earth online

BROWSE RESULTS BY CATEGORY

DATA

Discover and download the Earth observation data you need from the broad catalogue of missions the European Space Agency operate and support.
  • Announcement of Opportunity for Spire data

    ESA is launching an Announcement of Opportunity for the international scientific community to access data from the Spire mission for science and applications development.

  • Spire live and historical data

    The data collected by Spire from its 100 satellites launched into Low Earth Orbit (LEO) has a diverse range of applications, from analysis of global trade patterns and commodity flows to aircraft routing to weather forecasting. The data also provides interesting research opportunities on topics as varied as ocean currents and GNSS-based planetary boundary layer height. The following products can be requested: GNSS Polarimetric Radio Occultation (STRATOS) Novel Polarimetric Radio Occultation (PRO) measurements collected by three Spire satellites are available over 15 May 2023 to 30 November 2023. PRO differ from regular RO (described below) in that the H and V polarizations of the signal are available, as opposed to only Right-Handed Circularly Polarized (RHCP) signals in regular RO. The differential phase shift between H and V correlates with the presence of hydrometeors (ice crystals, rain, snow, etc.). When combined, the H and V information provides the same information on atmospheric thermodynamic properties as RO: temperature, humidity, and pressure, based on the signal’s bending angle. Various levels of the products are provided. GNSS Reflectometry (STRATOS) GNSS Reflectometry (GNSS-R) is a technique to measure Earth’s surface properties using reflections of GNSS signals in the form of a bistatic radar. Spire collects two types of GNSS-R data: Near-Nadir incidence LHCP reflections collected by the Spire GNSS-R satellites, and Grazing-Angle GNSS-R (i.e., low elevation angle) RHCP reflections collected by the Spire GNSS-RO satellites. The Near-Nadir GNSS-R collects DDM (Delay Doppler Map) reflectivity measurements. These are used to compute ocean wind / wave conditions and soil moisture over land. The Grazing-Angle GNSS-R collects 50 Hz reflectivity and additionally carrier phase observations. These are used for altimetry and characterization of smooth surfaces (such as ice and inland water). Derived Level 1 and Level 2 products are available, as well as some special Level 0 raw intermediate frequency (IF) data. Historical grazing angle GNSS-R data are available from May 2019 to the present, while near-nadir GNSS-R data are available from December 2020 to the present. Name Temporal coverage Spatial coverage Description Data format and content Application Polarimetric Radio Occultation (PRO) measurements 15 May 2023 to 30 November 2023 Global PRO measurements observe the properties of GNSS signals as they pass through by Earth's atmosphere, similar to regular RO measurements. The polarization state of the signals is recorded separately for H and V polarizations to provide information on the anisotropy of hydrometeors along the propagation path leoOrb.sp3. This file contains the estimated position, velocity and receiver clock error of a given Spire satellite after processing of the POD observation file proObs. Level 0 - Raw open loop carrier phase measurements at 50 Hz sampling for both linear polarization components (horizontal and vertical) of the occulted GNSS signal. h(v)(c)atmPhs. Level 1B - Atmospheric excess phase delay computed for each individual linear polarization component (hatmPhs, vatmPhs) and for the combined (“H” + “V”) signal (catmPhs). Also contains values for signal-to-noise ratio, transmitter and receiver positions and open loop model information. polPhs. Level 1C - Combines the information from the hatmPhs and vatmPhs files while removing phase continuities due to phase wrapping and navigation bit modulation. patmPrf. Level 2 - Bending angle, dry refractivity, and dry temperature as a function of mean sea level altitude and impact parameter derived from the “combined” excess phase delay (catmPhs) PRO measurements add a sensitivity to ice and precipitation content alongside the traditional RO measurements of the atmospheric temperature, pressure, and water vapor. Near-Nadir GNSS Reflectometry (NN GNSS-R) measurements 25 January-2024 to 24 July 2024 Global Tracks of surface reflections as observed by the near-nadir pointing GNSS-R antennas, based on Delay Doppler Maps (DDMs). gbrRCS.nc. Level 1B - Along-track calibrated bistatic radar cross-sections measured by Spire conventional GNSS-R satellites. gbrNRCS.nc. Level 1B - Along-track calibrated bistatic and normalized radar cross-sections measured by Spire conventional GNSS-R satellites. gbrSSM.nc. Level 2 - Along-track SNR, reflectivity, and retrievals of soil moisture (and associated uncertainties) and probability of frozen ground. gbrOcn.nc. Level 2 - Along-track retrievals of mean square slope (MSS) of the sea surface, wind speed, sigma0, and associated uncertainties. NN GNSS-R measurements are used to measure ocean surface winds and characterize land surfaces for applications such as soil moisture, freeze/thaw monitoring, flooding detection, inland water body delineation, sea ice classification, etc. Grazing angle GNSS Reflectometry (GA GNSS-R) measurements 25 January 2024 to 24 July 2024 Global Tracks of surface reflections as observed by the limb-facing RO antennas, based on open-loop tracking outputs: 50 Hz collections of accumulated I/Q observations grzRfl.nc. Level 1B - Along-track SNR, reflectivity, phase delay (with respect to an open loop model) and low-level observables and bistatic radar geometries such as receiver, specular reflection, and the transmitter locations. grzIce.nc. Level 2 - Along-track water vs sea ice classification, along with sea ice type classification. grzAlt.nc. Level 2 - Along-track phase-delay, ionosphere-corrected altimetry, tropospheric delay, and ancillary models (mean sea surface, tides). GA GNSS-R measurements are used to 1) characterize land surfaces for applications such as sea ice classification, freeze/thaw monitoring, inland water body detection and delineation, etc., and 2) measure relative altimetry with dm-level precision for inland water bodies, river slopes, sea ice freeboard, etc., but also water vapor characterization from delay based on tropospheric delays. Additionally, the following products (better detailed in the ToA) can be requested but the acceptance is not guaranteed and shall be evaluated on a case-by-case basis: Other STRATOS measurements: profiles of the Earth’s atmosphere and ionosphere, from December 2018 ADS-B Data Stream: monthly subscription to global ADS-B satellite data, available from December 2018 AIS messages: AIS messages observed from Spire satellites (S-AIS) and terrestrial from partner sensor stations (T-AIS), monthly subscription available from June 2016 The products are available as part of the Spire provision with worldwide coverage. All details about the data provision, data access conditions and quota assignment procedure are described in the Terms of Applicability.

