P-band Tomography imaging of tropical forest at 6 MHz bandwidth: capabilities for forest biomass and height estimation

Ho Tong Minh Dinh¹,², Stefano Tebaldini¹, Fabio Rocca¹, Thuy Le Toan²

¹Dipartimento di Elettronica e Informazione
Politecnico di Milano, Italy

²Centre d'Études Spatiales de la Biosphère (CESBIO)
Toulouse, France
Introduction

- Even at P-Band, Radar intensity tends to saturate for very high biomass density (> 300 t/ha) ⇒ Information about forest structure becomes crucial

By Airborne TropiSAR data, 3D P-band SAR Tomography shows:

Scattering contributions from about 30 m above ground exhibit high sensitivity to forest biomass value ranging from 250 t/ha to 450 t/ha.
Introduction

BIOMASS Tomographic Phase

Track \(n\)

Reference Track (Master)

Track 1

Azimuth

Elevation

Cross range

Slant range

\(\pi/2\)

Ground range

Capon spectrum - HH channel

Slant range [m]

Height [m]

Capon spectrum - HV channel

Capon spectrum - VV channel
Introduction

P-band SAR tomography

key tool to *SEE* through the forest

suitable long wavelength to penetrate the dense forest layer

key indicator to tropical forest biomass

Bandwidth constraint: 6 MHz

A significant reduction of the number of looks

A significant vertical and horizontal resolution loss

GOAL: Study the 6 MHz performance of radar signal scattering mechanisms which relate to the tropical forest biomass and height
Vertical resolution and look angle

\[
\Delta r = \frac{c}{2B} \quad \Delta \xi = \frac{\lambda r}{2A_\xi} \quad \Delta x = \frac{\lambda r}{2A_x}
\]

\[
\Delta z^{(baseline)} = \frac{\lambda r}{2A_\xi} \sin \theta
\]

\[
\Delta z^{(bandwidth)} = \frac{c}{2B} \cos \theta
\]

BIOMASS: \(B = 6 \text{ MHz}, \theta = 25^\circ \Rightarrow \Delta z > 20 \text{ m} \)
Reducing bandwidth

6 MHz bandwidth: two different processing approaches have been considered

1. Degrading the resolution of 125 MHz airborne data through linear filtering. (ONERA)

 Advantage: fast
 Disadvantage: incident angle varying

2. Back projection of airborne tomographic data onto BIOMASS geometry. (Polimi)

 Advantage: incident angle almost constant

Investigated site: Paracou, French Guyana

<table>
<thead>
<tr>
<th>Tropical forest area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
</tr>
<tr>
<td>Bandwidth</td>
</tr>
<tr>
<td>Carrier frequency</td>
</tr>
<tr>
<td>Vertical resolution</td>
</tr>
</tbody>
</table>

Data from TROPISAR by ONERA
Reducing bandwidth

6 MHz bandwidth: two different processing approaches have been considered

1. Degrading the resolution of 125 MHz airborne data through linear filtering. (ONERA)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft height</td>
<td>≈ 0.4 km</td>
</tr>
<tr>
<td>Look angle</td>
<td>20° - 60°</td>
</tr>
<tr>
<td>Central frequency</td>
<td>0.435 GHz</td>
</tr>
<tr>
<td>Maximum allowed bandwidth</td>
<td>6 MHz</td>
</tr>
<tr>
<td>Height ambiguity</td>
<td>> 100 m</td>
</tr>
<tr>
<td>Range resolution</td>
<td>25 m</td>
</tr>
<tr>
<td>Azimuth resolution</td>
<td>12.5 m</td>
</tr>
<tr>
<td>Range sampling</td>
<td>18 m</td>
</tr>
<tr>
<td>Azimuth sampling</td>
<td>5 m</td>
</tr>
<tr>
<td>Number of track</td>
<td>6</td>
</tr>
<tr>
<td>Baseline aperture</td>
<td>75 m</td>
</tr>
</tbody>
</table>

2. Back projection of airborne tomographic data onto BIOMASS geometry. (Polimi)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satellite height</td>
<td>650 km</td>
</tr>
<tr>
<td>Look angle</td>
<td>25°</td>
</tr>
<tr>
<td>Central frequency</td>
<td>0.435 GHz</td>
</tr>
<tr>
<td>Maximum allowed bandwidth</td>
<td>6 MHz (<-50 dB at +3 MHz)</td>
</tr>
<tr>
<td>Height ambiguity</td>
<td>160 m</td>
</tr>
<tr>
<td>Range resolution</td>
<td>25 m</td>
</tr>
<tr>
<td>Azimuth resolution</td>
<td>12.5 m</td>
</tr>
<tr>
<td>Range sampling</td>
<td>4 m</td>
</tr>
<tr>
<td>Azimuth sampling</td>
<td>5 m</td>
</tr>
<tr>
<td>Number of track</td>
<td>8</td>
</tr>
<tr>
<td>Baseline aperture</td>
<td>4610 m (critical)</td>
</tr>
</tbody>
</table>
Implementation approach 2

