	none	4	1	
L2-INT-475	lon_index	Longitude index	lon_index	sl	none	4	1
L2-INT-489	disp_lat_index	Displaced latitude index	= 0, …359	sl	none	4	1
L2-INT-490	disp_lon_index	Displaced longitude index	= 0, 719	sl	none	4	1
L2-INT-476	month	Index to month: month = 0, 11	sl	none	4	1	
L2-INT-477	sun_elev	Solar elevation at land pixel	float	degrees	4	1	
L2-INT-478	sat_elev	Satellite elevation at land pixel	float	degrees	4	1	
L2-INT-479	night	Daynight flag	sl	none	2	1	
L2-INT-480	n	Non-linear exponent	float	none	4	1	
L2-INT-481	f	Vegetation fraction at pixel	float	none	4	1	
L2-INT-482	pw	Precipitable water at pixel	float	cm	4	1	
L2-INT-482	coeff(class, i, j, 0)	Sub-array of coefficients A0	float	0.01K	4	64	
L2-INT-484	coeff(class, i, j, 1)	Sub-array of coefficients A1	float	none	4	64	
L2-INT-485	coeff(class, i, j, 2)	Sub-array of coefficients A2	float	none	4	64	
L2-INT-486	w	Interpolation weight	float	none	4	1	
L2-INT-487	a(k)	Retrieval coefficients for pixel	float	mixed	4	1	
L2-INT-486	lst	Land surface temperature at pixel	float	0.01K	4	1	
Local	lst	Land surface temperature at pixel	float	0.01K	4	1	
Local	pw00	Precipitable water sample value	ss	0.01 mm	2	1	
Local	pw01	Precipitable water sample value	ss	0.01 mm	2	1	
Local	pw10	Precipitable water sample value	ss	0.01 mm	2	1	
Local	pw11	Precipitable water sample value	ss	0.01 mm	2	1	
Local	q	Latitude argument for bilinear interpolation	float	none	4	1	
Local	p	Longitudinal argument for bilinear interpolation	float	none	4	1	
Local	class	Index to table of coefficients	sl	none	4	1	
Local	latitude	Temporary latitude value	float	Degrees	4	1	
Local	minpn	Minimum nadir pixels	float	none	4	1	
Local	xx	Sub-cell index in longitude	sl	none	4	1	
Local	ky	Sub-cell index in latitude	sl	none	4	1	
L2-INT-62	sub_cell_lat(k, l, m)	Sub-cell latitude (17 km)	sl	μdeg	4	k = 0, 8	
L2-INT-79	nadir_day(k, l, m)	nadir view day/night flag (17 km)	ss	flag	2	k = 0, 8	
L2-INT-80	forward_day(k, l, m)	forward view day/night flag (17 km)	ss	flag	2	k = 0, 8	
L2-INT-60	band(i)	Number of across track band (or strip)	sl	none	4	j = 0, 511	
L2-INT-121	across_track_mean(of, k, l, m)	mean across-track pixel index, subcell k	ss	none	2	k = 0, 8	
L2-INT-459	sub_cell_index(k, l, m)	Along-track index representative of sub-cell	sl	none	4	k = 0, 8	
L2-INT-496	T_land(k, l, m)	Land surface temperature in sub-cell	ss	0.01 K	4	k = 0, 8	
L2-INT-497	T_land(i, m)	Averaged land surface temperature in cell	ss	0.01 K	4	per cell	
L2-INT-498	σ_land(i, m)	Standard deviation of Averaged LST	ss	0.01 K	4	per cell	
L2-INT-484	ast_conf(k, l, m)	AST confidence word for sub-cell	sl	flags	4	k = 0, 8	
L2-INT-465	ast_conf(i, l, m)	AST confidence word for cell	sl	flags	4	per cell	
L2-INT-469	stl_mean_pixel(of, i, m)	Mean across-track pixel index, cell	ss	none	2	per cell	

Table 4.14-2: Internal Data Table - Averaged NDVI Retrieval
4.14.3 Detailed Structure

The following processing is applied to cells after the processing of Step 4.12.1 is complete; i.e. no more pixels remain to be added to the cell.

Step 4.14.1 Calculate subcell NDVIs.

NDVI is defined by

\[\text{NDVI}(k, l, m) = 10000 \frac{A(v870, n;1,0, k, l, m) - A(v670, n;1,0, k, l, m)}{A(v870, n;1,0, k, l, m) + A(v670, n;1,0, k, l, m)} \]

provided both values are valid (not exceptional). Otherwise

\[\text{NDVI}(k, l, m) = -19999. \]

The number of pixels contributing to the sub-cell mean, \(N1(k, l, m) \), provided as a confidence indicator, is the smaller of \(M(v870, n; 1, 0, k, l, m) \) and \(M(v670, n; 1, 0, k, l, m) \).

Step 4.14.2 Calculate cell NDVI.

The mean in the larger (50 km) cell is given by

\[\langle \text{NDVI} \rangle(l,m) = \frac{1}{\mu} \sum_k \text{NDVI}(k,l,m) \]

where the sum is over all \(k \in \{0 \leq k \leq 8\} \) having a valid subcell mean \(\text{NDVI} \) and \(\mu \) is the number of such valid means. The number of pixels that contribute to the mean is similarly the smaller of \(M(v870, n; 1, 0, l, m) \) and \(M(v670, n; 1, 0, l, m) \).

The standard deviation of the mean is

\[\sigma(\text{NDVI};l,m) = \left\{ \frac{1}{\mu - 1} \sum_k \left(\text{NDVI}(k,l,m) - \langle \text{NDVI} \rangle(l,m) \right)^2 \right\}^{1/2} \]

in all cases the sum is over sub-cells having valid means.

If the number of valid subcell means \(\mu \) is zero, set

\[<\text{NDVI}> (l, m) = -19999. \]

If the number of valid subcell means \(\mu \leq 1 \), so that a valid standard deviation cannot be calculated, set set

\[\sigma(\text{NDVI};l,m) = -19999. \]

Step 4.14.3 Read in coefficients and auxiliary tables for LST retrieval.

The coefficients for LST retrieval are identical to those used for the full resolution product, as read in in Step 4.6.1.2 (Section 4.6.3). If these coefficients are still available in the processor, there is no need to repeat the following steps.
Step 4.14.3.1 Read in coefficients

For each of the \(N_{\text{CLASS}} \) vegetation classes there are two records, for vegetation and for bare soil. Open the file of retrieval coefficients L2-AUX5.

The LST coefficient set is read in as follows.

for \(class = 0, N_{\text{CLASS}} - 1 \) (outer loop)
for \(i = 0, 1 \) (inner loop)

\[
\begin{align*}
\text{coeff}(class, i, 0, 0) &= [\text{L2-AUX5-1}] \\
\text{coeff}(class, i, 0, 1) &= [\text{L2-AUX5-2}] \\
\text{coeff}(class, i, 0, 2) &= [\text{L2-AUX5-3}] \\
\text{coeff}(class, i, 1, 0) &= [\text{L2-AUX5-4}] \\
\text{coeff}(class, i, 1, 1) &= [\text{L2-AUX5-5}] \\
\text{coeff}(class, i, 1, 2) &= [\text{L2-AUX5-6}]
\end{align*}
\]

(Req 4.14-5)

Step 4.14.3.2 Determine month index

Using a suitable calendar function, determine the month \((month = 0, \ldots 11)\) in which the data was collected from the scan time of start of data \(\text{time}(0) = [\text{L2-INT-26}](0)\):

\[
\text{month} = \text{month}(\text{time}(0))
\]

(Req 4.14-6)

Step 4.14.3.3 Read in auxiliary files

Note that in the cases of data sets L2-AUX7 and L2-AUX8 only one plane of data, that corresponding to the current month, is required in memory for a given run of the processor.

Read in Vegetation Class Index: Open the vegetation class file L2-AUX6.

for each latitude index \(i = 0, 359 \)

\[
\text{vegetation_class}(i, j) = [\text{L2-AUX6-1}](j) \text{ for all } j \text{ of record } i.
\]

(Req 4.14-7)

Read in Vegetation Fraction Table: Open the file of vegetation fraction data L2-AUX7.

for each latitude index \(i = 0, 359 \)

select record \((360 \times \text{month} + i)\)

\[
\text{vegetation_fraction}(i, j) = [\text{L2-AUX7-1}](j) \text{ for all } j \text{ of selected record}.
\]

(Req 4.14-8)

Read in Precipitable Water Data: Open the file of precipitable water data L2-AUX8.

for each latitude index \(i = 0, 359 \)

select record \((360 \times \text{month} + i)\)

\[
\text{precipitable_water}(i, j) = [\text{L2-AUX8-1}](j) \text{ for all } j \text{ of selected record}.
\]

(Req 4.14-9)

Read in Topographic Variance Flag: Open the file of topographic variance flags L2-AUX9.

for each latitude index \(i = 0, 359 \)

\[
\text{topographic_flag}(i, j) = [\text{L2-AUX9-1}](j) \text{ for all } j \text{ of record } i.
\]

(Req 4.14-10)
Step 4.14.4 Derive Land Surface Temperature for sub-cells

LST retrievals use the nadir view 11 and 12 micron channels in conjunction with retrieval coefficients derived from the tables.

Note that as in Section 4.13 we adopt an abbreviated notation for the average brightness temperatures in this section.

\[T_{\text{nadir}}^{ch, sf} = \frac{\text{float}(S(ch, n; sf, 0, k, cell))}{\text{float}(M(ch, n; sf, 0, k, cell))} \]

where \(ch \) indicates one of the long-wavelength infra-red channels, and where \(sf \) is the surface type flag. This notation is slightly more complex than that used in Section 4.13 because it is necessary to distinguish between land and sea averages. Where this notation is used, a dependence on \(k \) and \(l, m \) is implied. As in section 4.13, these quantities must be computed using a floating point computation, although \(S \) and \(M \) are of type integer, to ensure that sufficient precision is maintained.

The calculation proceeds as follows for each cell in turn. Steps 4.14.4.1 to 4.14.4.5 are repeated for each sub-cell \(k = 0, \ldots 8 \) of the cell.

Step 4.14.4.1 Determine latitude and longitude indices

For the current sub-cell \(k \), calculate

\[
\begin{align*}
\text{lat_index} &= \text{integer part of } \left[\text{cell}_{\text{lat}}(l, m)/500000.0 \right] + 180 \\
\text{lon_index} &= \text{integer part of } \left[\text{cell}_{\text{lon}}(l, m)/500000.0 \right] + 360 \\
\text{disp_lat_index} &= \text{integer part of } \left[360 + \left(\text{cell}_{\text{lat}}(l, m)/500000.0 + 180.0 \right) - 0.5 \right] \text{ (modulo 360)} \\
\text{disp_lon_index} &= \text{integer part of } \left[720 + \left(\text{cell}_{\text{lon}}(l, m)/500000.0 + 360.0 \right) - 0.5 \right] \text{ (modulo 720)}
\end{align*}
\]

(Req 4.14-11)

(Req 4.14-12)

Extract the vegetation class for the cell:

\[\text{class} = \text{vegetation_class(lat_index, lon_index)} \]

(Req 4.14-13)

Step 4.14.4.2 Test for valid data

For each sub-cell \(k = 0, \ldots 8 \), if either the 11 or 12 micron brightness temperature in the nadir view is invalid, the calculation is abandoned, and the LST is set to -1. The criterion for invalid data is the same as that used for the SST processing, as follows.

Determine the minimum number of pixels required for the cell, for the nadir view.

\[\text{minpn} = 340 \times \text{NADIR_PIXELS_THRESH} + 1.0 \]

(Req 4.14-14)

Identify whether the land or ‘sea’ brightness temperatures are required. Inland lakes are flagged as sea in the current land/sea data-base, so must be treated accordingly.

If \(\text{class} = 14 \) then \(sf = 0 \) (sea) otherwise \(sf = 1 \) (land).
If $M(ir_{12}, n; sf, 0, k, l, m) \geq minpn$ and $M(ir_{11}, n; sf, 0, k, l, m) \geq minpn$ proceed to calculate the retrieved LST as below, otherwise set

$$T_{land}(k, l, m) = -1.0$$

(Req 4.14-15)

If the 11 and 12 micron nadir brightness temperatures are valid, Steps 4.14.4.3 to 4.14.4.5 are to be repeated for each sub-cell $k = 0, \ldots 8$ in the cell.

Step 4.14.4.3 Determine day/night flag, satellite elevation and non-linear exponent

If $view_day(k, l, m) = TRUE$ then

$$night = 0 \text{ otherwise } night = 1$$

(Req 4.14-16)

A linear interpolation is used to determine the satellite elevation.

$$j = across_track_mean(1, k, l, m)$$
$$w = float(j - 6)/50.0 - band(j)$$
$$i = sub_cell_index(k, l, m)$$

$$sat_elev = (1.0 - w) \times \text{nadir_band_edge_satellite_elevation}(i, band(j)) +$$
$$w \times \text{nadir_band_edge_satellite_elevation}(i, band(j) + 1)$$

(Req 4.14-17)

Calculate the non-linear exponent:

$$n = 1.0 / \cos(\pi \times (90 - sat_elev) / (m \times 180.0))$$

(Req 4.14-18)

Note that m is [L2-AUX10-2] and n is [L2-INT-480].

Step 4.14.4.4 Determine coefficients

$$f = 0.001 \times vegetation_fraction(lat_index, lon_index)$$

(Req 4.14-19)

Interpolate precipitable water:

$$pw00 = \text{precipitable_water}(disp_lat_index, disp_lon_index)$$
$$pw01 = \text{precipitable_water}(disp_lat_index+1, disp_lon_index)$$
$$pw10 = \text{precipitable_water}(disp_lat_index, [disp_lon_index+1](modulo 720))$$
$$pw11 = \text{precipitable_water}(disp_lat_index+1, [disp_lon_index+1](modulo 720))$$

(Req 4.14-20)

$$q = \text{fractional part of } [(cell_lat(l, m)/500000.0) + 180.0 + 0.5]$$
$$p = \text{fractional part of } [(cell_lon(l, m)/500000.0) + 360.0 + 0.5]$$

$$pw = 0.001 \times ((1 - p)(1 - q)pw00 + (1 - p)q \times pw01 + p(1 - q)pw10 + pq \times pw11)$$

(Req 4.14-21)

$$\text{class} = \text{vegetation_class(lat_index, lon_index)} - 1$$
Step 4.14.4.5 Calculate the land surface temperature.

Note that the surface flag index retains the value assigned in Step 4.14.2.

If \(n \) is out of range then set the land field to an exception value of -1.0.

If \(\text{class} \leq 0 \) or \(\text{class} > \text{NCLASS} - 1 \), then the index is out of range; the calculation for this sub-cell is abandoned and the nadir field should be set to an exception value of 1.0.

\[
T_{\text{land}}(k, l, m) = \begin{cases}
100 \times (a(0) + d(0) \times (T_{\text{nadir}} - T_{\text{min}})) + 27315 & \text{if } T_{\text{nadir}} > T_{\text{min}} \\
100 \times (a(0) + d(0) \times (T_{\text{nadir}} - T_{\text{min}})) + 27315 + 27315 & \text{otherwise}
\end{cases}
\]

Otherwise if \(\text{class} > 14 \), this cell is flagged as an inland lake in the vegetation class database. The exponent \(n \) and the precipitable water correction are not used, and the correct brightness temperature average to be used is that for pixels flagged as sea. Set \(n = 1.0 \).

Otherwise if \(\text{class} + 1 \neq 14 \), correct \(a(0) \) as follows:

\[
a(0) = a(0) + d \times (\cot(\pi \times \text{sat}_elev} / 180.0) - 1.0) \times \text{pw}
\]

Note that \(d \) is \([L2 - AUX10 - 1] \).

Step 4.14.4.6 Calculate the land surface temperature.

Note that the surface flag index retains the value assigned in Step 4.14.2.

If \(\text{nadir}_{\text{sfir}}(k, l, m) \) from §4.12.3 is TRUE, otherwise clear bit.

Set bit 2 if \(\text{nadir}_{\text{day}}(k, l, m) \) from §4.12.3 is TRUE, otherwise clear bit.

Set appropriate bits on AST confidence word \(\text{ast}_{\text{conf}}(1; k, l, m) \):

Set bit 3 if \(\text{frwrd}_{\text{day}}(k, l, m) \) from §4.12.3 is TRUE, otherwise clear bit.

Set bits 4 and 5 to the topographic variance flags:

\[
[a_{\text{conf}}(1; k, l, m)](\text{bits } 4:5) = \text{topographic flag}(\text{lat_index, lon_index})
\]
(Note that this is a two-bit flag.)

Trap for lst out of range:

If \(\text{lst} \geq 32767.5 \) then

\[
T_{\text{land}}(k, l, m) = -1
\]

Else

\[
T_{\text{land}}(k, l, m) = \text{integer part of } (\text{lst} + 0.5)
\]

(Step 4.14.5 Calculate 50 km average)

For up to nine 17 km cells within the 50 km cell, derive the mean LST \([L2\text{-INT}-497]\) for the 50 km cell, and the standard deviation \([L2\text{-INT}-498]\) of the 17 km LST values.

\[
T_{\text{land}}(l, m) = \frac{1}{\mu} \sum_{k} T_{\text{land}}(k, l, m)
\]

where the sum is over all values of \(k \) for which the respective sub-cell LST is valid (i.e. has a positive value), and where \(\mu \) is the number of valid temperatures. If \(\mu \) is zero, set the corresponding temperature to \(-1\). To calculate the standard deviation \([L2\text{-INT}-498]\) use an expression analogous to Req 4.14-3.