  • VT GOCE Data

    This collection contains the VT GOCE software and associated data set needed to run the software that is used for GOCE data visualisation.

  • GOCE Thermosphere Data

    Thermospheric density and crosswind data products derived from GOCE data. Latest baseline _0200. The GOCE+ Air Density and Wind Retrieval using GOCE Data project produced a dataset of thermospheric density and crosswind data products which were derived from ion thruster activation data from GOCE telemetry. The data was combined with the mission's accelerometer and star camera data products. The products provide data continuty and extend the accelerometer-derived thermosphere density data sets from the CHAMP and GRACE missions. The resulting density and wind observations are made available in the form of time series and grids. These data can be applied in investigations of solar-terrestrial physics, as well as for the improvement and validation of models used in space operations. Funded by ESA through the Support To Science Element (STSE) of ESA's Earth Observation Envelope Programme, supporting the science applications of ESA's Living Planet programme, the project was a partnership between TU Delft, CNES and Hypersonic Technology Göttingen. Dataset history Date Change Reason 18/04/2019 - Time series data v2.0, covering the whole mission - Updated data set user manual - New satellite geometry and aerodynamic model - New vertical wind field - New data for the deorbit phase, (GPS+ACC and GPS-only versions) Updated satellite models and additional data 14/07/2016 - Time series data v1.5, covering the whole mission - Updated data set user manual Removal of noisy data 31/07/2014 - Time series data v1.4, covering the whole mission - Gridded data, now including error estimates - Updated data set user manual; Updated validation report; Updated ATBD Full GOCE dataset available 28/09/2013 Version 1.3 density/winds timeseries and gridded data released. User manual updated to v1.3 Bug fix and other changes 04/09/2013 Version 1.2 density/winds timeseries and gridded data released, with user manual First public data release of thermospheric density/winds data

  • GOCE TEC and ROTI

    GOCE total electron content (TEC) and rate of TEC index (ROTI) data.

  • GOCE Telemetry

    This collection contains all GOCE platform and instruments telemetry. For details see the Packets Description file.