Simulated scenario: backprojection of airborne tomographic data onto BIOMASS geometry

TropiSAR data

1

3D Tomographic reconstruction

2

BIOMASS data

H ≈ 4000 m
B = 125 MHz

H = 650 Km
B = 6 MHz

Tomographic simulator

- Simulated Orbits
- Zero-Doppler Distance
- Orbit
- Orbit
- Orbit
- Orbit

System Impulse Response Function

2D Convolution

Data

SLC multi-baseline, multi-pol and multi-temp data stack

H, V

3
Preliminary issue with approach 1

Standard interferometric processing removes the phases associated with a constant elevation along the images. The local topography is not taken into account so that height measurements are not referred to the ground level.

Being the goal the exploration of the forest layer, the topographic contribution shall be removed.

How to remove terrain
Phase calibration

The removal of the interferometric phases associated with the ground level makes the local elevation of the terrain the reference height. The phases are determined by the optical wavepath so that the effects due to uncompensated platform motion are removed as well.

Hereinafter, 0m always refers to the ground level regardless of the actual topography.
From multi-baseline to multi-layer

Complex reflectivity along cross-range (ξ) direction and signal along image index are related by a **Fourier Transform**.

$$y_n(r, x) = \int P(\xi, r, x) \exp\left(j \frac{4\pi}{\lambda r} b_n \xi \right) d\xi$$

Spatial frequencies along the baseline axis correspond to **above ground** elevations.

The Guyaflux tower (camera)

SAR Tomography

Vertical backscatter distribution of 55 m tower
Multi-layer

Note:
Height is always measured with respect to terrain elevation
Profile

125 MHz
airborne geometry

6 MHz filtering
airborne geometry

6 MHz simulation
spaceborne geometry

The contributions from the canopy is important
Relation to forest biomass

Airborne geometry

The backscattered power associated with the volume layer (about 30 m above the ground) is observed to exhibit the highest sensitivity to forest biomass, even for high biomass values (250-450 t/ha).
Relation to forest biomass

Spaceborne geometry

The backscattered power associated with the volume layer (about 30 m above the ground) is observed to exhibit the highest sensitivity to forest biomass, even for high biomass values (250-450 t/ha).
Tomography biomass inversion

HV 30 m layer

Airborne geometry

Spaceborne geometry

6 ha : 250m x 250m

RMSD = 35.39 (t/ha)
MPE = 0.27 (%)
\(r_P = 0.83 \)
\(r_S = 0.83 \)

1.5ha : 125m x 125m

RMSD = 73.3 (t/ha)
MPE = 7.88 (%)
\(r_P = 0.56 \)
\(r_S = 0.56 \)
Tomography and airborne LiDAR

Relative error
$|H_{\text{tomography}} - H_{\text{LiDAR}}| / H_{\text{LiDAR}}$

The average value is 0.13 (13%)

Tomography and spaceborne LiDAR

The average value is 0.10 (10%)
Forest height

Algorithm: Fourier Transform

Airborne geometry

Spaceborne geometry

Joint distribution

Normalized joint distribution

Tomography (m)

LIDAR (m)

Joint distribution

Normalized joint distribution

Tomography (m)

LIDAR (m)

Bias (m)

Std (m)

LIDAR (m)
Forest height

Algorithm: Capon spectrum

Airborne geometry

Spaceborne geometry
Conclusions

1. Two approaches are presented for reducing 6 MHz bandwidth data-set. The backprojection SAR data on *spaceborne geometry* approach is so far *the most faithful simulation* for BIOMASS system in a tropical forest, at least to our knowledge.

2. The loss of vertical resolution from both approaches due to reducing bandwidth is evident but it is *not critical*.
 - Resolution is still significantly lower than forest height in tropical forests

3. **Tomography-biomass relation**: SAR Tomography was used to derive a 3D reconstruction of the Paracou forest site at 6 MHz. The 30 m layer was found to exhibit a correlation value with respect to ABG higher than 0.8 at 6 ha resolution for AGB values ranging from 250 t/ha to 450 t/ha.

4. The forest height estimation appears to be reliable for vegetation layers ranging from 20 m to 30-35 m. Standard deviation has been assessed in *less than 4 m* based on a pixel-to-pixel comparison at 1 ha resolution.
Particular acknowledgement goes to Dr. Pascale Dubois-Fernandez, for the radar data-sets; and to Dr. Lilian Blanc for providing in-situ data.

Thanks for your attention!