The mean across-track pixel number to be associated with the 30 arc minute LST is \([L2\text{-INT}-469]\)

\[
sst_{\text{mean_pixel}}(1; l, m) = \frac{1}{\mu} \sum_{k} \text{across_track_mean}(1; k, l, m) \quad \text{if } \mu > 0
\]

\[
sst_{\text{mean_pixel}}(1; l, m) = -1 \quad \text{if } \mu = 0
\]

where the sum is over all \(k \in \{0 \leq k \leq 8\} \) for which corresponding LST \(T_{\text{land}}(k, l, m) \) is valid (not equal to \(-1\)).

Derive the confidence flag word \(\text{ast_conf}(1; l, m) \) for the 50 km cell indexed by \(l, m \) by ORing together the words for those sub-cells \((k, l, m), k = 0, \ldots 8\), for which a valid temperature was derived.

(Req 4.14-34)

4.15 Module Definition: Spatially Averaged Cloud Parameters (50 km Cell)

4.15.1 Functional Description

This module is to provide physical information on the cloud state additional to the results of the cloud flagging provided by the cloud clearing algorithms. The product is based on the same half-degree cells defined above. The frequency distribution of brightness temperature for the cloudy pixels within the cell is given together with representative parameters and an estimate of the cloud-top temperature. The latter is interpreted as the mean brightness temperature of the coldest 25% of the cloudy pixels in the cell.
For each half-degree cell, information is given for the nadir and forward views separately. The information consists of the number of cloudy and cloud-free pixels falling within the cell, a histogram of the 11 micron brightness temperatures of the cloudy pixels, and various statistical parameters derived from the histogram. The 11 micron channel is used as the basis of the product following the practice of ATSR and ATSR-2.

The product is generated as follows. Two histograms are generated of the frequency distribution of 11 micron brightness temperature, for cloudy pixels over sea and land respectively. The histograms represent the brightness temperature at 0.1 K resolution between 190 K and 290 K. Thus each contains 1000 bins where the first bin contains the number of pixels with temperatures in the range 190.0 to 190.1 K, and the last bin contains the number of pixels with temperatures in the range 289.9 to 290.0 K. The cloud state of each filled pixel falling within the cell is inspected. If it is clear, a count of the number of clear pixels is incremented; if it is cloudy, the 11 micron channel BT is inspected and the count in the appropriate histogram bin is incremented. Note that cosmetic fill pixels are included in the processing.

As each pixel is inspected, a test is made to determine whether its 11 micron BT is lower than the lowest value previously encountered, and if so to store the location of the pixel. Then when the histogram is complete the identity of the minimum pixel will be known, and can be used to extract its channel values.

Once the histogram is complete for a given cell, that is once all the pixels falling within the cell have been inspected, the cloud temperature and coverage results are derived from it. Firstly the total number of cloudy pixels detected is computed by summing the histogram samples. If this total is less than 20 no further derivations are performed. If 20 or more cloudy pixels have been identified and included in the histogram, the mean 11 micron brightness temperature and its standard deviation are calculated from the histogram.

The histogram is searched for the lowest temperature represented by the histogram. This is the temperature corresponding to the first non-zero bin of the histogram. Next, the cloud-top temperature is estimated. The histogram bin containing the 25th percentile is identified; this is the first bin (as the histogram is searched in the direction of ascending temperature) for which the cumulative total of the bins up to and including itself exceeds 25% of the total number of cloudy pixels. The mean temperature represented by the bins up to and including this bin is calculated.

[Note that the cloud top temperature so derived may represent the mean of slightly more than 25% of the cloudy pixels, since the cumulative total including the 25th percentile bin may exceed 25%.

Finally the percentage cloud cover is calculated from the ratio of cloudy pixels to total pixels.

4.15.2 Interface Definition

<table>
<thead>
<tr>
<th>Parameter ID</th>
<th>Variable</th>
<th>Name</th>
<th>Type</th>
<th>Units</th>
<th>Field size</th>
<th>Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2-AUX3-10</td>
<td>AST Cell dimension</td>
<td>si</td>
<td>none</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Table 4-15-1: Input Data Table - Spatially Averaged Cloud Parameters (50 km Cell)
ENVISAT PAYLOAD DATA SEGMENT

Commercial in Confidence

AATSR Expert Support Laboratory

<table>
<thead>
<tr>
<th>Parameter ID</th>
<th>Variable</th>
<th>Name Description</th>
<th>Type</th>
<th>Units</th>
<th>Field Size</th>
<th>Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2-INT-101</td>
<td>llir12, n, i, j</td>
<td>regridded nadir ir12 Brightness Temperature</td>
<td>ss</td>
<td>0.01K</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-102</td>
<td>llir11, n, i, j</td>
<td>regridded nadir ir11 Brightness Temperature</td>
<td>ss</td>
<td>0.01K</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-103</td>
<td>llir07, n, i, j</td>
<td>regridded nadir ir07 Brightness Temperature</td>
<td>ss</td>
<td>0.01K</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-104</td>
<td>llv16, n, i, j</td>
<td>regridded nadir v16 Reflectance</td>
<td>ss</td>
<td>0.01%</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-105</td>
<td>llv070, n, i, j</td>
<td>regridded nadir v070 Reflectance</td>
<td>ss</td>
<td>0.01%</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-106</td>
<td>llv070, n, i, j</td>
<td>regridded nadir v070 Reflectance</td>
<td>ss</td>
<td>0.01%</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-107</td>
<td>llv055, n, i, j</td>
<td>regridded nadir v055 Reflectance</td>
<td>ss</td>
<td>0.01%</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-111</td>
<td>llir12, f, i, j</td>
<td>regridded forward ir12 Brightness Temperature</td>
<td>ss</td>
<td>0.01K</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-112</td>
<td>llir11, f, i, j</td>
<td>regridded forward ir11 Brightness Temperature</td>
<td>ss</td>
<td>0.01K</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-113</td>
<td>llir07, f, i, j</td>
<td>regridded forward ir07 Brightness Temperature</td>
<td>ss</td>
<td>0.01K</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-114</td>
<td>llv16, f, i, j</td>
<td>regridded forward v16 Reflectance</td>
<td>ss</td>
<td>0.01%</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-115</td>
<td>llv070, f, i, j</td>
<td>regridded forward v070 Reflectance</td>
<td>ss</td>
<td>0.01%</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-116</td>
<td>llv055, f, i, j</td>
<td>regridded forward v055 Reflectance</td>
<td>ss</td>
<td>0.01%</td>
<td>2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-100</td>
<td>nadir_f1_state(i, j)</td>
<td>nadir fill state indicator</td>
<td>byte</td>
<td>none</td>
<td>1</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-110</td>
<td>fwdr_f1_state(i, j)</td>
<td>forward fill state indicator</td>
<td>byte</td>
<td>none</td>
<td>1</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-232</td>
<td>nadr_land(i, j)</td>
<td>nadir land/sea flag</td>
<td>ss</td>
<td>array</td>
<td>flag 2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-233</td>
<td>nadr_cloud(i, j)</td>
<td>nadir cloud state flag</td>
<td>ss</td>
<td>array</td>
<td>flag 2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-248</td>
<td>fwdr_land(i, j)</td>
<td>forward land/sea flag</td>
<td>ss</td>
<td>array</td>
<td>flag 2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-249</td>
<td>fwdr_cloud(i, j)</td>
<td>forward cloud state flag</td>
<td>ss</td>
<td>array</td>
<td>flag 2</td>
<td>j = 0, 511</td>
</tr>
<tr>
<td>L2-INT-160</td>
<td>image_lat(i, j)</td>
<td>image pixel latitude</td>
<td>float</td>
<td>degrees</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>L2-INT-161</td>
<td>image_long(i, j)</td>
<td>image pixel longitude</td>
<td>float</td>
<td>degrees</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>local K</td>
<td>k</td>
<td>histogram bin counter k = 0, 999</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>local cell</td>
<td>cell</td>
<td>cell number</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>(min(ch, v, sf, i, m)</td>
<td>brightness_temperature or reflectance, as appropriate, of channel ch, view v, for cloudy pixel having minimum 11 micron BT over surface type sf.</td>
<td>ss</td>
<td>0.01 K or 0.01%</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-425</td>
<td>across_track_band</td>
<td>across-track band</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>per cell</td>
</tr>
<tr>
<td>L2-INT-428</td>
<td>nadir_clear_land</td>
<td>total of clear land pixels, nadir view</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td>per cell</td>
</tr>
<tr>
<td>L2-INT-429</td>
<td>fwdr_clear_land</td>
<td>total of clear land pixels, forward view</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td>per cell</td>
</tr>
<tr>
<td>L2-INT-430</td>
<td>nadir_cloudy_land</td>
<td>total of cloudy land pixels, nadir view</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td>per cell</td>
</tr>
<tr>
<td>L2-INT-431</td>
<td>fwdr_cloudy_land</td>
<td>total of cloudy land pixels, forward view</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td>per cell</td>
</tr>
<tr>
<td>L2-INT-432</td>
<td>nadir_hist_land(k)</td>
<td>nadir histogram (land cell)</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>1000</td>
</tr>
<tr>
<td>L2-INT-433</td>
<td>fwdr_hist_land(k)</td>
<td>forward histogram (land cell)</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>1000</td>
</tr>
<tr>
<td>L2-INT-436</td>
<td>bt_cloud_top</td>
<td>cloud top temperature (over land)</td>
<td>ss</td>
<td>0.01K</td>
<td>2</td>
<td>per cell</td>
</tr>
<tr>
<td>L2-INT-437</td>
<td>bt_percent_cloudy</td>
<td>percentage cloudy pixels (over land)</td>
<td>ss</td>
<td>0.01%</td>
<td>2</td>
<td>per cell</td>
</tr>
<tr>
<td>L2-INT-438</td>
<td>bt_clear_land</td>
<td>total of clear land pixels, nadir view</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td>per cell</td>
</tr>
<tr>
<td>L2-INT-444</td>
<td>nadir_clear_sea</td>
<td>total of clear sea pixels, nadir view</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td>per cell</td>
</tr>
<tr>
<td>L2-INT-445</td>
<td>fwdr_clear_sea</td>
<td>total of clear sea pixels, forward view</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td>per cell</td>
</tr>
<tr>
<td>L2-INT-446</td>
<td>nadir_cloudy_sea</td>
<td>total of cloudy sea pixels, nadir view</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td>per cell</td>
</tr>
<tr>
<td>L2-INT-447</td>
<td>fwdr_cloudy_sea</td>
<td>total of cloudy sea pixels, forward view</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td>per cell</td>
</tr>
<tr>
<td>L2-INT-448</td>
<td>nadir_hist_sea(k)</td>
<td>nadir histogram (sea cell)</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>1000</td>
</tr>
<tr>
<td>L2-INT-449</td>
<td>fwdr_hist_sea(k)</td>
<td>forward histogram (sea cell)</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>1000</td>
</tr>
<tr>
<td>L2-INT-451</td>
<td>bt_cloud_top</td>
<td>cloud top temperature (over sea)</td>
<td>ss</td>
<td>0.01K</td>
<td>2</td>
<td>per cell</td>
</tr>
<tr>
<td>L2-INT-452</td>
<td>bt_percent_cloudy</td>
<td>percentage cloudy pixels (over sea)</td>
<td>ss</td>
<td>0.01%</td>
<td>2</td>
<td>per cell</td>
</tr>
<tr>
<td>L2-INT-453</td>
<td>bt_cloud_top</td>
<td>cloud top temperature (over sea)</td>
<td>ss</td>
<td>0.01K</td>
<td>2</td>
<td>per cell</td>
</tr>
<tr>
<td>L2-INT-454</td>
<td>bt_percent_cloudy</td>
<td>percentage cloudy pixels (over sea)</td>
<td>ss</td>
<td>0.01%</td>
<td>2</td>
<td>per cell</td>
</tr>
</tbody>
</table>

4.15.3 Detailed Structure

Step 4.15.1 Derive histogram for each cell.

Each image row \(i\) and pixel \(j\) is used as follows.

Step 4.15.1.1 Identify cell number.

Identify the 50 km cell number \(l,m\) within which the pixel indexed by \(i\) and \(j\) falls exactly as in Section 4.8.3.1.1

If this is the first pixel to fall within a given cell, clear the histogram arrays:

\[
\text{<view>}_\text{histogram_<surface>}(l, m; k) = 0 \text{ for all } k = 0, 999
\]

initialise the clear pixel counters

\[
\text{<view>}_\text{clear_<surface>} = 0,
\]

and initialise associated variables for each channel \(ch\):

\[
I_{\text{min}}(ch, v, sf; l, m) = 29000
\]

for each view \(<v> = \text{nadir, frwd}\), and for each surface type \(<sf> = \text{land, sea}\).

(Req 4.15-1)

Step 4.15.1.2 Process the image pixel.

Process the image pixel at \(i, j\) for both nadir and forward views,

(a) If the pixel is unfilled, do nothing.
(b) If the pixel is over sea, and is clear, increment \(\text{<view>}_\text{clear_sea}\).
(c) If the pixel is over sea and is cloudy, check the 11 micron brightness temperature. If the 11 micron brightness temperature

\[
T_{11} = I(ir11, v; i, j)
\]

is valid, and if \(19000 \leq T_{11} < 29000\), increment the element of the histogram array

\[
\text{<view>}_\text{histogram_sea}(l, m; k)
\]

specified by index

\[
k = \text{integer part of } (T_{11}/10 - 19000)
\]

If \(T_{11} < I_{\text{min}}(ir11, v, sf; l, m)\) then set

\[
I_{\text{min}}(ch, v, sf; l, m) = I(ch, v; i, j)
\]

for each channel \(ch\).

(d) If the pixel is over land, treat similarly but increment the land counters and histogram arrays \(\text{<view>}_\text{clear_land}\) and \(\text{<view>}_\text{histogram_sea}(l, m; k)\) in place of the corresponding sea variables.

(Req 4.15-2)

Step 4.15.2 Process histograms.
In this step the following notation is used.

\[N_{\text{cloud}}^{\text{v.sf}} (l,m) \]
\[F_{v.sf} (l,m,k) \]
\[T_{v.sf}^{ct} (l,m) \]

When all four histograms are complete, find the number of cloudy pixels in each. For each view \(v = n, f \) and for each surface type \(\text{sf} \):

\[N_{v.sf}^{\text{cloud}} (l,m) = \sum_{k=0}^{999} F_{v.sf} (l,m,k) \]

(Req 4.15-3)

If the number of cloudy pixels found is less than 20, proceed to the next cell. Otherwise proceed as follows:

Calculate the position of the 25th percentile

\[K = N_{v.sf}^{\text{cloud}} (l,m) / 4 \]

(Req 4.15-4)

and find the index \(k \) (such that

\[\sum_{k=0}^{k-1} F_{v.sf} (l,m,k) < K \leq \sum_{k=0}^{k'} F_{v.sf} (l,m,k) \]

(Req 4.15-5)

Then the cloud-top temperature is given by

\[T_{v.sf}^{ct} (l,m) = 19000 + 10 \cdot \left(\frac{\sum_{k=0}^{k'} (k + 0.5) \cdot F_{v.sf} (l,m,k)}{\sum_{k=0}^{k'} F_{v.sf} (l,m,k)} \right) \]

(Req 4.15-6)

and the percentage of cloudy pixels for each view and surface type is given by

\[\text{bt_percent_cloudy} = 10000 \cdot \frac{N_{v.sf}^{\text{cloud}} (l,m)}{N_{v.sf}^{\text{cell}} (l,m) + \langle \text{view}_\text{clear}_\text{surface} > (l,m)} \]

(Req 4.15-7)

4.16 Module Definition: Output AST Product

4.16.1 Functional Description

The AST product is written to the output medium. First the MPH, and SPH are written, then the Measurement data sets.

4.16.2 Interface Definition

See IODD Tables and Internal Parameter List
4.16.3 Detailed Structure

Step 4.16.1 AST MDS #1: Sea Cell SST Record, 50 km cell

Record identified by cell indices \(l, m \).