  • GOCE Global Gravity Field Models and Grids

    This collection contains gravity gradient and gravity anomalies grids at ground level and at satellite height. In addition it contains the GOCE gravity field models (EGM_GOC_2, EGM_GCF_2) and their covariance matrices (EGM_GVC_2): GOCE Gravity solution GRIDS Gridded Gravity gradients and anomalies at ground level: GO_CONS_GRC_SPW_2__20091101T000000_20111231T235959_0001.TGZ GO_CONS_GRC_SPW_2__20091101T055147_20120731T222822_0001.TGZ GO_CONS_GRC_SPW_2__20091101T055226_20131020T033415_0002.TGZ GO_CONS_GRC_SPW_2__20091009T000000_20131021T000000_0201.TGZ. Latest baseline is: GO_CONS_GRC_SPW_2__20091009T000000_20131021T000000_0201.TGZ. Gridded Gravity gradients and anomalies at satellite height: GO_CONS_GRD_SPW_2__20091101T055147_20100630T180254_0001.TGZ GO_CONS_GRD_SPW_2__20091101T055147_20120731T222822_0001.TGZ GO_CONS_GRD_SPW_2__20091101T055226_20131020T033415_0002.TGZ GO_CONS_GRD_SPW_2__20091009T000000_20131021T000000_0201.TGZ. Latest baseline is: GO_CONS_GRD_SPW_2__20091009T000000_20131021T000000_0201.TGZ. As output from the ESA-funded GOCE+ GeoExplore project, GOCE gravity gradients were combined with heterogeneous other satellite gravity information to derive a combined set of gravity gradients complementing (near)-surface data sets spanning all together scales from global down to 5 km. The data is useful for various geophysical applications and demonstrate their utility to complement additional data sources (e.g., magnetic, seismic) to enhance geophysical modelling and exploration. The GOCE+ GeoExplore project is funded by ESA through the Support To Science Element (STSE) and was undertaken as a collaboration of the Deutsches Geodätisches Forschungsinstitut (DGFI), Munich, DE, the Christian-Albrechts-Universität zu Kiel, the Geological Survey of Norway (NGU), Trondheim, Norway, TNO, the Netherlands and the University of West Bohemia, Plzen, CZ. Read more about gravity gradients and how GOCE delivered them in this Nature article: Satellite gravity gradient grids for geophysics. View images of the GOCE original gravity gradients and gradients with topographic reduction grids. Available data GRIDS File Type Gridded data: full Gravity Gradients, at 225 km and 255 km with and without topographic correction GGG_225 Computed from GOCE/GRACE gradients lower orbit phase February 2010 - October 2013 GGG_255 Computed from GOCE/GRACE gradients nominal orbit phase February 2010 - October 2013 TGG_225 Gravity gradient grids from topography at fixed height of 225/255 km above ellipsoid given in LNOF (Local North Oriented Frame) TGG_225 Gravity gradient grids from topography at fixed height of 225/255 km above ellipsoid given in LNOF (Local North Oriented Frame) MAPS File Type Maps of Gravity Gradients with and without topographic corrections Vij_225km_Patch_n.jpg Maps of grids from lower orbit phase with and without topographic correction from ETOPO1 Along-orbit File Type Full Gravity Gradients, along-orbit, in GRF and TRF reference frames. A detailed description is provided in the data set user manual GGC_GRF Combined gradients from GRACE (long wavelengths) & GOCE (measurement band) in the GRF (Gradiometer Reference Frame) GGC_TRF Combined gradients from GRACE (long wavelengths) & GOCE (measurement band) rotated from GRF to TRF (Terrestrial Reference Frame: North, West, Up) Direct solution First Generation Product: GO_CONS_EGM_GOC_2__20091101T000000_20100110T235959_0002.TGZ Variance/Covariance matrix: GO_CONS_EGM_GVC_2__20091101T000000_20100110T235959_0002.TGZ Second Generation Product: GO_CONS_EGM_GOC_2__20091101T000000_20100630T235959_0002.TGZ Variance/Covariance matrix: GO_CONS_EGM_GVC_2__20091101T000000_20100630T235959_0001.TGZ Third Generation Product: GO_CONS_EGM_GOC_2__20091101T000000_20110419T235959_0001.TGZ Variance/Covariance matrix: GO_CONS_EGM_GVC_2__20091101T000000_20110419T235959_0001.TGZ Coefficients (ICGEM format): GO_CONS_EGM_GCF_2__20091101T000000_20110419T235959_0001.IDF Fourth Generation Product: GO_CONS_EGM_GOC_2__20091101T000000_20120801T060000_0001.TGZ Variance/Covariance matrix: GO_CONS_EGM_GVC_2__20091101T000000_20120801T060000_0002.TGZ Fifth Generation Product: GO_CONS_EGM_GOC_2__20091101T000000_20131020T235959_0002.TG Variance/Covariance matrix: GO_CONS_EGM_GVC_2__20091101T000000_20131020T235959_0001.TGZ Coefficients (ICGEM format): GO_CONS_EGM_GOC_2__20091101T000000_20131020T235959_0001.IDF Sixth Generation Product: GO_CONS_EGM_GOC_2__20091009T000000_20131020T235959_0201.TGZ Variance/Covariance matrix: GO_CONS_EGM_GVC_2__20091009T000000_20131020T235959_0201.TGZ Coefficients (ICGEM format): GO_CONS_EGM_GOC_2__20091009T000000_20131020T235959_0201.IDF Release 6 gravity model validation report. Time-Wise solution First Generation Product: GO_CONS_EGM_GOC_2__20091101T000000_20100111T000000_0002.TGZ Variance/Covariance matrix: GO_CONS_EGM_GVC_2__20091101T000000_20100111T000000_0002.TGZ Second Generation Product: GO_CONS_EGM_GOC_2__20091101T000000_20100705T235500_0002.TGZ Variance/Covariance matrix: GO_CONS_EGM_GVC_2__20091101T000000_20100705T235500_0001.TGZ Third Generation Product: GO_CONS_EGM_GOC_2__20091101T000000_20110430T235959_0001.TGZ Variance/Covariance matrix: GO_CONS_EGM_GVC_2__20091101T000000_20110430T235959_0001.TGZ Coefficients (ICGEM format): GO_CONS_EGM_GCF_2__20091101T000000_20110430T235959_0001.IDF Fourth Generation Product: GO_CONS_EGM_GOC_2__20091101T000000_20120618T235959_0002.TGZ Variance/Covariance matrix: GO_CONS_EGM_GVC_2__20091101T000000_20120618T235959_0001.TGZ Fifth Generation Product: GO_CONS_EGM_GOC_2__20091101T000000_20131021T000000_0002.TGZ Variance/Covariance matrix: GO_CONS_EGM_GVC_2__20091101T000000_20131021T000000_0001.TGZ Coefficients (ICGEM format): GO_CONS_EGM_GOC_2__20091101T000000_20131021T000000_0001.IDF Sixth Generation Product: GO_CONS_EGM_GOC_2__20091009T000000_20131021T000000_0201.TGZ Variance/Covariance matrix: GO_CONS_EGM_GVC_2__20091009T000000_20131021T000000_0202.TGZ Coefficients (ICGEM format): GO_CONS_EGM_GOC_2__20091009T000000_20131021T000000_0201.IDF Combined gravity field GOCE model plus Antarctic and Arctic data (ICGEM format): GO_CONS_EGM_GOC_2__20091009T000000_20160119T235959_0201.IDF Download release 6 gravity model validation report.

