Show results for:
Current
Active filters:
Clear filters
THEMATIC AREA
INSTRUMENT TYPE
  • Altimeters
  • Imaging Radars
  • Interferometers
  • Interferometric Radiometers
  • Magnetic Field/Electric Field Instruments
  • Magnetic/Motion Sensors
  • P-SAR
  • Photon/Optical Detectors
  • Positioning/Navigation
  • Profilers/Sounders
  • Radar Spectrometers
  • Scatterometers
  • Spectrometers
  • Spectrometers/Radiometers
  • Thermal/Radiation Detectors
MISSION
  • Aeolus
  • ALOS-1
  • Aura
  • Biomass
  • COSMO-SkyMed
  • CryoSat
  • Deimos
  • Deimos-1
  • Deimos-2
  • DMC First Generation
  • EarthCARE
  • Envisat
  • ERS
  • ERS-1
  • ERS-2
  • FLEX
  • GeoEye-1
  • GOCE
  • GOSAT
  • GRACE
  • ICEYE
  • IKONOS-2
  • IRS-1C
  • IRS-1D
  • IRS-P5
  • IRS-P6
  • IRS-R2
  • JERS-1
  • KOMPSAT-2
  • Landsat
  • Landsat-1
  • Landsat-2
  • Landsat-3
  • Landsat-4
  • Landsat-5
  • Landsat-7
  • Landsat-8
  • Metop
  • MSG
  • NOAA
  • OceanSat-2
  • ODIN
  • PAZ
  • PlanetScope
  • Pleiades
  • PROBA-1
  • PROBA-V
  • QuickBird-2
  • RADARSAT
  • RADARSAT-1
  • RADARSAT-2
  • RapidEye
  • SCISAT-1
  • Seasat
  • Sentinel-1
  • Sentinel-2
  • Sentinel-3
  • Sentinel-5P
  • SkySat
  • SMOS
  • Spire
  • SPOT
  • SPOT 1
  • SPOT 2
  • SPOT 3
  • SPOT 4
  • SPOT 5
  • SPOT 6
  • SPOT 7
  • Swarm
  • TanDEM-X
  • TerraSAR-X
  • WorldView
  • WorldView-1
  • WorldView-2
  • WorldView-3
INSTRUMENT
  • AATSR
  • ACC
  • ACE-FTS
  • AIRSAFE
  • ALADIN
  • AMI/SAR
  • AMI/Scatterometer
  • ASAR
  • ASCAT
  • ASM
  • ATLID
  • ATSR-1
  • ATSR-2
  • AVHRR
  • AVNIR-2
  • AwiFS
  • BBR
  • BGI
  • CER
  • CHRIS
  • CPR
  • CZCS
  • DORIS
  • EFI
  • EGG
  • EOC
  • ETM
  • FAI
  • FLORIS
  • GERB
  • GIS
  • GOME
  • GOME-2
  • GOMOS
  • GPSR
  • GRACE ACC
  • GRACE INTERFEROMETER
  • GRACE LRR
  • GRACE SCA
  • HiRAIS
  • HiRI
  • HIRS/2
  • HRC
  • HRG
  • HRS
  • HRV
  • HRVIR
  • IASI
  • IRM
  • LISS-3
  • LISS-4
  • LRR
  • LRR
  • MAESTRO
  • MERIS
  • MGF
  • MHS
  • MIPAS
  • MIRAS
  • MODIS
  • MSI
  • MSS
  • MWR
  • NAOMI
  • NMS
  • OCM-2
  • OLI
  • OMI
  • OPS
  • OSA
  • OSIRIS
  • PALSAR
  • PAN
  • PlanetScope Imager
  • PRARE
  • PRISM
  • RA
  • RA2/MWR
  • RRI
  • SAR
  • SCIAMACHY
  • SeaWiFS
  • SeaWinds
  • SEI
  • SENSE
  • SEVIRI
  • SIRAL
  • SkySat Camera
  • SLIM6
  • SMR
  • SSTI
  • Star Tracker
  • STR
  • STRATOS
  • TANSO-CAI
  • TANSO-FTS
  • TIRS
  • TM
  • TSX-1
  • VFM
  • VGT
  • WIF
  • WV1
  • WV6
  • X-SAR
Relevance
Relevance
Newest First
Oldest First
Registration Procedure
A-Z
Z-A
All Data Types
All Data Types
Campaigns data
Data Catalogues
Data Description
Data Download
Other
EOPI Community

DATA

Discover and download the Earth observation data you need from the broad catalogue of missions the European Space Agency operate and support.