First convert the cell UTC [L2-INT-20] to transport format for output, using the ESA CFI subroutine \(\text{pl}_\text{pmjd} \).

\[
\begin{align*}
\text{mjdp}[0]/(l) &= \text{utc}(l, m) \\
\text{mjdp}[1]/(l) &= 0.0 \quad \text{(dummy value since output not required)} \\
\text{status} &= \text{pl}_\text{pmjd}(\text{mjdt}, \text{mjdp}, \text{utce}, \text{dut1e})
\end{align*}
\]

\[
[\text{AST-MDS1-1}](l, m) = [\text{mjdt}[0:2]/(1:3)](l, m) \quad \text{(Req 4.16.1-1)}
\]

\[
[\text{AST-MDS1-2}](l, m) = -1 \text{ if } (N_\text{sea}(n; l, m) = 0 \text{ and } N_\text{sea}(f; l, m) = 0) = 0 \text{ otherwise} \quad \text{(Req 4.16.1-2)}
\]

\[
[\text{AST-MDS1-3}](l, m) = (3 \text{ zero bytes}) \quad \text{(Req 4.16.1-3)}
\]

\[
[\text{AST-MDS1-4}](l, m) = \text{cell_lat}(l, m) \quad \text{[L2-INT-77]} \quad \text{(Req 4.16.1-4)}
\]

\[
[\text{AST-MDS1-5}](l, m) = \text{cell_long}(l, m) \quad \text{[L2-INT-78]} \quad \text{(Req 4.16.1-5)}
\]

\[
[\text{AST-MDS1-6}](l, m) = \text{sst_mean_pixel}(0; l, m) \quad \text{[L2-INT-469]} \quad \text{(Req 4.16.1-6)}
\]

\[
[\text{AST-MDS1-7}](l, m) = T_\text{nadir}(l, m) \quad \text{(Req 4.16.1-7)}
\]

\[
[\text{AST-MDS1-8}](l, m) = \sigma_\text{nadir}(\text{ASST}; l, m) \quad \text{(Req 4.16.1-8)}
\]

\[
[\text{AST-MDS1-9}](l, m) = \text{the smaller of } \tilde{M} (\text{ir11}, n; 0, 0, l, m), \tilde{M} (\text{ir12}, n; 0, 0, l, m) \quad \text{(Req 4.16.1-9)}
\]

\[
[\text{AST-MDS1-10}](l, m) = T_\text{dual}(l, m) \quad \text{(Req 4.16.1-10)}
\]

\[
[\text{AST-MDS1-11}](l, m) = \sigma_\text{dual}(\text{ASST}; l, m) \quad \text{(Req 4.16.1-11)}
\]

\[
[\text{AST-MDS4-12}](\text{cell}) = \text{the smallest of } \tilde{M} (\text{ir11}, n; 0, 0, l, m), \tilde{M} (\text{ir12}, n; 0, 0, l, m), \tilde{M} (\text{ir12}, f; 0, 0, l, m) \quad \text{(Req 4.16.1-12)}
\]

\[
[\text{AST-MDS1-13}](l, m) = \text{ast_conf}(0; l, m) \quad \text{(Req 4.16.1-13)}
\]

Averaged cloud parameters (ACLOUD), nadir view:

\[
[\text{AST-MDS1-23}](l, m) = [\text{L2-INT-451}](l, m) \quad \text{(Req 4.16.1-23)}
\]

\[
[\text{AST-MDS1-24}](l, m) = [\text{L2-INT-452}](l, m) \quad \text{(Req 4.16.1-24)}
\]

Averaged cloud parameters (ACLOUD), forward view:

\[
[\text{AST-MDS1-32}](l, m) = [\text{L2-INT-453}](l, m) \quad \text{(Req 4.16.1-32)}
\]

\[
[\text{AST-MDS1-33}](l, m) = [\text{L2-INT-454}](l, m) \quad \text{(Req 4.16.1-33)}
\]

Step 4.16.2 AST MDS #2: Sea Cell SST record, 17 km cell:

Record identified by \((k, l, m)\)
First convert the cell UTC [L2-INT-21] to transport format for output, using the ESA CFI subroutine pl_pmjd.

\[
\begin{align*}
\text{mjd}[0] / (1) &= \text{utc}(k, l, m) \\
\text{mjd}[1] / (2) &= 0.0 \text{ (dummy value since output not required)} \\
\text{status} &= \text{pl_pmjd}(\text{mjd}[0], \text{mjd}[1], \text{utc}, \text{dute})
\end{align*}
\]

[AST-MDS2-1](k, l, m) = [mjd[0:2]/(1:3)](k, l, m) \hspace{1cm} \text{(Req 4.16.2-1)}

[AST-MDS2-2](k, l, m) = \begin{cases}
-1 \text{ if } (N_sea(n; k, l, m) = 0) \text{ and } N_sea(f; k, l, m) = 0 \\
0 \text{ otherwise}
\end{cases} \hspace{1cm} \text{(Req 4.16.2-2)}

[AST-MDS2-3] (k, l, m) = (3 \text{ zero bytes}) \hspace{1cm} \text{(Req 4.16.2-3)}

[AST-MDS2-4](k, l, m) = \text{sub_cell_lat}(k, l, m) \hspace{1cm} \text{[L2-INT-62]} \hspace{1cm} \text{(Req 4.16.2-4)}

[AST-MDS2-5](k, l, m) = \text{sub_cell_long}(k, l, m) \hspace{1cm} \text{[L2-INT-63]} \hspace{1cm} \text{(Req 4.16.2-5)}

[AST-MDS2-6](k, l, m) = \text{across_track_mean}(0; k, l, m) \hspace{1cm} \text{[L2-INT-459]} \hspace{1cm} \text{(Req 4.16.2-6)}

[AST-MDS2-7](k, l, m) = T_nadir(k, l, m) \hspace{1cm} \text{(Req 4.16.2-7)}

[AST-MDS2-8](k, l, m) = \text{the smaller of } M(ir11, n; 0, 0, k, l, m), M(ir12, n; 0, 0, k, l, m) \hspace{1cm} \text{(Req 4.16.2-8)}

[AST-MDS2-9](k, l, m) = T_dual(k, l, m) \hspace{1cm} \text{(Req 4.16.2-9)}

[AST-MDS2-10](k, l, m) = \text{the smallest of } M(ir11, n; 0, 0, k, l, m), M(ir12, n; 0, 0, k, l, m), M(ir11, f; 0, 0, k, l, m), M(ir12, f; 0, 0, k, l, m) \hspace{1cm} \text{(Req 4.16.2-10)}

[AST-MDS2-11](k, l, m) = ast_conf(0; k, l, m) \hspace{1cm} \text{(Req 4.16.2-11)}

Step 4.16.3 AST MDS #3: Sea Cell SST record, 10 arc minute cell:

Record identified by (k, cell)

First convert the cell UTC [L2-INT-31] to transport format for output, using the ESA CFI subroutine pl_pmjd.

\[
\begin{align*}
\text{mjd}[0] / (1) &= \text{utc}(k, \text{cell}) \\
\text{mjd}[1] / (2) &= 0.0 \text{ (dummy value since output not required)} \\
\text{status} &= \text{pl_pmjd}(\text{mjd}[0], \text{mjd}[1], \text{utc}, \text{dute})
\end{align*}
\]

[AST-MDS3-1](k, cell) = [mjd[0:2]/(1:3)](k, cell) \hspace{1cm} \text{(Req 4.16.3-1)}

[AST-MDS3-2](k, cell) = \begin{cases}
-1 \text{ if } (N_sea(n; k, cell) = 0) \text{ and } N_sea(f; k, cell) = 0 \\
0 \text{ otherwise}
\end{cases} \hspace{1cm} \text{(Req 4.16.3-2)}

[AST-MDS3-3](k, cell) = (3 \text{ zero bytes}) \hspace{1cm} \text{(Req 4.16.3-3)}

[AST-MDS3-4](k, cell) = \text{sub_cell_lat}(k, cell) \hspace{1cm} \text{[L2-INT-32]} \hspace{1cm} \text{(Req 4.16.3-4)}

[AST-MDS3-5](k, cell) = \text{sub_cell_long}(k, cell) \hspace{1cm} \text{[L2-INT-33]} \hspace{1cm} \text{(Req 4.16.3-5)}

[AST-MDS3-6](k, cell) = \text{across_track_mean}(0; k, cell) \hspace{1cm} \text{[L2-INT-359]} \hspace{1cm} \text{(Req 4.16.3-6)}

[AST-MDS3-7](k, cell) = T_nadir(k, cell) \hspace{1cm} \text{[L2-INT-54]} \hspace{1cm} \text{(Req 4.16.3-7)}

[AST-MDS3-8](k, cell) = \text{the smaller of } M(ir11, n; 0, 0, k, cell), M(ir12, n; 0, 0, k, cell) \hspace{1cm} \text{(Req 4.16.3-8)}
Step 4.16.4 AST MDS #4: Sea Cell SST Record, 30 arc minute cell

Record identified by cell number cell.

First convert the cell UTC [L2-INT-30] to transport format for output, using the ESA CFI subroutine pl_pmjd.

mjdp[0] = utc(cell)
mjdp[1] = 0.0 (dummy value since output not required)
status = pl_pmjd(mjdt, mjdp, utce, dut1e)

5.24.1.9 \(T_{\text{cell}} \) = \(\text{ast_conf}(0; \text{cell}) \) (Req 4.16.3-11)

5.24.1.10 \(T_{\text{cell}} \) = the small of \(M(\text{ir}11, n; 0, 0, \text{cell}) \), \(M(\text{ir}12, n; 0, 0, \text{cell}) \), \(M(\text{ir}11, f; 0, 0, \text{cell}) \), \(M(\text{ir}12, f; 0, 0, \text{cell}) \) (Req 4.16.3-10)

5.24.1.11 \(T_{\text{cell}} \) = \(\text{ast_conf}(0; \text{cell}) \) (Req 4.16.3-13)

5.24.1.12 \(T_{\text{cell}} \) = the smaller of \(\tilde{M} (\text{ir}11, n; 0, 0, \text{cell}) \), \(\tilde{M} (\text{ir}12, n; 0, 0, \text{cell}) \) (Req 4.16.4-9)

5.24.1.13 \(T_{\text{cell}} \) = \(\text{ast_conf}(0; \text{cell}) \) (Req 4.16.4-13)

Averaged cloud parameters (ACLOUD), nadir view:

5.24.1.23 \([\text{cell}] = [L2-INT-351]\) (cell) (Req 4.16.4-23)

5.24.1.24 \([\text{cell}] = [L2-INT-352]\) (cell) (Req 4.16.4-24)

Averaged cloud parameters (ACLOUD), forward view:

5.24.1.32 \([\text{cell}] = [L2-INT-353]\) (cell) (Req 4.16.4-32)
Step 4.16.5 AST MDS #5: Land Cell LST/NDVI Record, 50 km cell

Record identified by cell indices l, m.

\[\text{[AST-MDS5-1]}(l, m) = \text{[AST-MDS1-1]}(l, m) \]
\[\text{[AST-MDS5-2]}(l, m) = -1 \text{ if } (N_{\text{land}}(n; l, m) = 0 \text{ and } N_{\text{land}}(f; l, m) = 0) \]
\[= 0 \text{ otherwise} \]
\[\text{[AST-MDS5-3]}(l, m) = (3 \text{ zero bytes}) \]
\[\text{[AST-MDS5-4]}(l, m) = \text{cell_lat}(l, m) \] \[\text{[AST-MDS5-5]}(l, m) = \text{cell_long}(l, m) \]
\[\text{[AST-MDS5-6]}(l, m) = \text{sst_mean_pixel}(1; l, m) \] \[\text{[AST-MDS5-7]}(l, m) = T_{\text{land}}(l, m) \]
\[\text{[AST-MDS5-8]}(l, m) = \sigma_{\text{land}}(l, m) \]
\[\text{[AST-MDS5-9]}(l, m) = \text{the smaller of } \bar{M} (ir11, n; sf; 0, l, m), \]
\[\bar{M} (ir12, n; sf; 0, l, m) \]

where sf has the value assigned to it in step 4.14.2.

\[\text{[AST-MDS5-10]}(l, m) = <\text{NDVI}>(l, m) \] \[\text{[AST-MDS5-11]}(l, m) = \sigma(\text{NDVI}; l, m) \]
\[\text{[AST-MDS5-12]}(l, m) = N0(l, m) \]
\[\text{[AST-MDS5-13]}(l, m) = \text{ast_conf}(l; l, m) \]

Averaged cloud parameters (ACLOUD), nadir view:

\[\text{[AST-MDS5-23]}(l, m) = \text{[L2-INT-435]}(l, m) \]
\[\text{[AST-MDS5-24]}(l, m) = \text{[L2-INT-436]}(l, m) \]

Averaged cloud parameters (ACLOUD), forward view:

\[\text{[AST-MDS5-32]}(l, m) = \text{[L2-INT-437]}(l, m) \]
\[\text{[AST-MDS5-33]}(l, m) = \text{[L2-INT-438]}(l, m) \]

Step 4.16.6 AST MDS #6: Land Cell LST/NDVI record, 17 km cell:

Record identified by (k, l, m).

\[\text{[AST-MDS6-1]}(k, l, m) = \text{[AST-MDS2-1]}(k, l, m) \]
\[\text{[AST-MDS6-2]}(k, l, m) = -1 \text{ if } (N_{\text{land}}(n; k, l, m) = 0 \text{ and } N_{\text{land}}(f; k, l, m) = 0) \]
\[= 0 \text{ otherwise} \]
\[\text{[AST-MDS6-3]}(k, l, m) = (3 \text{ zero bytes}) \]
\[\text{[AST-MDS6-4]}(k, l, m) = \text{sub_cell_lat}(k, l, m) \]
\[\text{[AST-MDS6-5]}(k, l, m) = \text{sub_cell_long}(k, l, m) \]
[AST-MDS6-6](k, l, m) = \textit{across_track_mean}(1; k, l, m) [L2-INT-459]
\text{(Req 4.16.6-6)}

[AST-MDS6-7](k, l, m) = T_{\text{land}}(k, l, m) [L2-INT-496]
\text{(Req 4.16.6-7.1)}

[AST-MDS6-8](k, l, m) = \text{the smaller of } M(ir11, n; sf, 0, k, l, m),
M(ir12, n; sf, 0, k, l, m)
\text{(Req 4.16.6-8.1)}

where \(sf \) has the value assigned to it in step 4.14.4.2.

[AST-MDS6-9](k, l, m) = \text{NDVI}(k, l, m) [L2-INT-95]
\text{(Req 4.16.6-9)}

[AST-MDS6-10](k, l, m) = N1(k, l, m) [L2-INT-99]
\text{(Req 4.16.6-10)}

[AST-MDS6-11](k, l, m) = \text{ast_config}(1; k, l, m)
\text{(Req 4.16.6-11)}

\textbf{Step 4.16.7 AST MDS #7: Land Cell LST/NVDI record, 10 arc minute cell:}

Record identified by (\(k, cell \))

[AST-MDS7-1](k, cell) = [AST-MDS3-1](k, cell)
\text{(Req 4.16.7-1)}

[AST-MDS7-2](k, cell) = -1 if (\(N_{\text{land}}(n; k, cell) = 0 \) and \(N_{\text{land}}(f; k, cell) = 0 \))
= 0 otherwise
\text{(Req 4.16.7-2)}

[AST-MDS7-3](k, cell) = (3 zero bytes)
\text{(Req 4.16.7-3)}

[AST-MDS7-4](k, cell) = \text{sub_cell_lat}(k, cell) [L2-INT-32]
\text{(Req 4.16.7-4)}

[AST-MDS7-5](k, cell) = \text{sub_cell_long}(k, cell) [L2-INT-33]
\text{(Req 4.16.7-5)}

[AST-MDS7-6](k, cell) = \text{across_track_mean}(1; k, cell) [L2-INT-359]
\text{(Req 4.16.7-6)}

[AST-MDS7-7](k, cell) = T_{\text{land}}(k, cell) [L2-INT-492]
\text{(Req 4.16.7-7.1)}

[AST-MDS7-8](k, cell) = \text{the smaller of } M(ir11, n; sf, 0, k, cell),
M(ir12, n; sf, 0, k, cell)
\text{(Req 4.16.7-8.1)}

where \(sf \) has the value assigned to it in step 4.10.4.2.

[AST-MDS7-9](k, cell) = \text{NDVI}(k, cell) [L2-INT-90]
\text{(Req 4.16.7-9)}

[AST-MDS7-10](k, cell) = N1(k, cell) [L2-INT-94]
\text{(Req 4.16.7-10)}

[AST-MDS7-11](k, cell) = \text{ast_config}(1; k, cell)
\text{(Req 4.16.7-11)}

\textbf{Step 4.16.8 AST MDS #8: Land Cell LST/NVDI Record, 30 arc minute cell}

Record identified by cell number \(cell \).

[AST-MDS8-1](cell) = [AST-MDS4-1](cell)
\text{(Req 4.16.8-1)}

[AST-MDS8-2](cell) = -1 if (\(N_{\text{land}}(n; cell) = 0 \) and \(N_{\text{land}}(f; cell) = 0 \))
= 0 otherwise
\text{(Req 4.16.8-2)}

[AST-MDS8-3](cell) = (3 zero bytes)
\text{(Req 4.16.8-3)}

[AST-MDS8-4](cell) = \text{cell_lat}(cell) [L2-INT-47]
\text{(Req 4.16.8-4)}

[AST-MDS8-5](cell) = \text{cell_long}(cell) [L2-INT-48]
\text{(Req 4.16.8-5)}

[AST-MDS8-6](cell) = \text{sst_mean_pixel}(1; cell) [L2-INT-369]
\text{(Req 4.16.8-6.1)}
4.16

[AIR-SED-2](cell) = L_tir11(cell) [L2-INT-493]

[AST-MDS9](cell) = N_land(cell) [L2-INT-494]

[AST-MDS9-9](cell) = the smaller of \(\bar{M} \) (ir11, n; sf, 0, cell),
\(\bar{M} \) (ir12, n; sf, 0, cell)

where \(sf \) has the value assigned to it in step 4.10.4.2.

