Diff-Tomo Separation of Temporal Decorrelation Mechanisms in Forest Multi-Pol Airborne Data

Fabrizio Lombardini\(^1,2\), Federico Viviani\(^1,2\), Francesco Cai\(^1\)

\(^1\) University of Pisa, Dept. of Information Engineering, Pisa, Italy
\(^2\) CNIT-RaSS National Laboratory, Pisa, Italy
Recall of 3D SAR Tomography concept
 • Open issues: temporal decorrelation

The extended Differential Tomography (4D) framework

Diff-Tomo for multidimensional imaging of forests: results with P-band E-SAR data over a boreal forest
 • Forest 4D space-time signatures of temporal decorrelation
 • Large forest area height-varying temporal coherence separation
 • HV polarization
 • HH polarization
 • Recall of other forest Diff-Tomo functionalities:
 Tomography robust to temporal decorrelation

Conclusions and future work
However...

- Limited and sparse baseline distribution, poor 3D Fourier imaging quality

 Proposed solutions: adaptive BF, SVD, subspace decomposition, spatial interpolators, etc...

- Possible limited operativity in non-fully coherent scenarios...

Tomo-SAR can localize the multiple scatterers through spatial spectral estimation (i.e. elevation beamforming)
• Elevation blurring problems from temporal decorrelation and scatterers motion

NASA-JPL, ESA and DLR recognized this as a possible limiting factor for the operational development of SAR Tomography (forest scatterers and spaceborne acquisitions)

• Studies of Tomo-SAR blurring and investigation of processing solutions

 Experimental phenomenological analysis of forest temporal coherence

• Classical (global) coherence analysis not enough: blurring origins are local

 Stratified temporal coherence analysis necessary!
Discrete space-time spectrum

Temporal frequencies code velocities

Example: subsidence in urban layover areas

Temporal frequencies are signatures of the temporal decorrelation!
Temporal perturbations of a scattering component

temporal harmonic distribution

Temp. freq. does not merely code velocity anymore

Continuos temporal spectrum signatures of temporal decorrelation can be detected!

New vision in SAR interferometry…

Sample simulated volume:

- \(t_c = 2.8 \) revisit times,
- temporal bandwidth 1 Fourier r.u.,
- \(\rho_0 = 1 \),
- compact electrically stable ground scatterer,
- scatterers separation 1.2 Rayleigh r.u.,
- sparse monostatic/multistatic acquisition pattern

Temporal signal harmonics can be decoupled from baseline signal harmonics

Sample simulated volume:

- \(t_c = \infty \),
- temporal bandwidth 0 Fourier r.u.,
- \(\rho_0 = 0.7 \).
Temporal perturbations of a scattering component

Temporal harmonic distribution

Temporal decorrelation signatures can be detected!

Continuos temporal spectrum processing

Diff-Tomo

New vision in SAR interferometry...

Temp. freq. does not merely code velocity anymore

Sample simulated volume:

- $t_c = 2.8$ revisit times,
- temporal bandwidth 1 Fourier r.u.,
- $\rho_0 = 1$,
- compact electrically stable ground scatterer,
- scatterers separation 1.2 Rayleigh r.u.,
- sparse monostatic/multistatic acquisition pattern

...allowing new functionalities for analyzing forest volumetric dynamic scenarios

1 - Coherence separation: the Diff-Tomo framework can recover information about different temporal decorrelation mechanisms of overlayed scatterers, exploiting temp. bandwidth estimates

2 - Decorrelation-robust Tomo-SAR... [Lombardini-Cai-Pardini, EUSAR’10]

3 – Possibly, subcanopy subsidence estimation... (5D parameter extraction)
4D space-time signatures: proof of concept

Remningstorp forest site
Mild temporal decorrelation
- DLR’s E-SAR (ESA project BIOSAR), P-band, 9 tracks
- Baseline span: 80 m, height Rayleigh resolution 28 m
- Time span: 2 months, temp. freq. Fourier resolution 0.5 phase cycles/month
- HV pol.

Non-parametric analysis of a forested cell – Real data investigation of space-time decorrelation signatures

Adaptive Diff-Tomo frame

Normalized adaptive Diff-Tomo frame
Remningstorp forest site

Mild temporal decorrelation

- DLR’s E-SAR (ESA project BIOSAR), P-band, 9 tracks
- Baseline span: 80 m, height Rayleigh resolution 28 m
- Time span: 2 months, temp. freq. Fourier resolution 0.5 phase cycles/month
- HV pol.