Search items

  • Data - Data Description

    Data - Data Description

    ERS-1/2 ATSR Averaged Surface Temperature [AT1/AT2_AR__2P]

    The Averaged Surface Temperature Product (AST) contains averaged geophysical data at two different resolutions, and with respect to two different averaging schemes: measurement data sets at resolutions of 0.5 by 0.5 degrees and 10 by 10 arcmin with respect to a latitude/longitude grid; other data sets contain data averaged over equal area cells of 50 by 50 km and 17 by 17 km aligned with the satellite ground track. Both top-of-atmosphere and surface data sets are provided. The surface temperature data sets provide, for sea cells, nadir and dual view sea surface temperatures, and for land cells, land surface temperature (currently 11 micron BT) and NDVI. Cloud data is also included. No ADS are included in the AST product; auxiliary data is contained within the MDS. The data sets of the AST product are arranged by surface type and resolution. The 3rd reprocessing of ATSR data was performed in 2013; the processing updates that have been put in place and the scientific improvements are outlined in full in the User Summary Note for the Third ERS ATSR Reprocessing.

  • Data - Data Description

    Data - Data Description

    ERS-2 GOME Spectral Product L1

    leakage current and stray light). Such calibrations are now applied to the version 5.1 L1b data product in the standard processing. Use...

  • Data - Data Description

    Data - Data Description

    Spire live and historical data

    The data collected by Spire has a diverse range of applications, from analysis of global trade patterns and commodity flows to aircraft routing to weather forecasting. The data also provide interesting research opportunities on topics as varied as ocean currents and GNSS-based planetary boundary layer height. The following products can be requested ADS-B Data Stream Global ADS-B satellite data observed by Spire satellite (about 800MB per day, but the volume of data may grow with the number of Spire fleet of satellites). Historical ADS-B data are delivered as a cvs file or via API, live ADS-B data are offered as a live stream through API. Data are distributed as a monthly subscription: historical data can be requested starting from 3 December 2008, the time period for live data starts from a user-defined date and continues for 30 days AIS AIS messages include satellite AIS (S-AIS) as observed by Spire satellites and terrestrial AIS (T-AIS) from third party sensor stations (up to 40 million messages per day). Historical AIS data are delivered as a cvs file with availability back to June 2016 or via Historical API from December 2018; live AIS data are pushed to end user via TCP or through Messages API. Data are distributed as a monthly subscription, from a user-defined date and continues for a 30 day period" GNSS-Radio Occultation GNSS-Radio Occultation measurements are done on a continuous basis, globally, thus allowing the generation of different profiles for each different type of observation. Historical data are available from December 2018 and are distributed via S3 API. Live GNSS-RO profiles (with 90 minutes or less latency from collection to delivery) will be available at a later stage Name Description Data format and content Application Automatic Identification System (AIS) The automatic identification system (AIS) is an automatic tracking system that uses transponders on ships and is used by vessel traffic services. Spire data includes satellite AIS (S-AIS) as observed by Spire satellites and terrestrial AIS (T-AIS) from third party sensor stations. .parquet.gz files The AIS files contain time-series data on received AIS messages, both the raw NMEA message and added post-processing data for each message. Supply chain analysis, commodity trading, identification of illegal fishing or dark targets, ship route and fuel use optimization, analysis of global trade patterns, anti-piracy, autonomous vessel software, ocean currents Automatic Dependent Surveillance-Broadcast (ADS-B) Fleet management, ICAO regulatory compliance, route optimization, predictive maintenance .csv.gz files The decompressed csv file contains a list of hexadecimal representations of ADS-B messages associated with the timestamp they were received on the satellite. Fleet management, ICAO regulatory compliance, route optimization, predictive maintenance Global Navigation Satellite System Radio Occultation (GNSS-RO) Atmospheric radio occultation (RO) relies on the detection of a change in a radio signal as it passes through a planet's atmosphere, i.e. as it is refracted by the atmosphere. Measurements are done on a continuous basis, globally, thus allowing researchers to have a global image of the Earth’s atmospheric properties. This data contains POD Observation, Satellite attitude information, High-Rate Occultation Observation (RO) and Atmospheric Profiles podObs*.rnx This file contains raw pseudorange, carrier phase, Doppler frequency, and signal-to-noise measurements for each observed GPS signal from a single Spire satellite which allow to estimate the positions and velocities of each Spire satellite and also used to derive ionospheric total electron content data. leoOrb*.sp3 This file contains the estimated position, velocity and receiver clock error of a given Spire satellite after processing of the POD observation file leoAtt*.log It contains 1 Hz rate quaternion information measured from a single Spire satellite describing the satellite orientation. opnGns*ro.bin, opnGns*rst.bin these files contain raw measurements from the occulting GNSS satellite (one for each signal frequency) and raw phase data from one or more reference GNSS satellites. atmPrf*.nc The file contains profiles of atmospheric dry pressure, dry temperature and neutral refractivity as a function of altitude produced from full processing of one occultation event. bfrPrf*.bufr The file contains derived profiles of dry pressure, dry temperature, refractivity and bending angle for each occultation. Weather forecasting, turbulence detection, detection and monitoring of volcanic clouds, estimating planetary boundary layer height The products are available as part of the Spire provision with worldwide coverage. All details about the data provision, data access conditions and quota assignment procedure are described in the Spire Terms of Applicability.