[AST-MDS9-10](cell) = <NDVI>(cell) [L2-INT-91]

[AST-MDS9-11](cell) = ast_NDVI(cell) [L2-INT-92]

[AST-MDS9-12](cell) = N0(cell) [L2-INT-93]

[AST-MDS9-13](cell) = ast_conf(1; cell)

Averaged cloud parameters (ACLOUD), nadir view:

[AST-MDS9-23](cell) = [L2-INT-335](cell)

[AST-MDS9-24](cell) = [L2-INT-336](cell)

Averaged cloud parameters (ACLOUD), forward view:

[AST-MDS9-32](cell) = [L2-INT-337](cell)

[AST-MDS9-33](cell) = [L2-INT-338](cell)

Step 4.16.9 AST MDS#9: Land Cell BT/TOA Record, 50 km cell

Record identified by cell number \(l, m \).

[AST-MDS9-1](l, m) = [AST-MDS1-1](l, m)

[AST-MDS9-2](l, m) = -1 if (N_land(n; l, m) = 0 and N_land(f; l, m) = 0)
\(= 0 \) otherwise

[AST-MDS9-3](l, m) = (3 zero bytes)

[AST-MDS9-4](l, m) = cell_latt(l, m) [L2-INT-77]

[AST-MDS9-5](l, m) = cell_longt(l, m) [L2-INT-78]

[AST-MDS9-6](l, m) = across_track_mean(1; l, m) [L2-INT-468]

[AST-MDS9-7](l, m) = N_total(n; l, m) [L2-INT-408]

[AST-MDS9-8](l, m) = N_land(n; l, m) [L2-INT-406]

[AST-MDS9-9](l, m) = pcl(n; l, m) [L2-INT-410]

[AST-MDS9-10](l, m) = Topographic latitude correction

[AST-MDS9-11](l, m) = Topographic longitude correction

Clear pixels, nadir.

[AST-MDS9-12](l, m) = \(\tilde{A} \) (ch, n; 1, 0, l, m)
Cloudy pixels, nadir:

\[\text{AST-MDS9-<13} + 2.(\text{ch-1})> (l, m) = \sigma(\text{ch, n; 1, 0, l, m}) \] (Req 4.16.9-13)

Cloudy pixels, forward:

\[\text{AST-MDS9-<26} + 2.(\text{ch-1})> (l, m) = \tilde{A} (\text{ch, n; 1, 1, l, m}) \] (Req 4.16.9-14)

\[\text{AST-MDS9-<27} + 2.(\text{ch-1})> (l, m) = \sigma(\text{ch, n; 1, 1, l, m}) \] (Req 4.16.9-15)

\[\text{AST-MDS9-40} (l, m) = PFF(n, \text{land; l, m}) \] [L2-INT-81] (Req 4.16.9-16)

Forward view:

\[\text{AST-MDS9-41} (l, m) = N_{\text{total}}(f; l, m) \] [L2-INT-418] (Req 4.16.9-17)

\[\text{AST-MDS9-42} (l, m) = N_{\text{land}}(f; l, m) \] [L2-INT-416] (Req 4.16.9-18)

\[\text{AST-MDS9-43} (l, m) = pcl(f; l, m) \] [L2-INT-420] (Req 4.16.9-19)

\[\text{AST-MDS9-44} (l, m) = \text{Topographic latitude correction} \] (Req 4.16.9-20)

\[\text{AST-MDS9-45} (l, m) = \text{Topographic longitude correction} \] (Req 4.16.9-21)

Clear pixels, forward:

\[\text{AST-MDS9-<46} + 2.(\text{ch-1})> (l, m) = \tilde{A} (\text{ch, f; 1, 0, l, m}) \] (Req 4.16.9-22)

\[\text{AST-MDS9-<47} + 2.(\text{ch-1})> (l, m) = \sigma(\text{ch, f; 1, 0, l, m}) \] (Req 4.16.9-23)

Cloudy pixels, forward:

\[\text{AST-MDS9-<60} + 2.(\text{ch-1})> (l, m) = \tilde{A} (\text{ch, f; 1, 1, l, m}) \] (Req 4.16.9-24)

\[\text{AST-MDS9-<61} + 2.(\text{ch-1})> (l, m) = \sigma(\text{ch, f; 1, 1, l, m}) \] (Req 4.16.9-25)

\[\text{AST-MDS9-74} (l, m) = PFF(f, \text{land; l, m}) \] [L2-INT-81] (Req 4.16.9-26)

\[\text{AST-MDS9-75} (l, m) = NO(l, m) \] (Req 4.16.9-27)

\[\text{AST-MDS9-76} (l, m) = (\text{ACLOUD}) \] Percentage of pixels over <surface type> (Req 4.16.9-28)

Averaged cloud parameters (ACLOUD), nadir view:

\[\text{AST-MDS9-77} (l, m) = I_{\text{min}}(\text{ir}11, n, \text{land; l, m}) \] (Req 4.16.9-29)

\[\text{AST-MDS9-78} (l, m) = I_{\text{min}}(\text{ir}12, n, \text{land; l, m}) \] (Req 4.16.9-30)

\[\text{AST-MDS9-79} (l, m) = I_{\text{min}}(\text{ir}37, n, \text{land; l, m}) \] (Req 4.16.9-31)

\[\text{AST-MDS9-80} (l, m) = I_{\text{min}}(\nu16, n, \text{land; l, m}) \] (Req 4.16.9-32)

\[\text{AST-MDS9-81} (l, m) = I_{\text{min}}(\nu870, n, \text{land; l, m}) \] (Req 4.16.9-33)

\[\text{AST-MDS9-82} (l, m) = I_{\text{min}}(\nu670, n, \text{land; l, m}) \] (Req 4.16.9-34)

\[\text{AST-MDS9-83} (l, m) = I_{\text{min}}(\nu555, n, \text{land; l, m}) \] (Req 4.16.9-35)

Averaged cloud parameters (ACLOUD), forward view:

\[\text{AST-MDS9-84} (l, m) = I_{\text{min}}(\text{ir}11, f, \text{land; l, m}) \] (Req 4.16.9-36)
Step 4.16.10 AST MDS#10: Land Cell BT/TOA Record, 17 km cell

Record identified by (k, l, m)

Clear pixels, nadir.

\[\text{AST-MDS10-1} (k, l, m) = \text{AST-MDS2-1} (k, l, m) \]
\[\text{AST-MDS10-2} (k, l, m) = -1 \text{ if } (N_\text{land}(n; k, l, m) = 0 \text{ and } N_\text{land}(f; k, l, m) = 0) \]
\[= 0 \text{ otherwise} \]
\[\text{AST-MDS10-3} (k, l, m) = (3 \text{ zero bytes}) \]
\[\text{AST-MDS10-4} (k, l, m) = \text{sub_cell_lat}(k, l, m) \] [L2-INT-62]
\[\text{AST-MDS10-5} (k, l, m) = \text{sub_cell_long}(k, l, m) \] [L2-INT-63]
\[\text{AST-MDS10-6} (k, l, m) = \text{across_track_mean}(1; k, l, m) \] [L2-INT-459]
\[\text{AST-MDS10-7} (k, l, m) = N_\text{total}(n; k, l, m) \] [L2-INT-403]
\[\text{AST-MDS10-8} (k, l, m) = N_\text{land}(n; k, l, m) \] [L2-INT-401]
\[\text{AST-MDS10-9} (k, l, m) = \text{pcl}(n; k, l, m) \] [L2-INT-405]
\[\text{AST-MDS10-10} (l, m) = \text{Topographic latitude correction} \]
\[\text{AST-MDS10-11} (l, m) = \text{Topographic longitude correction} \]
\[\text{AST-MDS10-12 + (ch - 1)} (k, l, m) = A(\text{ch}, n; 1 0, k, l, m) \]
Cloudy pixels, nadir.

\[\text{AST-MDS10-19 + (ch - 1)} (k, l, m) = A(\text{ch}, n; 1, 1, k, l, m) \]
\[\text{AST-MDS10-26} (k, l, m) = PFF(n; \text{land}; k, l, m) \] [L2-INT-82]

Forward view:

\[\text{AST-MDS10-27} (k, l, m) = N_\text{total}(f; k, l, m) \] [L2-INT-413]
\[\text{AST-MDS10-28} (k, l, m) = N_\text{land}(f; k, l, m) \] [L2-INT-411]
\[\text{AST-MDS10-29} (k, l, m) = pcl(f; k, l, m) \] [L2-INT-415]
\[\text{AST-MDS10-30} (l, m) = \text{Topographic latitude correction} \]
\[\text{AST-MDS10-31} (l, m) = \text{Topographic longitude correction} \]

Clear pixels, forward.
Step 4.16.11 AST MDS#11: Land Cell BT/TOA Record, 10 arc minute cell

Record identified by \(k, cell\)

\[\text{AST-MDS11-1}(k, cell) = \text{AST-MDS3-1}(k, cell)\]
(Req 4.16.11-1)

\[\text{AST-MDS11-2}(k, cell) = -1 \text{ if } (N_{\text{land}}(n; k, cell) = 0 \text{ and } N_{\text{land}}(f; k, cell) = 0) \]
\[= \text{ 0 otherwise}\]
(Req 4.16.11-2)

\[\text{AST-MDS11-3}(k, cell) = (3 \text{ zero bytes})\]
(Req 4.16.11-3)

\[\text{AST-MDS11-4}(k, cell) = \text{sub}_cell_{lat}(k, cell) \text{ [L2-INT-32]}\]
(Req 4.16.11-4)

\[\text{AST-MDS11-5}(k, cell) = \text{sub}_cell_{long}(k, cell) \text{ [L2-INT-33]}\]
(Req 4.16.11-5)

\[\text{AST-MDS11-6}(k, cell) = \text{across}_track_{mean}(1; k, cell) \text{ [L2-INT-359]}\]
(Req 4.16.11-6)

\[\text{AST-MDS11-7}(k, cell) = N_{\text{total}}(n; k, cell) \text{ [L2-INT-303]}\]
(Req 4.16.11-7)

\[\text{AST-MDS11-8}(k, cell) = N_{\text{land}}(n; k, cell) \text{ [L2-INT-301]}\]
(Req 4.16.11-8)

\[\text{AST-MDS11-9}(k, cell) = pcl(n; k, cell) \text{ [L2-INT-305]}\]
(Req 4.16.11-9)

\[\text{AST-MDS11-10}(k, cell) = \text{Topographic latitude correction}\]
(Req 4.16.11-10)

\[\text{AST-MDS11-11}(k, cell) = \text{Topographic longitude correction}\]
(Req 4.16.11-11)

Clear pixels, nadir.

\[\text{AST-MDS11-12 + (ch - 1)}(k, cell) = A(ch, n; 1, 0, k, cell)\]
(Req 4.16.11-12)

Cloudy pixels, nadir.

\[\text{AST-MDS11-19 + (ch - 1)}(k, cell) = A(ch, n; 1, 1, k, cell)\]
(Req 4.16.11-13)

\[\text{AST-MDS11-26}(k, cell) = PFF(n; land; k, cell) \text{ [L2-INT-52]}\]
(Req 4.16.11-14)

Forward view:

\[\text{AST-MDS11-27}(k, cell) = N_{\text{total}}(f; k, cell) \text{ [L2-INT-313]}\]
(Req 4.16.11-15)

\[\text{AST-MDS11-28}(k, cell) = N_{\text{land}}(f; k, cell) \text{ [L2-INT-311]}\]
(Req 4.16.11-16)

\[\text{AST-MDS11-29}(k, cell) = pcl(f; k, cell) \text{ [L2-INT-315]}\]
(Req 4.16.11-17)

\[\text{AST-MDS11-30}(k, cell) = \text{Topographic latitude correction}\]
(Req 4.16.11-18)

\[\text{AST-MDS11-31}(k, cell) = \text{Topographic longitude correction}\]
(Req 4.16.11-19)

Clear pixels, forward.

\[\text{AST-MDS11-32 + (ch - 1)}(k, cell) = A(ch, f; 1, 0, k, cell)\]
(Req 4.16.11-20)

Cloudy pixels, forward.
Step 4.16.12 AST MDS#12: Land Cell BT/TOA Record, 30 arc minute cell

Record identified by cell number cell.

- [AST-MDS12-1](cell) = [AST-MDS4-1](cell) (Req 4.16.12-1)
- [AST-MDS12-2](cell) = -1 if (N_land(n; cell) = 0 and N_land(f; cell) = 0) = 0 otherwise (Req 4.16.12-2)
- [AST-MDS12-3](cell) = (3 zero bytes) (Req 4.16.12-3)
- [AST-MDS12-4](cell) = cell_lat(cell) [L2-INT-47] (Req 4.16.12-4)
- [AST-MDS12-5](cell) = cell_long(cell) [L2-INT-48] (Req 4.16.12-5)
- [AST-MDS12-6](cell) = across_track_mean(1; cell) [L2-INT-368] (Req 4.16.12-6)
- [AST-MDS12-7](cell) = N_total(n; cell) [L2-INT-308] (Req 4.16.12-7)
- [AST-MDS12-8](cell) = N_land(n; cell) [L2-INT-306] (Req 4.16.12-8)
- [AST-MDS12-9](cell) = pcl(n; cell) [L2-INT-310] (Req 4.16.12-9)
- [AST-MDS12-10](cell) = Topographic latitude correction (Req 4.16.12-10)
- [AST-MDS12-11](cell) = Topographic longitude correction (Req 4.16.12-11)

Clear pixels, nadir.

- [AST-MDS12-12 + 2.(ch - 1)>](cell) = \(\tilde{A}(ch, n; 1, 0, cell)\) (Req 4.16.12-12)
- [AST-MDS12-13 + 2.(ch - 1)>](cell) = \(\sigma(ch, n; 1, 0, cell)\) (Req 4.16.12-13)

Cloudy pixels, nadir.

- [AST-MDS12-14 + 2.(ch - 1)>](cell) = \(\tilde{A}(ch, n; 1, 1, cell)\) (Req 4.16.12-14)
- [AST-MDS12-15 + 2.(ch - 1)>](cell) = \(\sigma(ch, n; 1, 1, cell)\) (Req 4.16.12-15)
- [AST-MDS12-40](cell) = PFF(n, land; cell) [L2-INT-51] (Req 4.16.12-16)

Forward view:

- [AST-MDS12-41](cell) = N_total(f; cell) [L2-INT-318] (Req 4.16.12-17)
- [AST-MDS12-42](cell) = N_land(f; cell) [L2-INT-316] (Req 4.16.12-18)
- [AST-MDS12-43](cell) = pcl(f; cell) [L2-INT-320] (Req 4.16.12-19)
- [AST-MDS12-44](cell) = Topographic latitude correction (Req 4.16.12-20)
- [AST-MDS12-45](cell) = Topographic longitude correction (Req 4.16.12-21)

Clear pixels, forward.