Non-parametric analysis of a forested cell – Real data investigation of space-time decorrelation signatures

Canopy-Ground separated normalized temporal spectra

Normalized adaptive Diff-Tomo frame

Canopy scatterer detected with a wider spread along temporal frequency w.r.t. ground!

First verification on real data of the concept of space-time signatures of temporal decorrelation

[Lombardini-Cai, ESA Fringe ‘11]
Temporal coherence separation

Parametric separation of different temporal scattering mechanisms inside the SAR cell

\[f_{DT}(f_s, f_T, B_{f_T}) \]

(5D parameter extraction)
Temporal coherence separation

Parametric separation of different temporal scattering mechanisms inside the SAR cell

BIOSAR P-band data (HV pol.)
Analysis of a forested cell
- Height-velocity-temporal bandwidth functional (5D)

Semiparametric adaptive Diff-Tomo power frame after bandwidth optimization

Different values of temporal bandwidth are estimated for canopy and ground

First parametric results: [Lombardini-Cai, ESA Fringe '11]

Bandwidth (temporal decorrelation level) profiling is possible, without special HW!
Large scale analysis with HV polarization

Analysis of stratified temporal decorrelation mechanisms on boreal forest
- Mild decorrelating scenario, weak canopy scattering

First area results:
- [Lombardini-Cai, Fringe ’11]
- [Lombardini-Cai-Viviani, IGARSS ‘12]

Statistical analysis

<table>
<thead>
<tr>
<th></th>
<th>Canopy</th>
<th>Ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean temporal bandwidths (phase-cycles/month)</td>
<td>0.08</td>
<td>0.04</td>
</tr>
<tr>
<td>Mean coherence times (months)</td>
<td>9.1</td>
<td>16.8</td>
</tr>
</tbody>
</table>

Estimates achieved for overall coherence down to about 0.4
Large scale analysis with HH polarization

Analysis of stratified temporal decorrelation mechanisms on boreal forest
- Mild decorrelating scenario, weak canopy scattering

Statistical analysis

<table>
<thead>
<tr>
<th></th>
<th>Canopy</th>
<th>Ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean temporal bandwidths (phase-cycles/month)</td>
<td>0.08</td>
<td>0.03</td>
</tr>
<tr>
<td>Mean coherence times (months)</td>
<td>9.1</td>
<td>35.5 (eq.)</td>
</tr>
</tbody>
</table>

Coherence time of ground about two-fold rising in HH pol. w.r.t. HV pol. (trunk-ground dihedral contributions)

Azimuth line separated bandwidths

Separated bandwidth maps

Very extensive separations (500 land hectares processed)!
Robust extraction of forest height in temporal decorrelating scenarios through Diff-Tomo

Resolution can be restored! Higher accuracy than classical methods! The only solution available for (array) Tomo-SAR tailored for robustness to temporal decorrelation!

Sub-canopy subsidence estimation

Reference injected motion pattern

Extensive statistical analysis: Ground / Volume power ratio conditioned RMSE gain

- from 10 to -2 dB 1.1
- from 2 to -2 dB 1.25

(Results w.r.t. the best performing classic method)
Conclusions

- The **Differential Tomographic (Diff-Tomo) technique** is an advanced methodology for description and monitoring of decorrelating volume scatterers, beyond urban applications
 - Concept of *space-time signatures of temporal decorrelation* and proof with P-band airborne data
 - First parametric Diff-Tomo *separation of different overlayed temporal decorrelation mechanisms* extended to *large scale* and *different polarization (HV and HH)*: new phenomenological analyses of temporal decorrelation possible with *no special acquisitions*
 - **Temporal decorrelation-robust tomography** through Diff-Tomo reported, showing its potentials and capabilities
 - Potential of Diff-Tomo for subcanopy ground subsidence monitoring recalled

Future work and perspectives

- Extensive investigations on larger timespan dataset and on dataset with stronger temporal decorrelation (e.g. L-band)
- Future spaceborne missions may benefit from the application of these Diff-Tomo analysis and processing concepts.
Thanks for your attention!