  • Data - Data Description

    Data - Data Description

    ERS PRARE Precise Orbit Product (ERS.ORB.POD/ERS.ORB/PRC)

    The precise orbit results from a data reduction process in which all available tracking data (Single-Lens Reflex, radar altimeter crossovers, PRARE range and Doppler data) and most accurate correction, transformation and dynamical models are taken into account and in which high level numerical procedures are applied. These orbits are "optimal" achievable representations of the real orbital motion under the circumstances of tracking situation and the "state of the art" model situation. The precise orbit product for the ERS satellites are the satellite ephemeris (position and velocity vector) including time tag, given in a well-defined reference frame, together with the nominal satellite attitude information and a radial orbit correction. Several orbit solutions are currently distributed: A new set of ORB POD (Precise Orbit Determination - REAPER v2) computed with the most updated model standards for the complete ERS-1 and ERS-2 mission. A previous set of ORB POD (REAPER v1) data already available on the ESA dissemination site since 2014, covering the ERS-1 full mission and the ERS-2 mission up to July 2003. ORB PRC which is the original Precise Orbit dataset computed during the ERS mission operations for ERS-1 and ERS-2. In the new POD dataset (REAPER v2) for the ERS-1 and ERS-2 missions, two different orbit solutions are provided together with the combined solution to be used for processing of the radar altimeter measurements and the determination of geodetic/geophysical products: those computed by DEOS (Delft Institute of Earth Observation and Space Systems), and those generated by ESOC (European Space Operations Centre) using different software (GEODYN and NAPEOS respectively). Careful evaluation of the various solutions of REAPER v2 has shown that the DEOS solution for both ERS-1 and ERS-2 has the best performance and is recommended to be used as reference. See the ERS Orbit Validation Report. For the previous version of the POD data set (REAPER v1), with ERS-2 mission data only up to 2003, three different orbit solutions together with the combined solution are available. These precise orbits for ERS-1 and ERS-2 have been computed at DEOS, ESOC, and GFZ (Deutschen GeoForschungsZentrums) using different software and different altimeter databases. Combined solutions have been created using three individual solutions for each satellite. All orbits were derived using consistent models in the same LPOD2005 terrestrial reference frame. These new orbit solutions show notable improvement with respect to DGME04 orbits (Scharroo and Visser, 1998). Thus, RMS crossover differences of new orbits improved by 4-9 mm. Careful evaluation of the various solutions has shown that the combined solution for both ERS-1 and ERS-2 has the best performance. All POD orbit files (REAPER v1/v2) are available in SP3c format.