- [AST-MDS12-22 + 2.(ch - 1)>](cell) = \(\tilde{A}(ch,f; 1, 0, cell)\) (Req 4.16.12-22)
- [AST-MDS12-23 + 2.(ch - 1)>](cell) = \(\sigma(ch, f; 1, 0, cell)\) (Req 4.16.12-23)
Cloudy pixels, forward.

\[
[\text{AST-MDS12-}{{< 60 + 2.}\times (ch - 1)}>](cell) = \tilde{A} \ (ch, f; \ 1, 1, \ cell) \quad \text{(Req 4.16.12-24)}
\]

\[
[\text{AST-MDS12-}{{< 61 + 2.}\times (ch - 1)}>](cell) = \sigma(ch, f; \ 1, 1, \ cell) \quad \text{(Req 4.16.12-25)}
\]

\[
[\text{AST-MDS12-74}](cell) = PFF(f, \ land; \ cell) \ [L2-INT-51]
\]

\[
[\text{AST-MDS12-75}](cell) = \text{N0}(cell) \quad \text{(Req 4.16.12-27)}
\]

\[
[\text{AST-MDS12-76}](cell) = (\text{ACLOUD}) \ \text{Percentage of pixels over <surface type>}
\]

\[
(\text{Req 4.16.12-28})
\]

Averaged cloud parameters (ACLOUD), nadir view:

\[
[\text{AST-MDS12-77}](cell) = I_{\min}(\text{ir11}, \ n, \ land; \ cell) \quad \text{(Req 4.16.12-29)}
\]

\[
[\text{AST-MDS12-78}](cell) = I_{\min}(\text{ir12}, \ n, \ land; \ cell) \quad \text{(Req 4.16.12-30)}
\]

\[
[\text{AST-MDS12-79}](cell) = I_{\min}(\text{ir37}, \ n, \ land; \ cell) \quad \text{(Req 4.16.12-31)}
\]

\[
[\text{AST-MDS12-80}](cell) = I_{\min}(v16, \ n, \ land; \ cell) \quad \text{(Req 4.16.12-32)}
\]

\[
[\text{AST-MDS12-81}](cell) = I_{\min}(v870, \ n, \ land; \ cell) \quad \text{(Req 4.16.12-33)}
\]

\[
[\text{AST-MDS12-82}](cell) = I_{\min}(v670, \ n, \ land; \ cell) \quad \text{(Req 4.16.12-34)}
\]

\[
[\text{AST-MDS12-83}](cell) = I_{\min}(v555, \ n, \ land; \ cell) \quad \text{(Req 4.16.12-35)}
\]

Averaged cloud parameters (ACLOUD), forward view:

\[
[\text{AST-MDS12-84}](cell) = I_{\min}(\text{ir11}, \ f, \ land; \ cell) \quad \text{(Req 4.16.12-36)}
\]

\[
[\text{AST-MDS12-85}](cell) = I_{\min}(\text{ir12}, \ f, \ land; \ cell) \quad \text{(Req 4.16.12-37)}
\]

\[
[\text{AST-MDS12-86}](cell) = I_{\min}(\text{ir37}, \ f, \ land; \ cell) \quad \text{(Req 4.16.12-38)}
\]

\[
[\text{AST-MDS12-87}](cell) = I_{\min}(v16, \ f, \ land; \ cell) \quad \text{(Req 4.16.12-39)}
\]

\[
[\text{AST-MDS12-88}](cell) = I_{\min}(v870, \ f, \ land; \ cell) \quad \text{(Req 4.16.12-40)}
\]

\[
[\text{AST-MDS12-89}](cell) = I_{\min}(v670, \ f, \ land; \ cell) \quad \text{(Req 4.16.12-41)}
\]

\[
[\text{AST-MDS12-90}](cell) = I_{\min}(v555, \ f, \ land; \ cell) \quad \text{(Req 4.16.12-42)}
\]

Step 4.16.13 AST MDS#13: Sea Cell BT/TOA Record, 50 km cell

Record identified by cell number \(l, m \).

\[
[\text{AST-MDS13-1}](l, m) = [\text{AST-MDS1-1}](l, m) \quad \text{(Req 4.16.13-1)}
\]

\[
[\text{AST-MDS13-2}](l, m) = \begin{cases} 1 \text{ if } (N_{\text{sea}}(n; l, m) = 0 \text{ and } N_{\text{sea}}(f; l, m) = 0) \\ 0 \text{ otherwise} \end{cases} \quad \text{(Req 4.16.13-2)}
\]

\[
[\text{AST-MDS13-3}](l, m) = (3 \text{ zero bytes}) \quad \text{(Req 4.16.13-3)}
\]

\[
[\text{AST-MDS13-4}](l, m) = \text{cell_lat}(l, m) \ [L2-INT-77] \quad \text{(Req 4.16.13-4)}
\]

\[
[\text{AST-MDS13-5}](l, m) = \text{cell_long}(l, m) \ [L2-INT-78] \quad \text{(Req 4.16.13-5)}
\]

\[
[\text{AST-MDS13-6}](l, m) = \text{across_track_mean}(0; l, m) \ [L2-INT-468] \quad \text{(Req 4.16.13-6)}
\]
Averaged cloud parameters (ACLOUD), nadir view:

\[\text{AST-MDS13-7}(l, m) = N_{\text{total}}(n; l, m) \ [L2-\text{INT}-408] \]
\[\text{AST-MDS13-8}(l, m) = N_{\text{sea}}(n; l, m) \ [L2-\text{INT}-407] \]
\[\text{AST-MDS13-9}(l, m) = \text{pcs}(n; l, m) \ [L2-\text{INT}-409] \]

Clear pixels, nadir.

\[\text{AST-MDS13-<10 + 2.(ch - 1)>}(l, m) = \tilde{A}(ch, n; 0, 0, l, m) \]
\[\text{AST-MDS13-<11 + 2.(ch - 1)>}(l, m) = \sigma(ch, n; 0, 0, l, m) \]

Cloudy pixels, nadir.

\[\text{AST-MDS13-<24 + 2.(ch - 1)>}(l, m) = \tilde{A}(ch, n; 0, 1, l, m) \]
\[\text{AST-MDS13-<25 + 2.(ch - 1)>}(l, m) = \sigma(ch, n; 0, 1, l, m) \]
\[\text{AST-MDS13-38}(l, m) = PFF(n, \text{sea}; l, m) \ [L2-\text{INT}-81] \]

Forward view:

\[\text{AST-MDS13-39}(l, m) = N_{\text{total}}(f; l, m) \ [L2-\text{INT}-418] \]
\[\text{AST-MDS13-40}(l, m) = N_{\text{sea}}(f; l, m) \ [L2-\text{INT}-417] \]
\[\text{AST-MDS13-41}(l, m) = \text{pcs}(f; l, m) \ [L2-\text{INT}-419] \]

Clear pixels, forward.

\[\text{AST-MDS13-<42 + 2.(ch - 1)>}(l, m) = \tilde{A}(ch, f; 0, 0, l, m) \]
\[\text{AST-MDS13-<43 + 2.(ch - 1)>}(l, m) = \sigma(ch, f; 0, 0, l, m) \]

Cloudy pixels, forward.

\[\text{AST-MDS13-<56 + 2.(ch - 1)>}(l, m) = \tilde{A}(ch, f; 0, 1, l, m) \]
\[\text{AST-MDS13-<57 + 2.(ch - 1)>}(l, m) = \sigma(ch, f; 0, 1, l, m) \]
\[\text{AST-MDS13-70}(l, m) = PFF(f, \text{sea}; l, m) \ [L2-\text{INT}-81] \]

\[\text{AST-MDS13-71}(l, m) = N0(l, m) \]
\[\text{AST-MDS13-72}(l, m) = (\text{ACLOUD}) \text{ Percentage of pixels over <surface type4} \]

\[\text{Averaged cloud parameters (ACLOUD), nadir view:} \]

\[\text{AST-MDS13-73}(l, m) = I_{\text{min}}(\text{ir}11, n, \text{sea}; l, m) \]
\[\text{AST-MDS13-74}(l, m) = I_{\text{min}}(\text{ir}12, n, \text{sea}; l, m) \]
\[\text{AST-MDS13-75}(l, m) = I_{\text{min}}(\text{ir}37, n, \text{sea}; l, m) \]
\[\text{AST-MDS13-76}(l, m) = I_{\text{min}}(\text{v}16, n, \text{sea}; l, m) \]
\[\text{AST-MDS13-77}(l, m) = I_{\text{min}}(\text{v}870, n, \text{sea}; l, m) \]
Averaged cloud parameters (ACLOUD), forward view:

\[\text{AVERAGED CLOUD PARAMETERS, FORWARD VIEW:} \]

\[\begin{align*}
\text{AST-MDS13-80}(l, m) &= I_{\text{min}}(\nu 670, f, \text{sea}; l, m) \\
\text{AST-MDS13-81}(l, m) &= I_{\text{min}}(\nu 870, f, \text{sea}; l, m) \\
\text{AST-MDS13-82}(l, m) &= I_{\text{min}}(\nu 16, f, \text{sea}; l, m) \\
\text{AST-MDS13-83}(l, m) &= I_{\text{min}}(\nu 16, f, \text{sea}; l, m) \\
\text{AST-MDS13-84}(l, m) &= I_{\text{min}}(\nu 555, f, \text{sea}; l, m) \\
\text{AST-MDS13-85}(l, m) &= I_{\text{min}}(\nu 555, f, \text{sea}; l, m) \\
\text{AST-MDS13-86}(l, m) &= I_{\text{min}}(\nu 555, f, \text{sea}; l, m)
\end{align*} \]

Step 4.16.14 AST MDS#14: Sea Cell BT/TOA Record, 17 km cell

Record identified by \((k, l, m)\)

Clear pixels, nadir.

\[\begin{align*}
\text{AST-MDS14-1}(k, l, m) &= [\text{AST-MDS2-1}(k, l, m) \\
\text{AST-MDS14-2}(k, l, m) &= -1 \text{ if } (N_{\text{sea}}(n; k, l, m) = 0 \text{ and } N_{\text{sea}}(f; k, l, m) = 0) \\
&= 0 \text{ otherwise} \\
\text{AST-MDS14-3}(k, l, m) &= (3 \text{ zero bytes}) \\
\text{AST-MDS14-4}(k, l, m) &= \text{sub_cell_lat}(k, l, m) [L2-INT-62] \\
\text{AST-MDS14-5}(k, l, m) &= \text{sub_cell_long}(k, l, m) [L2-INT-63] \\
\text{AST-MDS14-6}(k, l, m) &= \text{across_track_mean}(0; k, l, m) [L2-INT-459] \\
\text{AST-MDS14-7}(k, l, m) &= N_{\text{total}}(n; k, l, m) [L2-INT-403] \\
\text{AST-MDS14-8}(k, l, m) &= N_{\text{sea}}(n; k, l, m) [L2-INT-402] \\
\text{AST-MDS14-9}(k, l, m) &= \text{pcs}(n; k, l, m) [L2-INT-404] \\
\text{AST-MDS14-10}(k, l, m) &= A(\text{ch}, n; 0, 0, k, l, m)
\end{align*} \]

Cloudy pixels, nadir.

\[\begin{align*}
\text{AST-MDS14-11}(k, l, m) &= A(\text{ch}, n; 0, 1, k, l, m) \\
\text{AST-MDS14-12}(k, l, m) &= \text{PCS}(n; k, l, m) [L2-INT-82]
\end{align*} \]

Forward view:

\[\begin{align*}
\text{AST-MDS14-13}(k, l, m) &= N_{\text{total}}(f; k, l, m) [L2-INT-413] \\
\text{AST-MDS14-14}(k, l, m) &= N_{\text{sea}}(f; k, l, m) [L2-INT-412] \\
\text{AST-MDS14-15}(k, l, m) &= \text{PCS}(f; k, l, m) [L2-INT-414]
\end{align*} \]

Clear pixels, forward.
Step 4.16.15 AST MDS#15: Sea Cell BT/TOA Record, 10 arc minute cell

Record identified by \((k, \text{cell})\)

Clear pixels, nadir.

\[
\text{AST-MDS15-1}(k, \text{cell}) = \text{AST-MDS3-1}(k, \text{cell})
\]

(Req 4.16.15-1)

\[
\text{AST-MDS15-2}(k, \text{cell}) = -1 \text{ if } (N_{\text{sea}}(n; k, \text{cell}) = 0 \text{ and } N_{\text{sea}}(f; k, \text{cell}) = 0)
\]

\[
= 0 \text{ otherwise}
\]

(Req 4.16.15-2)

\[
\text{AST-MDS15-3}(k, \text{cell}) = (3 \text{ zero bytes})
\]

(Req 4.16.15-3)

\[
\text{AST-MDS15-4}(k, \text{cell}) = \text{sub}_\text{cell}_lat(k, \text{cell}) \text{ [L2-INT-32]}
\]

(Req 4.16.15-4)

\[
\text{AST-MDS15-5}(k, \text{cell}) = \text{sub}_\text{cell}_long(k, \text{cell}) \text{ [L2-INT-33]}
\]

(Req 4.16.15-5)

\[
\text{AST-MDS15-6}(k, \text{cell}) = \text{across_track_mean}(0; k, \text{cell}) \text{ [L2-INT-359]}
\]

(Req 4.16.15-6)

\[
\text{AST-MDS15-7}(k, \text{cell}) = N_{\text{total}}(n; k, \text{cell}) \text{ [L2-INT-303]}
\]

(Req 4.16.15-7)

\[
\text{AST-MDS15-8}(k, \text{cell}) = N_{\text{sea}}(n; k, \text{cell}) \text{ [L2-INT-302]}
\]

(Req 4.16.15-8)

\[
\text{AST-MDS15-9}(k, \text{cell}) = \text{pcs}(n; k, \text{cell}) \text{ [L2-INT-304]}
\]

(Req 4.16.15-9)

\[
\text{AST-MDS15}\<10 + (ch - 1)\>(k, \text{cell}) = A(ch, n; 0, 0, k, \text{cell})
\]

(Req 4.16.15-10)

Cloudy pixels, nadir.

\[
\text{AST-MDS15}\<17 + (ch - 1)\>(k, \text{cell}) = A(ch, n; 0, 1, k, \text{cell})
\]

(Req 4.16.15-11)

\[
\text{AST-MDS15-24}(k, \text{cell}) = \text{PFF}(n; \text{sea}; k, \text{cell}) \text{ [L2-INT-52]}
\]

(Req 4.16.15-12)

Forward view:

\[
\text{AST-MDS15-25}(k, \text{cell}) = N_{\text{total}}(f; k, \text{cell}) \text{ [L2-INT-313]}
\]

(Req 4.16.15-13)

\[
\text{AST-MDS15-26}(k, \text{cell}) = N_{\text{sea}}(f; k, \text{cell}) \text{ [L2-INT-312]}
\]

(Req 4.16.15-14)

\[
\text{AST-MDS15-27}(k, \text{cell}) = \text{pcs}(f; k, \text{cell}) \text{ [L2-INT-314]}
\]

(Req 4.16.15-15)

Clear pixels, forward.

\[
\text{AST-MDS15}\<28 + (ch - 1)\>(k, \text{cell}) = A(ch, f; 0, 0, k, \text{cell})
\]

(Req 4.16.15-16)

Cloudy pixels, forward.

\[
\text{AST-MDS15}\<35 + (ch - 1)\>(k, \text{cell}) = A(ch, f; 0, 1, k, \text{cell})
\]

(Req 4.16.15-17)

\[
\text{AST-MDS15-42}(k, \text{cell}) = \text{PFF}(f; \text{sea}; k, \text{cell}) \text{ [L2-INT-52]}
\]

(Req 4.16.15-18)

Step 4.16.16 AST MDS#16: Sea Cell BT/TOA Record, 30 arc minute cell

Record identified by cell number \text{cell}.
AST-MDS16-1](cell) = [AST-MDS4-1](cell)
AST-MDS16-2](cell) = -1 if \((N_{sea}(n; cell) = 0 \text{ and } N_{sea}(f; cell) = 0)\)
= 0 otherwise
AST-MDS16-3](cell) = (3 zero bytes)
AST-MDS16-4](cell) = cell_lat(cell) [L2-INT-47]
AST-MDS16-5](cell) = cell_long(cell) [L2-INT-48]
AST-MDS16-6](cell) = across_track_mean(0; cell) [L2-INT-368]
AST-MDS16-7](cell) = N_total(n; cell) [L2-INT-308]
AST-MDS16-8](cell) = N_sea(n; cell) [L2-INT-307]
AST-MDS16-9](cell) = pcs(n; cell) [L2-INT-309]
Clear pixels, nadir.
AST-MDS16-<10 + 2.(ch - 1)>](cell) = \(\tilde{A}(ch, n; 0, 0, cell)\)
AST-MDS16-<11 + 2.(ch - 1)>](cell) = \(\sigma(ch, n; 0, 0, cell)\)
Cloudy pixels, nadir.
AST-MDS16-<24 + 2.(ch - 1)>](cell) = \(\tilde{A}(ch, n; 0, 1, cell)\)
AST-MDS16-<25 + 2.(ch - 1)>](cell) = \(\sigma(ch, n; 0, 1, cell)\)
AST-MDS16-38](cell) = PFF(n, sea; cell) [L2-INT-5]
Forward view:
AST-MDS16-39](cell) = N_total(f; cell) [L2-INT-318]
AST-MDS16-40](cell) = N_sea(f; cell) [L2-INT-317]
AST-MDS16-41](cell) = pcs(f; cell) [L2-INT-319]
Clear pixels, forward.
AST-MDS16-<42 + 2.(ch - 1)>](cell) = \(\tilde{A}(ch,f; 0, 0, cell)\)
AST-MDS16-<43 + 2.(ch - 1)>](cell) = \(\sigma(ch,f; 0, 0, cell)\)
Cloudy pixels, forward.
AST-MDS16-<56 + 2.(ch - 1)>](cell) = \(\tilde{A}(ch, f; 0, 1, cell)\)
AST-MDS16-<57 + 2.(ch - 1)>](cell) = \(\sigma(ch, f; 0, 1, cell)\)
AST-MDS16-70](cell) = PFF(f, sea; cell) [L2-INT-51]
AST-MDS16-71](cell) = N0(cell)
AST-MDS16-72](cell) = (ACLOUD) Percentage of pixels over <surface type>
(Req 4.16.16-1)
(Req 4.16.16-2)
(Req 4.16.16-3)
(Req 4.16.16-4)
(Req 4.16.16-5)
(Req 4.16.16-6)
(Req 4.16.16-7)
(Req 4.16.16-8)
(Req 4.16.16-9)
(Req 4.16.16-10)
(Req 4.16.16-11)
(Req 4.16.16-12)
(Req 4.16.16-13)
(Req 4.16.16-14)
(Req 4.16.16-15)
(Req 4.16.16-16)
(Req 4.16.16-17)
(Req 4.16.16-18)
(Req 4.16.16-19)
(Req 4.16.16-20)
(Req 4.16.16-21)
(Req 4.16.16-22)
(Req 4.16.16-23)
(Req 4.16.16-24)
Averaged cloud parameters (ACLOUD), nadir view:

\[
\text{[AST-MDS16-73](cell)} = I_{\text{min}}(ir11, n, \text{sea}; \text{cell}) \quad \text{(Req 4.16.16-25)}
\]

\[
\text{[AST-MDS16-74](cell)} = I_{\text{min}}(ir12, n, \text{sea}; \text{cell}) \quad \text{(Req 4.16.16-26)}
\]

\[
\text{[AST-MDS16-75](cell)} = I_{\text{min}}(ir37, n, \text{sea}; \text{cell}) \quad \text{(Req 4.16.16-27)}
\]

\[
\text{[AST-MDS16-76](cell)} = I_{\text{min}}(v16, n, \text{sea}; \text{cell}) \quad \text{(Req 4.16.16-28)}
\]

\[
\text{[AST-MDS16-77](cell)} = I_{\text{min}}(v870, n, \text{sea}; \text{cell}) \quad \text{(Req 4.16.16-29)}
\]

\[
\text{[AST-MDS16-78](cell)} = I_{\text{min}}(v670, n, \text{sea}; \text{cell}) \quad \text{(Req 4.16.16-30)}
\]

\[
\text{[AST-MDS16-79](cell)} = I_{\text{min}}(v555, n, \text{sea}; \text{cell}) \quad \text{(Req 4.16.16-31)}
\]