  • GOCE Level 2

    This collection contains GOCE level 2 data: Gravity Gradients in the gradiometer reference frame (EGG_NOM_2), in the terrestrial reference frame (EGG_TRF_2), GPS receiver derived precise science orbits (SST_PSO_2) and the non-tidal time variable gravity field potential with respect to a mean value in terms of a spherical harmonic series determined from atmospheric and oceanic mass variations as well as from a GRACE monthly gravity field time series (SST_AUX_2). EGG_NOM_2_: latest baseline: _0203 EGG_TRF_2_: latest baseline _0101 SST_AUX_2_: latest baseline _0001 SST_PSO_2_: latest baseline _0201.

  • GOCE Level 1

    This collection contains the GOCE L1b data of the gradiometer, the star trackers, the GPS receiver, the magnetometers, magnetotorquers and the DFACS data of each accelerometer of the gradiometer. EGG_NOM_1b: latest baseline _0202 SST_NOM_1b: latest baseline _000x (always take the highest number available) ACC_DFx_1b: latest baseline _0001 (x=1:6) MGM_GOx_1b: latest baseline _0001 (x=1:3) MTR_GOC_1b: latest baseline _0001 SST_RIN_1b: latest baseline _000x (always take the highest number available) STR_VC2_1b: latest baseline _000x (always take the highest number available) STR_VC3_1b: latest baseline _000x (always take the highest number available).