Averaged cloud parameters (ACLOUD), forward view:

\[
\text{[AST-MDS16-80](cell)} = I_{\text{min}}(ir11, f, \text{sea}; \text{cell}) \quad \text{(Req 4.16.16-32)}
\]

\[
\text{[AST-MDS16-81](cell)} = I_{\text{min}}(ir12, f, \text{sea}; \text{cell}) \quad \text{(Req 4.16.16-33)}
\]

\[
\text{[AST-MDS16-82](cell)} = I_{\text{min}}(ir37, f, \text{sea}; \text{cell}) \quad \text{(Req 4.16.16-34)}
\]

\[
\text{[AST-MDS16-83](cell)} = I_{\text{min}}(v16, f, \text{sea}; \text{cell}) \quad \text{(Req 4.16.16-35)}
\]

\[
\text{[AST-MDS16-84](cell)} = I_{\text{min}}(v870, f, \text{sea}; \text{cell}) \quad \text{(Req 4.16.16-36)}
\]

\[
\text{[AST-MDS16-85](cell)} = I_{\text{min}}(v670, f, \text{sea}; \text{cell}) \quad \text{(Req 4.16.16-37)}
\]

\[
\text{[AST-MDS16-86](cell)} = I_{\text{min}}(v555, f, \text{sea}; \text{cell}) \quad \text{(Req 4.16.16-38)}
\]

4.17 Module Definition: Output ECMWF Product

4.17.1 Functional Description

The ECMWF Averaged SST Product is written to the output medium. First the MPH, and
SPH are written, then the Measurement d

4.17.2 Interface Definition

See IODD Tables and Internal Parameter List

4.17.3 Detailed Structure

Step 4.17.1 MPH Record

As per PO-RS-MDA-GS-2009

Step 4.17.2 SPH Record

The SPH is identical to that for the AST product but with DSDs as per PO-RS-MDA-GS-

Step 4.17.3 MDS#1

The contents of each Meteo product record comprise the contents of the MDS3 record that
corresponds to the same cell, together with the clear sea brightness temperatures from the
corresponding MDS15 record, ordered to ensure that 4 byte quantities are aligned on 4-byte
boundaries. It is assembled as follows.
Record identified by (k, cell)

\[[\text{ECM-MDS1-1}](k, \text{cell}) = [\text{AST-MDS3-1}](k, \text{cell})\] (Req 4.17.1)

\[[\text{ECM-MDS1-2}](k, \text{cell}) = -1 \text{ if } (N_{\text{sea}}(n; k, \text{cell}) = 0 \text{ and } N_{\text{sea}}(f; k, \text{cell}) = 0) \]
\[= 0 \text{ otherwise} \] (Req 4.17.2)

\[[\text{ECM-MDS1-3}](k, \text{cell}) = (3 \text{ zero bytes}) \] (Req 4.17.3)

\[[\text{ECM-MDS1-4}](k, \text{cell}) = \text{sub}_{\text{cell}}_{\text{lat}}(k, \text{cell}) \] [L2-INT-32] (Req 4.17.4)

\[[\text{ECM-MDS1-5}](k, \text{cell}) = \text{sub}_{\text{cell}}_{\text{long}}(k, \text{cell}) \] [L2-INT-33] (Req 4.17.5)

\[[\text{ECM-MDS1-12}](k, \text{cell}) = A(\text{ir12}, n; 0, 0, k, \text{cell}) \] (Req 4.17.6)

\[[\text{ECM-MDS1-13}](k, \text{cell}) = A(\text{ir11}, n; 0, 0, k, \text{cell}) \] (Req 4.17.7)

\[[\text{ECM-MDS1-14}](k, \text{cell}) = A(\text{ir37}, n; 0, 0, k, \text{cell}) \] (Req 4.17.8)

\[[\text{ECM-MDS1-15}](k, \text{cell}) = A(\text{ir12}, f; 0, 0, k, \text{cell}) \] (Req 4.17.9)

\[[\text{ECM-MDS1-16}](k, \text{cell}) = A(\text{ir11}, f; 0, 0, k, \text{cell}) \] (Req 4.17.10)

\[[\text{ECM-MDS1-17}](k, \text{cell}) = A(\text{ir37}, f; 0, 0, k, \text{cell}) \] (Req 4.17.11)

\[[\text{ECM-MDS1-6}](k, \text{cell}) = \text{across}_{\text{track}}_{\text{mean}}(0; k, \text{cell}) \] [L2-INT-359] (Req 4.17.12)

\[[\text{ECM-MDS1-7}](k, \text{cell}) = \text{T}_{\text{nadir}}(k, \text{cell}) \] [L2-INT-54] (Req 4.17.13)

\[[\text{ECM-MDS1-8}](k, \text{cell}) = \text{the smaller of } M(\text{ir11}, n; 0, 0, k, \text{cell}), M(\text{ir12}, n; 0, 0, k, \text{cell}) \] (Req 4.17.14)

\[[\text{ECM-MDS1-9}](k, \text{cell}) = \text{T}_{\text{dual}}(k, \text{cell}) \] [L2-INT-56] (Req 4.17.15)

\[[\text{ECM-MDS1-10}](k, \text{cell}) = \text{the smallest of } M(\text{ir11}, n; 0, 0, k, \text{cell}), M(\text{ir12}, n; 0, 0, k, \text{cell}), M(\text{ir11}, f; 0, 0, k, \text{cell}), M(\text{ir12}, f; 0, 0, k, \text{cell}) \] (Req 4.17.16)

\[[\text{ECM-MDS1-11}](k, \text{cell}) = \text{ast}_{\text{conf}}(0; k, \text{cell}) \] (Req 4.17.17)
5 Internal Parameter List

<table>
<thead>
<tr>
<th>Parameter ID</th>
<th>Variable</th>
<th>Name</th>
<th>Type</th>
<th>Units</th>
<th>Field Size</th>
<th>Fields</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2-INT-1</td>
<td>(w(\text{ch}, i))</td>
<td>Tie point latitude</td>
<td>float</td>
<td>deg.</td>
<td>4</td>
<td>(j = 0, 22)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-2</td>
<td>(L(\text{ch}, i))</td>
<td>Tie point longitude</td>
<td>float</td>
<td>deg.</td>
<td>4</td>
<td>(j = 0, 22)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-3</td>
<td>(\gamma(\text{ch}, \text{cell}))</td>
<td>tie scan satellite elevation, nadir</td>
<td>float</td>
<td>deg.</td>
<td>4</td>
<td>(k = 0, 10)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-4</td>
<td>(\beta(\text{ch}, \text{cell}))</td>
<td>tie scan solar azimuth, nadir</td>
<td>float</td>
<td>deg.</td>
<td>4</td>
<td>(k = 0, 10)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-5</td>
<td>(\alpha(\text{ch}, \text{cell}))</td>
<td>tie scan solar elevation, forward</td>
<td>float</td>
<td>deg.</td>
<td>4</td>
<td>(k = 0, 10)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-6</td>
<td>(\beta(\text{ch}, \text{cell}))</td>
<td>tie scan solar azimuth, forward</td>
<td>float</td>
<td>deg.</td>
<td>4</td>
<td>(k = 0, 10)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-7</td>
<td>(\beta(\text{ch}, \text{cell}))</td>
<td>tie scan y co-ordinate</td>
<td>si</td>
<td>m</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-8</td>
<td>(y(i))</td>
<td>image scan y co-ordinate</td>
<td>si</td>
<td>m</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-9</td>
<td>(\text{UTC(l, m)})</td>
<td>Scan UTC in MJD Format</td>
<td>4*si</td>
<td>MJD</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-10</td>
<td>(\text{UTC(m, l)})</td>
<td>50 km cell UTC</td>
<td>double</td>
<td>days</td>
<td>8</td>
<td>per cell</td>
<td></td>
</tr>
<tr>
<td>L2-INT-11</td>
<td>(\text{UTC(k, l)})</td>
<td>17 km sub-cell UTC</td>
<td>double</td>
<td>days</td>
<td>8</td>
<td>(k = 0, 8)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-12</td>
<td>(\text{UTC(k, cell)})</td>
<td>cell UTC</td>
<td>double</td>
<td>days</td>
<td>8</td>
<td>per cell</td>
<td></td>
</tr>
<tr>
<td>L2-INT-13</td>
<td>(\text{UTC(k, cell)})</td>
<td>sub-cell UTC</td>
<td>double</td>
<td>days</td>
<td>8</td>
<td>(k = 0, 8)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-14</td>
<td>(\text{UTC(k, cell)})</td>
<td>sub-cell latitude</td>
<td>si</td>
<td>(\mu)deg</td>
<td>4</td>
<td>(k = 0, 8)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-15</td>
<td>(\text{UTC(k, cell)})</td>
<td>sub-cell longitude</td>
<td>si</td>
<td>(\mu)deg</td>
<td>4</td>
<td>(k = 0, 8)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-16</td>
<td>(\text{UTC(k, cell)})</td>
<td>sub-cell area</td>
<td>si</td>
<td>(\mu)deg</td>
<td>4</td>
<td>(k = 0, 8)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-17</td>
<td>(\text{UTC(k, cell)})</td>
<td>sub-cell area</td>
<td>si</td>
<td>(\mu)deg</td>
<td>4</td>
<td>(k = 0, 8)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-18</td>
<td>(\text{UTC(k, cell)})</td>
<td>sub-cell area</td>
<td>si</td>
<td>(\mu)deg</td>
<td>4</td>
<td>(k = 0, 8)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-19</td>
<td>(\text{UTC(k, cell)})</td>
<td>sub-cell area</td>
<td>si</td>
<td>(\mu)deg</td>
<td>4</td>
<td>(k = 0, 8)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-20</td>
<td>(\text{UTC(k, cell)})</td>
<td>sub-cell area</td>
<td>si</td>
<td>(\mu)deg</td>
<td>4</td>
<td>(k = 0, 8)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-21</td>
<td>(\text{UTC(k, cell)})</td>
<td>sub-cell area</td>
<td>si</td>
<td>(\mu)deg</td>
<td>4</td>
<td>(k = 0, 8)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-22</td>
<td>(\text{UTC(k, cell)})</td>
<td>sub-cell area</td>
<td>si</td>
<td>(\mu)deg</td>
<td>4</td>
<td>(k = 0, 8)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-23</td>
<td>(\text{UTC(k, cell)})</td>
<td>sub-cell area</td>
<td>si</td>
<td>(\mu)deg</td>
<td>4</td>
<td>(k = 0, 8)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-24</td>
<td>(\text{UTC(k, cell)})</td>
<td>sub-cell area</td>
<td>si</td>
<td>(\mu)deg</td>
<td>4</td>
<td>(k = 0, 8)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-25</td>
<td>(\text{UTC(k, cell)})</td>
<td>sub-cell area</td>
<td>si</td>
<td>(\mu)deg</td>
<td>4</td>
<td>(k = 0, 8)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-26</td>
<td>(\text{UTC(k, cell)})</td>
<td>sub-cell area</td>
<td>si</td>
<td>(\mu)deg</td>
<td>4</td>
<td>(k = 0, 8)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-27</td>
<td>(\text{UTC(k, cell)})</td>
<td>sub-cell area</td>
<td>si</td>
<td>(\mu)deg</td>
<td>4</td>
<td>(k = 0, 8)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-28</td>
<td>(\text{UTC(k, cell)})</td>
<td>sub-cell area</td>
<td>si</td>
<td>(\mu)deg</td>
<td>4</td>
<td>(k = 0, 8)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-29</td>
<td>(\text{UTC(k, cell)})</td>
<td>sub-cell area</td>
<td>si</td>
<td>(\mu)deg</td>
<td>4</td>
<td>(k = 0, 8)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-30</td>
<td>(\text{UTC(k, cell)})</td>
<td>sub-cell area</td>
<td>si</td>
<td>(\mu)deg</td>
<td>4</td>
<td>(k = 0, 8)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-31</td>
<td>(\text{UTC(k, cell)})</td>
<td>sub-cell area</td>
<td>si</td>
<td>(\mu)deg</td>
<td>4</td>
<td>(k = 0, 8)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-32</td>
<td>(\text{UTC(k, cell)})</td>
<td>sub-cell area</td>
<td>si</td>
<td>(\mu)deg</td>
<td>4</td>
<td>(k = 0, 8)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-33</td>
<td>(\text{UTC(k, cell)})</td>
<td>sub-cell area</td>
<td>si</td>
<td>(\mu)deg</td>
<td>4</td>
<td>(k = 0, 8)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-34</td>
<td>(\text{UTC(k, cell)})</td>
<td>sub-cell area</td>
<td>si</td>
<td>(\mu)deg</td>
<td>4</td>
<td>(k = 0, 8)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-35</td>
<td>(\text{UTC(k, cell)})</td>
<td>sub-cell area</td>
<td>si</td>
<td>(\mu)deg</td>
<td>4</td>
<td>(k = 0, 8)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-36</td>
<td>(\text{UTC(k, cell)})</td>
<td>sub-cell area</td>
<td>si</td>
<td>(\mu)deg</td>
<td>4</td>
<td>(k = 0, 8)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-37</td>
<td>(\text{UTC(k, cell)})</td>
<td>sub-cell area</td>
<td>si</td>
<td>(\mu)deg</td>
<td>4</td>
<td>(k = 0, 8)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-38</td>
<td>(\text{UTC(k, cell)})</td>
<td>sub-cell area</td>
<td>si</td>
<td>(\mu)deg</td>
<td>4</td>
<td>(k = 0, 8)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-39</td>
<td>(\text{UTC(k, cell)})</td>
<td>sub-cell area</td>
<td>si</td>
<td>(\mu)deg</td>
<td>4</td>
<td>(k = 0, 8)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-40</td>
<td>(\text{UTC(k, cell)})</td>
<td>sub-cell area</td>
<td>si</td>
<td>(\mu)deg</td>
<td>4</td>
<td>(k = 0, 8)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-41</td>
<td>(\text{UTC(k, cell)})</td>
<td>sub-cell area</td>
<td>si</td>
<td>(\mu)deg</td>
<td>4</td>
<td>(k = 0, 8)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-42</td>
<td>(\text{UTC(k, cell)})</td>
<td>sub-cell area</td>
<td>si</td>
<td>(\mu)deg</td>
<td>4</td>
<td>(k = 0, 8)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-43</td>
<td>(\text{UTC(k, cell)})</td>
<td>sub-cell area</td>
<td>si</td>
<td>(\mu)deg</td>
<td>4</td>
<td>(k = 0, 8)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-44</td>
<td>(\text{UTC(k, cell)})</td>
<td>sub-cell area</td>
<td>si</td>
<td>(\mu)deg</td>
<td>4</td>
<td>(k = 0, 8)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-45</td>
<td>(\text{UTC(k, cell)})</td>
<td>sub-cell area</td>
<td>si</td>
<td>(\mu)deg</td>
<td>4</td>
<td>(k = 0, 8)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-46</td>
<td>(\text{UTC(k, cell)})</td>
<td>sub-cell area</td>
<td>si</td>
<td>(\mu)deg</td>
<td>4</td>
<td>(k = 0, 8)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-47</td>
<td>(\text{UTC(k, cell)})</td>
<td>sub-cell area</td>
<td>si</td>
<td>(\mu)deg</td>
<td>4</td>
<td>(k = 0, 8)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-48</td>
<td>(\text{UTC(k, cell)})</td>
<td>sub-cell area</td>
<td>si</td>
<td>(\mu)deg</td>
<td>4</td>
<td>(k = 0, 8)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-49</td>
<td>(\text{UTC(k, cell)})</td>
<td>sub-cell area</td>
<td>si</td>
<td>(\mu)deg</td>
<td>4</td>
<td>(k = 0, 8)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-50</td>
<td>(\text{UTC(k, cell)})</td>
<td>sub-cell area</td>
<td>si</td>
<td>(\mu)deg</td>
<td>4</td>
<td>(k = 0, 8)</td>
<td></td>
</tr>
<tr>
<td>L2-INT-51</td>
<td>(\text{UTC(k, cell)})</td>
<td>sub-cell area</td>
<td>si</td>
<td>(\mu)deg</td>
<td>4</td>
<td>(k = 0, 8)</td>
<td></td>
</tr>
</tbody>
</table>

Footnotes
- Commercial In Confidence
- AATSR Product Algorithm Detailed Documentation
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Units</th>
<th>Data Type</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2-INT-52</td>
<td>PFF(v, sf, k, cell)</td>
<td></td>
<td>float</td>
<td></td>
</tr>
<tr>
<td>L2-INT-53</td>
<td>T_nadir(cell)</td>
<td></td>
<td>flags</td>
<td>ss</td>
</tr>
<tr>
<td>L2-INT-54</td>
<td>T_nadir(k, cell)</td>
<td></td>
<td>flags</td>
<td>ss</td>
</tr>
<tr>
<td>L2-INT-55</td>
<td>T_dual(cell)</td>
<td></td>
<td>flags</td>
<td>ss</td>
</tr>
<tr>
<td>L2-INT-56</td>
<td>T_dual(k, cell)</td>
<td></td>
<td>flags</td>
<td>ss</td>
</tr>
<tr>
<td>L2-INT-57</td>
<td>σ_nadir(ASST, cell)</td>
<td></td>
<td>flags</td>
<td>ss</td>
</tr>
<tr>
<td>L2-INT-58</td>
<td>T_dual(ASST, cell)</td>
<td></td>
<td>flags</td>
<td>ss</td>
</tr>
<tr>
<td>L2-INT-59</td>
<td>(Parameter deleted)</td>
<td></td>
<td>flags</td>
<td>n/a</td>
</tr>
<tr>
<td>L2-INT-60</td>
<td>band(j)</td>
<td></td>
<td>flags</td>
<td>si</td>
</tr>
<tr>
<td>L2-INT-61</td>
<td>sub_cell_lat(k, l, m)</td>
<td></td>
<td>flags</td>
<td>si</td>
</tr>
<tr>
<td>L2-INT-62</td>
<td>sub_cell_long(k, l, m)</td>
<td></td>
<td>flags</td>
<td>si</td>
</tr>
<tr>
<td>L2-INT-63</td>
<td>sub_cell_band(k, l, m)</td>
<td></td>
<td>flags</td>
<td>ss</td>
</tr>
<tr>
<td>L2-INT-64</td>
<td>sub_cell_across-track band</td>
<td></td>
<td>flags</td>
<td>ss</td>
</tr>
<tr>
<td>L2-INT-65</td>
<td>M(ch, v; sf, cl, l, m)</td>
<td></td>
<td>flags</td>
<td>ss</td>
</tr>
<tr>
<td>L2-INT-66</td>
<td>S(ch, v; sf, cl, k, l, m)</td>
<td></td>
<td>flags</td>
<td>ss</td>
</tr>
<tr>
<td>L2-INT-67</td>
<td>A(ch, v; sf, cl, k, l, m)</td>
<td></td>
<td>flags</td>
<td>ss</td>
</tr>
<tr>
<td>L2-INT-68</td>
<td>A(ch, v; sf, cl, k, l, m)</td>
<td></td>
<td>flags</td>
<td>ss</td>
</tr>
<tr>
<td>L2-INT-69</td>
<td>T_dual(l, m)</td>
<td></td>
<td>flags</td>
<td>ss</td>
</tr>
<tr>
<td>L2-INT-70</td>
<td>M(ch, v; sf, cl, l, m)</td>
<td></td>
<td>flags</td>
<td>ss</td>
</tr>
<tr>
<td>L2-INT-71</td>
<td>A(ch, v; sf, cl, l, m)</td>
<td></td>
<td>flags</td>
<td>ss</td>
</tr>
<tr>
<td>L2-INT-72</td>
<td>A(ch, v; sf, cl, l, m)</td>
<td></td>
<td>flags</td>
<td>ss</td>
</tr>
<tr>
<td>L2-INT-73</td>
<td>σ(ch, v; sf, cl, l, m)</td>
<td></td>
<td>flags</td>
<td>float</td>
</tr>
<tr>
<td>L2-INT-74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-77</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-81</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-82</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-83</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-86</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-87</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-88</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-91</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-93</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-94</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-96</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-97</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2-INT-99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ENVISAT PAYLOAD DATA SEGMENT

Commercial in Confidence

AATSR Expert Support Laboratory

<table>
<thead>
<tr>
<th>L2-INT-100</th>
<th>Regridded data structures:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>nadir_fill_state(i, j)</code></td>
</tr>
<tr>
<td>L2-INT-101</td>
<td><code>lir12_n, n, i, j)</code></td>
</tr>
<tr>
<td>L2-INT-102</td>
<td><code>lir11_n, n, i, j)</code></td>
</tr>
<tr>
<td>L2-INT-103</td>
<td><code>lir37_n, n, i, j)</code></td>
</tr>
<tr>
<td>L2-INT-104</td>
<td><code>lv16_n, n, i, j)</code></td>
</tr>
<tr>
<td>L2-INT-105</td>
<td><code>lv870_n, n, i, j)</code></td>
</tr>
<tr>
<td>L2-INT-106</td>
<td><code>lv670_n, n, i, j)</code></td>
</tr>
<tr>
<td>L2-INT-107</td>
<td><code>lv555_n, n, i, j)</code></td>
</tr>
<tr>
<td>L2-INT-110</td>
<td><code>frwrd_fill_state(i, j)</code></td>
</tr>
<tr>
<td>L2-INT-111</td>
<td><code>lir12_f, f, i, j)</code></td>
</tr>
<tr>
<td>L2-INT-112</td>
<td><code>lir11_f, f, i, j)</code></td>
</tr>
<tr>
<td>L2-INT-113</td>
<td><code>lir37_f, f, i, j)</code></td>
</tr>
<tr>
<td>L2-INT-114</td>
<td><code>lv16_f, f, i, j)</code></td>
</tr>
<tr>
<td>L2-INT-115</td>
<td><code>lv870_f, f, i, j)</code></td>
</tr>
<tr>
<td>L2-INT-116</td>
<td><code>lv670_f, f, i, j)</code></td>
</tr>
<tr>
<td>L2-INT-117</td>
<td><code>lv555_f, f, i, j)</code></td>
</tr>
</tbody>
</table>

regridded nadir information:

L2-INT-120	`nadir.band_edge.satellite.elevation(i, k)`	float	degrees	4	k = 0, 10
L2-INT-121	`nadir.band_edge.solar.elevation(i, k)`	float	degrees	4	k = 0, 10
L2-INT-122	`nadir.band.edge.solar.azimuth(i, k)`	float	degrees	4	k = 0, 10
L2-INT-123	`nadir.band.edge.solar.azimuth(i, k)`	float	degrees	4	k = 0, 10
L2-INT-124	`nadir.band_centre.solar.elevation(i, k')`	float	degrees	4	k' = 0, 9
L2-INT-125	`nadir.band_centre.solar.elevation(i, k')`	float	degrees	4	k' = 0, 9
L2-INT-126	`nadir.band_centre.solar.azimuth(i, k')`	float	degrees	4	k' = 0, 9
L2-INT-127	`nadir.band_centre.solar.azimuth(i, k')`	float	degrees	4	k' = 0, 9
L2-INT-128	`nadir.band_centre.scan.times(i, k')`	double			
L2-INT-134	`scn_nadir(i, j)`	`nadir view instrument scan number`	us	none	j = 0, 511
L2-INT-135	`pxl_nadir(i, j)`	`nadir view instrument pixel number`	us	none	j = 0, 511

Regridded forward information:

L2-INT-140	`frwrd.band_edge.solar.elevation(i, k)`	float	degrees	4	k = 0, 10	
L2-INT-141	`frwrd.band_edge.solar.azimuth(i, k)`	float	degrees	4	k = 0, 10	
L2-INT-142	`frwrd.band.edge.solar.azimuth(i, k)`	float	degrees	4	k = 0, 10	
L2-INT-143	`frwrd.band.edge.solar.azimuth(i, k)`	float	degrees	4	k = 0, 10	
L2-INT-144	`frwrd.band_centre.solar.elevation(i, k')`	float	degrees	4	k' = 0, 9	
L2-INT-145	`frwrd.band_centre.solar.elevation(i, k')`	float	degrees	4	k' = 0, 9	
L2-INT-146	`frwrd.band_centre.solar.azimuth(i, k')`	float	degrees	4	k' = 0, 9	
L2-INT-147	`frwrd.band_centre.solar.azimuth(i, k')`	float	degrees	4	k' = 0, 9	
L2-INT-148	`frwrd.band_centre.scan.times[10]`	double				
L2-INT-149	`min_aux_temps[6]`	float				
L2-INT-150	`max_aux_temps[6]`	float				
L2-INT-151	`platform_mode`	long int				
L2-INT-152	`pod`	long int				
L2-INT-154	`scn_frwrd(i, j)`	`forward view instrument scan number`	us	none	j = 0, 511	
L2-INT-155	`pxl_frwrd(i, j)`	`forward view instrument pixel number`	us	none	j = 0, 511	
L2-INT-160	\(w(i, j) \)	image pixel latitude	float	deg.	4	\(j = 0, 511 \)
L2-INT-161	\(\lambda(i, j) \)	image pixel longitude	float	deg.	4	\(j = 0, 511 \)
L2-INT-171	GBTR confidence word, nadir view	ss flags	2	\(j = 0, 511 \)		
L2-INT-172	GBTR confidence word, forward view:	ss flags	2	512		
L2-INT-173	gbtr_cloud_state_nadir	GBTR cloud state flags, nadir view	ss flags	2	512	
L2-INT-174	gbtr_cloud_state_fwr d	GBTR cloud state flags, forward view	ss flags	2	512	

Unpacked GBTR Confidence flags (nadir):

L2-INT-200	nadir_blanking_pulse(i, j)	ss array flag	2	\(j = 0, 511 \)
L2-INT-201	nadir_cosmetic(i, j)	ss array flag	2	\(j = 0, 511 \)
L2-INT-202	nadir_scan_absent(i, j)	ss array flag	2	\(j = 0, 511 \)
L2-INT-203	nadir_pixel_absent(i, j)	ss array flag	2	\(j = 0, 511 \)
L2-INT-204	nadir_packet_validation_error(i, j)	ss array flag	2	\(j = 0, 511 \)
L2-INT-205	nadir_zero_count(i, j)	ss array flag	2	\(j = 0, 511 \)
L2-INT-206	nadir_saturation(i, j)	ss array flag	2	\(j = 0, 511 \)
L2-INT-207	nadir_cal_out_of_range(i, j)	ss array flag	2	\(j = 0, 511 \)
L2-INT-208	nadir_calibration_unavailable(i, j)	ss array flag	2	\(j = 0, 511 \)
L2-INT-209	nadir_unfilled_pixel(i, j)	ss array flag	2	\(j = 0, 511 \)

Unpacked GBTR Confidence flags (forward):

L2-INT-216	frwrd_blanking_pulse(i, j)	ss array flag	2	\(j = 0, 511 \)
L2-INT-217	frwrd_cosmetic(i, j)	ss array flag	2	\(j = 0, 511 \)
L2-INT-218	frwrd_scan_absent(i, j)	ss array flag	2	\(j = 0, 511 \)
L2-INT-219	frwrd_pixel_absent(i, j)	ss array flag	2	\(j = 0, 511 \)
L2-INT-220	frwrd_packet_validation_error(i, j)	ss array flag	2	\(j = 0, 511 \)
L2-INT-221	frwrd_zero_count(i, j)	ss array flag	2	\(j = 0, 511 \)
L2-INT-222	frwrd_saturation(i, j)	ss array flag	2	\(j = 0, 511 \)
L2-INT-223	frwrd_cal_out_of_range(i, j)	ss array flag	2	\(j = 0, 511 \)
L2-INT-224	frwrd_calibration_unavailable(i, j)	ss array flag	2	\(j = 0, 511 \)
L2-INT-225	frwrd_unfilled_pixel(i, j)	ss array flag	2	\(j = 0, 511 \)

Unpacked GBTR cloud/land flags (nadir):

L2-INT-232	nadir_land(i, j)	ss array flag	2	\(j = 0, 511 \)
L2-INT-233	nadir_cloud(i, j)	ss array flag	2	\(j = 0, 511 \)
L2-INT-234	nadir_sunglint(i, j)	ss array flag	2	\(j = 0, 511 \)
L2-INT-235	nadir_v16_histogram_test(i, j)	ss array flag	2	\(j = 0, 511 \)
L2-INT-236	nadir_v16 Spatial coherence test(i, j)	ss array flag	2	\(j = 0, 511 \)
L2-INT-237	nadir_ir11 Spatial coherence test(i, j)	ss array flag	2	\(j = 0, 511 \)
L2-INT-238	nadir Ir12 gross_cloud test(i, j)	ss array flag	2	\(j = 0, 511 \)
L2-INT-239	nadir_ir11_12 thin_cirrus_test(i, j)	ss array flag	2	\(j = 0, 511 \)
L2-INT-240	nadir_ir37 Ir12med_high_level_test(i, j)	ss array flag	2	\(j = 0, 511 \)
L2-INT-241	nadir_ir11 Ir37 fog_low_stratus_test(i, j)	ss array flag	2	\(j = 0, 511 \)
L2-INT-242	nadir_ir11 Ir12 view_diff test(i, j)	ss array flag	2	\(j = 0, 511 \)
L2-INT-243	nadir_ir37 Ir11 view_diff test(i, j)	ss array flag	2	\(j = 0, 511 \)
L2-INT-244	nadir_ir11 Ir12 histogram test(i, j)	ss array flag	2	\(j = 0, 511 \)

Unpacked GBTR cloud/land flags (forward):

<p>| L2-INT-248 | frwrd_land(i, j) | ss array flag | 2 | (j = 0, 511) |
| L2-INT-249 | frwrd_cloud(i, j) | ss array flag | 2 | (j = 0, 511) |
| L2-INT-250 | frwrd_sunglint(i, j) | ss array flag | 2 | (j = 0, 511) |
| L2-INT-251 | frwrd_v16_histogram_test(i, j) | ss array flag | 2 | (j = 0, 511) |
| L2-INT-252 | frwrd_v16 Spatial coherence test(i, j) | ss array flag | 2 | (j = 0, 511) |
| L2-INT-253 | frwrd_ir11 Spatial coherence test(i, j) | ss array flag | 2 | (j = 0, 511) |
| L2-INT-254 | frwrd_ir12 gross_cloud test(i, j) | ss array flag | 2 | (j = 0, 511) |
| L2-INT-255 | frwrd_ir11 Ir12 thin_cirrus_test(i, j) | ss array flag | 2 | (j = 0, 511) |
| L2-INT-256 | frwrd_ir37 Ir12med high_level_test(i, j) | ss array flag | 2 | (j = 0, 511) |
| L2-INT-257 | frwrd_ir11 Ir37 fog_low_stratus_test(i, j) | ss array flag | 2 | (j = 0, 511) |</p>
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2-INT-258</td>
<td><code>fwrd_ir11_ir12_view_diff_test(i, j)</code></td>
</tr>
<tr>
<td>L2-INT-259</td>
<td><code>fwrd_ir37_ir11_view_diff_test(i, j)</code></td>
</tr>
<tr>
<td>L2-INT-260</td>
<td><code>fwrd_ir11_ir12_histogram_test(i, j)</code></td>
</tr>
<tr>
<td>L2-INT-270</td>
<td><code>nadir_image_field(i, j)</code></td>
</tr>
<tr>
<td>L2-INT-271</td>
<td><code>combined_image_field(i, j)</code></td>
</tr>
<tr>
<td>L2-INT-272</td>
<td><code>gsst-confidence_word(i, j)</code></td>
</tr>
<tr>
<td>L2-INT-280</td>
<td><code>nadir_only_sst_valid(i, j)</code></td>
</tr>
<tr>
<td>L2-INT-281</td>
<td><code>nadir_only_sst_valid(i, j)</code></td>
</tr>
<tr>
<td>L2-INT-282</td>
<td><code>combined_view_valid(i, j)</code></td>
</tr>
<tr>
<td>L2-INT-283</td>
<td><code>combined_view_valid(i, j)</code></td>
</tr>
<tr>
<td>L2-INT-284</td>
<td><code>land(i, j)</code></td>
</tr>
<tr>
<td>L2-INT-285</td>
<td><code>nadir_view_cloudy(i, j)</code></td>
</tr>
<tr>
<td>L2-INT-286</td>
<td><code>nadir_view_blanking_pulse(i, j)</code></td>
</tr>
<tr>
<td>L2-INT-287</td>
<td><code>nadir_view_cloudy(i, j)</code></td>
</tr>
<tr>
<td>L2-INT-288</td>
<td><code>fwrd_view_cloudy(i, j)</code></td>
</tr>
<tr>
<td>L2-INT-289</td>
<td><code>fwrd_view_blanking_pulse(i, j)</code></td>
</tr>
<tr>
<td>L2-INT-290</td>
<td><code>fwrd_view_cloudy(i, j)</code></td>
</tr>
<tr>
<td>L2-INT-291</td>
<td><code>gsst_view_cloud(i, j)</code></td>
</tr>
<tr>
<td>L2-INT-292</td>
<td><code>gsst_nadir_fwrd_cloud_test(i, j)</code></td>
</tr>
<tr>
<td>L2-INT-293</td>
<td><code>gsst_ir11_histogram_test(i, j)</code></td>
</tr>
<tr>
<td>L2-INT-294</td>
<td><code>topographic_variance(i, j)</code></td>
</tr>
<tr>
<td>L2-INT-295</td>
<td><code>extended_land(i, j)</code></td>
</tr>
<tr>
<td>L2-INT-301</td>
<td><code>N_land(n; k, cell)</code></td>
</tr>
<tr>
<td>L2-INT-302</td>
<td><code>N_sea(n; k, cell)</code></td>
</tr>
<tr>
<td>L2-INT-303</td>
<td><code>N_total(n; k, cell)</code></td>
</tr>
<tr>
<td>L2-INT-304</td>
<td><code>pcs(n; cell)</code></td>
</tr>
<tr>
<td>L2-INT-305</td>
<td><code>pcl(n; k, cell)</code></td>
</tr>
<tr>
<td>L2-INT-306</td>
<td><code>N_land(n; cell)</code></td>
</tr>
<tr>
<td>L2-INT-307</td>
<td><code>N_sea(n; cell)</code></td>
</tr>
<tr>
<td>L2-INT-308</td>
<td><code>N_total(n; cell)</code></td>
</tr>
<tr>
<td>L2-INT-309</td>
<td><code>pcs(n; cell)</code></td>
</tr>
<tr>
<td>L2-INT-310</td>
<td><code>pcl(n; cell)</code></td>
</tr>
<tr>
<td>L2-INT-311</td>
<td><code>N_land(f; k, cell)</code></td>
</tr>
<tr>
<td>L2-INT-312</td>
<td><code>N_sea(f; k, cell)</code></td>
</tr>
<tr>
<td>L2-INT-313</td>
<td><code>N_total(f; k, cell)</code></td>
</tr>
<tr>
<td>L2-INT-314</td>
<td><code>pcs(f; cell)</code></td>
</tr>
<tr>
<td>L2-INT-315</td>
<td><code>pcl(f; cell)</code></td>
</tr>
<tr>
<td>L2-INT-316</td>
<td><code>N_land(f; cell)</code></td>
</tr>
<tr>
<td>L2-INT-317</td>
<td><code>N_sea(f; cell)</code></td>
</tr>
<tr>
<td>L2-INT-318</td>
<td><code>N_total(f; cell)</code></td>
</tr>
<tr>
<td>L2-INT-319</td>
<td><code>pcs(f; cell)</code></td>
</tr>
<tr>
<td>L2-INT-320</td>
<td><code>pcl(f; cell)</code></td>
</tr>
<tr>
<td>L2-INT-321</td>
<td>(Parameter deleted)</td>
</tr>
<tr>
<td>L2-INT-322</td>
<td>(Parameter deleted)</td>
</tr>
<tr>
<td>L2-INT-323</td>
<td>(Parameter deleted)</td>
</tr>
<tr>
<td>L2-INT-324</td>
<td>(Parameter deleted)</td>
</tr>
<tr>
<td>L2-INT-325</td>
<td><code>across_track_band</code></td>
</tr>
<tr>
<td>L2-INT-326</td>
<td>(Parameter deleted)</td>
</tr>
<tr>
<td>L2-INT-327</td>
<td>(Parameter deleted)</td>
</tr>
<tr>
<td>L2-INT-328</td>
<td><code>nadir_clear_land</code></td>
</tr>
<tr>
<td>L2-INT-329</td>
<td><code>fwrd_clear_land</code></td>
</tr>
<tr>
<td>L2-INT-330</td>
<td><code>nadir_cloudy_land</code></td>
</tr>
<tr>
<td>L2-INT-331</td>
<td>fwdr_cloud land</td>
</tr>
<tr>
<td>L2-INT-332</td>
<td>nadir_hist land</td>
</tr>
<tr>
<td>L2-INT-333</td>
<td>fwdr_hist land</td>
</tr>
<tr>
<td>L2-INT-334</td>
<td>(Parameter deleted)</td>
</tr>
<tr>
<td>L2-INT-335</td>
<td>bt_cloud_top</td>
</tr>
<tr>
<td>L2-INT-336</td>
<td>bt_percent_cloudy</td>
</tr>
<tr>
<td>L2-INT-337</td>
<td>bt_cloud_top</td>
</tr>
<tr>
<td>L2-INT-338</td>
<td>bt_percent_cloudy</td>
</tr>
</tbody>
</table>

Nadir output quantities:

L2-INT-334	nadir clear sea	total of clear sea pixels, nadir view	sl	none	4	per cell
L2-INT-335	fwdr_clear sea	total of clear sea pixels, forward view	sl	none	4	per cell
L2-INT-336	fwdr_cloudy sea	total of cloudy sea pixels, nadir view	sl	none	4	per cell
L2-INT-337	fwdr_cloudy sea	total of cloudy sea pixels, forward view	sl	none	4	per cell
L2-INT-338	nadir_hist sea	nadir histogram (sea cell)	ss	none	2	1000
L2-INT-339	fwdr_hist sea	forward histogram (sea cell)	ss	none	2	1000
L2-INT-340	(Parameter deleted)					

Forward output quantities:

| L2-INT-335 | bt_cloud_top | cloud top temperature (over sea) | ss | 0.01K | 2 | per cell |
| L2-INT-336 | bt_percent_cloudy | percentage cloudy pixels (over sea) | ss | 0.01% | 2 | per cell |

Sea pixel histogram quantities:

| L2-INT-336 | band_sum(k, cell) | cumulative across-track band sum | sl | none | 4 | |
| L2-INT-341 | mean_band(k, cell) | mean across-track band number | ss | none | 2 | |

Cumulative across-track pixel index:

L2-INT-337	across_track_sum(sf; k, cell)	cumulative sum of across-track pixel index	sl	none	4	k = 0, 8
L2-INT-338	across_track_mean(sf; k, cell)	mean across-track pixel index, subcell k	ss	none	2	k = 0, 8
L2-INT-339	averaged SST retrieval a coefficients	float	mixed	4	90	
L2-INT-340	averaged SST retrieval b coefficients	float	mixed	4	120	
L2-INT-341	averaged SST retrieval c coefficients	float	mixed	4	150	

L2-INT-342	d(i, j, q)	mean across-track pixel index, cell	ss	none	2	per cell
L2-INT-343	ast_conf(sf; k, cell)	AST confidence word for sub-cell	sl	flags	4	k = 0, 8
L2-INT-344	ast_conf(sf; cell)	AST confidence word for cell	sl	flags	4	per cell
L2-INT-345	nadir_asst Uses_ir37(k, cell)		ss	flag	2	k = 0, 8
L2-INT-346	dual_asst Uses_ir37(k, cell)		ss	flag	2	k = 0, 8
L2-INT-347	across_track_mean(sf; cell)	mean across-track pixel index, cell	ss	none	2	per cell
L2-INT-348	sst_mean_pixel(sf, cell)	mean across-track pixel index, cell	ss	none	2	per cell

Cell and sub-cell counts for 50 km cells:

L2-INT-349	N_land(n; k, l, m)	total of filled pixels over land for subcell	ss	none	2	k = 0, 8
L2-INT-350	N_sea(n; k, l, m)	total of filled pixels over sea for subcell	ss	none	2	k = 0, 8
L2-INT-351	N_total(n; k, l, m)	total of filled pixels over land for subcell	ss	none	2	k = 0, 8
L2-INT-352	pcs(n; k, l, m)	percentage of cloudy pixels over sea	ss	0.01%	2	k = 0, 8
L2-INT-353	pcd(n; k, l, m)	percentage of cloudy pixels over land	ss	0.01%	2	k = 0, 8
L2-INT-354	N_land(n; l, m)	total of filled pixels over land for cell	ss	none	2	k = 0, 8
L2-INT-355	N_sea(n; l, m)	total of filled pixels over sea for cell	ss	none	2	k = 0, 8
L2-INT-356	N_total(n; l, m)	total of filled pixels for cell, nadir view	ss	none	2	
L2-INT-415	pctl(k, l, m)	percentage of cloudy pixels over land	ss	0.01%	2	k = 0, 8
L2-INT-416	N_land(f, l, m)	total filled pixels over land for cell	ss	none	2	
L2-INT-417	N_sea(f, l, m)	total of filled pixels over sea for cell	ss	none	2	
L2-INT-418	N_total(f, l, m)	total of filled pixels for cell, fwd view	ss	none	2	
L2-INT-419	pctl(f, l, m)	percentage of cloudy pixels over sea	ss	0.01%	2	
L2-INT-420	pctl(l, l, m)	percentage of cloudy pixels over land	ss	0.01%	2	
L2-INT-421	(Parameter deleted)					
L2-INT-422	(Parameter deleted)					
L2-INT-423	(Parameter deleted)					
L2-INT-424	(Parameter deleted)					
L2-INT-425	across_track_band	across-track band	ss	none	2	per cell

land pixel histogram quantities:

| L2-INT-426 |
| L2-INT-427 |
L2-INT-428	nadir_clear_land	total of clear land pixels, nadir view	sl	none	4	per cell
L2-INT-429	fwdrd_clear_land	total of clear land pixels, forward view	sl	none	4	per cell
L2-INT-430	nadir_cloudy_land	total of cloudy land pixels, nadir view	sl	none	4	per cell
L2-INT-431	fwdrd_cloudy_land	total of cloudy land pixels, forward view	sl	none	4	per cell
L2-INT-432	nadir_hist_land	nadir histogram (land cell)	ss	none	2	1000
L2-INT-433	fwdrd_hist_land	forward histogram (land cell)	ss	none	2	1000
L2-INT-434	(Parameter deleted)					

nadir output quantities:

L2-INT-435	bt_cloud_top	cloud top temperature (over land)	ss	0.01K	2	per cell
L2-INT-436	bt_percent_cloudy	percentage cloudy pixels (over land)	ss	0.01%	2	per cell
L2-INT-437	bt_cloud_top	cloud top temperature (over land)	ss	0.01K	2	per cell
L2-INT-438	bt_percent_cloudy	percentage cloudy pixels (over land)	ss	0.01%	2	per cell

sea pixel histogram quantities:

L2-INT-442	(Parameter deleted)					
L2-INT-443	(Parameter deleted)					
L2-INT-444	nadir_clear_sea	total of clear sea pixels, nadir view	sl	none	4	per cell
L2-INT-445	fwdrd_clear_sea	total of clear sea pixels, forward view	sl	none	4	per cell
L2-INT-446	nadir_cloudy_sea	total of cloudy sea pixels, nadir view	sl	none	4	per cell
L2-INT-447	fwdrd_cloudy_sea	total of cloudy sea pixels, forward view	sl	none	4	per cell
L2-INT-448	nadir_hist_sea	nadir histogram (sea cell)	ss	none	2	1000
L2-INT-449	fwdrd_hist_sea	forward histogram (sea cell)	ss	none	2	1000
L2-INT-450	(Parameter deleted)					

nadir output quantities:

<p>| L2-INT-451 | bt_cloud_top | cloud top temperature (over sea) | ss | 0.01K | 2 | per cell |
| L2-INT-452 | bt_percent_cloudy | percentage cloudy pixels (over sea) | ss | 0.01% | 2 | per cell |
| L2-INT-453 | bt_cloud_top | cloud top temperature (over sea) | ss | 0.01K | 2 | per cell |
| L2-INT-454 | bt_percent_cloudy | percentage cloudy pixels (over sea) | ss | 0.01% | 2 | per cell |
| L2-INT-455 | Nv(sf, cl, k, l, m) | sub-cell filled pixel count | ss | none | 2 |
| L2-INT-456 | band_sum(k, l, m) | cumulative across-track band sum | sl | none | 4 |
| L2-INT-457 | mean_band(k, l, m) | mean across-track band number | ss | none | 2 |
| L2-INT-458 | across_track_sum(sf; k, l, m) | cumulative sum of across-track pixel index | sl | none | 4 | k = 0, 8 |
| L2-INT-459 | across_track_mean(sf; k, l, m) | mean across-track pixel index, subcell k | ss | none | 2 | k = 0, 8 |
| L2-INT-460 | a[i, l, q] | averaged sst retrieval a coefficients | float | mixed | 4 |
| L2-INT-461 | b[i, l, q] | averaged sst retrieval b coefficients | float | mixed | 4 |
| L2-INT-462 | c[i, j, q] | averaged sst retrieval c coefficients | float | mixed | 4 |
| L2-INT-463 | d[i, j, q] | averaged sst retrieval d coefficients | float | mixed | 4 |
| L2-INT-464 | ast_conf(sf; k, l, m) | AST confidence word for sub-cell | sl | flags | 4 | k = 0, 8 |
| L2-INT-465 | ast_conf(sf; l, m) | AST confidence word for cell l, m | sl | flags | 4 | per cell |
| L2-INT-466 | nadir_asst_use_x3(k, l, m) | ss | flag | 2 | k = 0, 8 |
| L2-INT-467 | dual_asst_use_y3(k, l, m) | ss | flag | 2 | k = 0, 8 |
| L2-INT-468 | across_track_mean(sf; l, m) | mean across-track pixel index, cell l, m | ss | none | 2 | per cell |</p>
<table>
<thead>
<tr>
<th>L2-INT-469</th>
<th>ss, mean_pixel(position) of LST in pixel, l, m</th>
<th>mean across-track pixel index, l, m</th>
<th>ss</th>
<th>none</th>
<th>2</th>
<th>per cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2-INT-470</td>
<td>vegetation_class(lat_index, lon_index)</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>360 x 720</td>
<td></td>
</tr>
<tr>
<td>L2-INT-471</td>
<td>vegetation_fraction(lat_index, lon_index)</td>
<td>ss</td>
<td>0.001</td>
<td>4</td>
<td>360 x 720</td>
<td></td>
</tr>
<tr>
<td>L2-INT-472</td>
<td>precipitable_water(lat_index, lon_index)</td>
<td>ss</td>
<td>0.01 mm</td>
<td>2</td>
<td>360 x 720</td>
<td></td>
</tr>
<tr>
<td>L2-INT-473</td>
<td>Topographic_flag(lat_index, lon_index)</td>
<td>ss</td>
<td>none</td>
<td>2</td>
<td>360 x 720</td>
<td></td>
</tr>
<tr>
<td>L2-INT-474</td>
<td>lat_index</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L2-INT-475</td>
<td>lon_index</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L2-INT-476</td>
<td>disp_lat_index</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L2-INT-477</td>
<td>month</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L2-INT-478</td>
<td>sat_elev</td>
<td>float</td>
<td>degrees</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L2-INT-479</td>
<td>night</td>
<td>sl</td>
<td>none</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L2-INT-480</td>
<td>n</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L2-INT-481</td>
<td>f</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L2-INT-482</td>
<td>pw</td>
<td>float</td>
<td>cm</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L2-INT-483</td>
<td>coeff(class, i, 0)</td>
<td>float</td>
<td>0.01 K</td>
<td>4</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>L2-INT-484</td>
<td>coeff(class, i, 1)</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>L2-INT-485</td>
<td>coeff(class, i, 2)</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>L2-INT-486</td>
<td>w</td>
<td>float</td>
<td>none</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L2-INT-487</td>
<td>a(k)</td>
<td>float</td>
<td>mixed</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L2-INT-488</td>
<td>lat</td>
<td>float</td>
<td>0.01K</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L2-INT-491</td>
<td>sub_cell_index(position) of l, m</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td>k = 0, 8</td>
<td></td>
</tr>
<tr>
<td>L2-INT-492</td>
<td>T_land(k, cell)</td>
<td>ss</td>
<td>0.01 K</td>
<td>4</td>
<td>k = 0, 8</td>
<td></td>
</tr>
<tr>
<td>L2-INT-493</td>
<td>T_land(cell)</td>
<td>ss</td>
<td>0.01 K</td>
<td>4</td>
<td>per cell</td>
<td></td>
</tr>
<tr>
<td>L2-INT-494</td>
<td>o_land(cell)</td>
<td>ss</td>
<td>0.01 K</td>
<td>4</td>
<td>per cell</td>
<td></td>
</tr>
<tr>
<td>L2-INT-495</td>
<td>sub_cell_index(position) of l, m</td>
<td>sl</td>
<td>none</td>
<td>4</td>
<td>k = 0, 8</td>
<td></td>
</tr>
<tr>
<td>L2-INT-496</td>
<td>T_land(k, l, m)</td>
<td>ss</td>
<td>0.01 K</td>
<td>4</td>
<td>k = 0, 8</td>
<td></td>
</tr>
<tr>
<td>L2-INT-497</td>
<td>T_land(l, m)</td>
<td>ss</td>
<td>0.01 K</td>
<td>4</td>
<td>per cell</td>
<td></td>
</tr>
<tr>
<td>L2-INT-498</td>
<td>o_land(l, m)</td>
<td>ss</td>
<td>0.01 K</td>
<td>4</td>
<td>per cell</td>
<td></td>
</tr>
</tbody>
</table>

Table 5-1: Internal Parameter summary list