The calibration of the short-wavelength channels of the ATSR series of Instruments

Dave Smith
Space Science and Technology Department
CCLRC
Rutherford Appleton Laboratory
Chilton, Didcot
Oxfordshire OX11 0QX
United Kingdom
Outline

• ATSR Instrument History
• Visible Calibration System
• Pre-Launch Calibration
• In-Orbit Calibration/Validation
• Long-Term Monitoring
• Primary aims
 – Measure global sea-surface-temperature to an accuracy of better than 0.3 K (1σ)
 – Provide a 15+ year dataset of global SSTs for climate modelling

• Additional aims for ATSR-2 and AATSR
 – Land Surface Temperature
 – Global vegetation monitoring
 – Cloud Properties
 – Aerosol Properties
ATSR – Design Features

- Conical Scan Geometry provides dual view
 - Allows atmospheric corrections

- Thermal IR channels at 12µm, 11µm and 3.7µm
 - Actively cooled to 80K using a Stirling cycle cooler
 - On-Board Blackbody sources (ε ~ 0.999) provide continuous calibration

- Visible/Near Infrared Channels at 1.6µm, 0.87µm, 0.66µm and 0.56µm
 - On-Board diffuser permits calibration once-per-orbit

The calibration of the short-wavelength channels of the ATSR series of Instruments
The calibration of the short-wavelength channels of the ATSR series of Instruments

ATSR - HISTORY

ATSR
- Development
 - Start: 1984
 - Calibration: Summer 1989
- AIT
 - Launch: 17 July 1991
- Operations
 - Nominal Operations End: June 1996
 - ERS-1 Fails: 10-March-2000

ATSR-2
- Start: 1990
- Calibration: Christmas 1992
- Launch: 27 April 1995
- 2006?

AATSR
- Start: 1994
- Launch: June 2001
- 2010?

CEOS IVOS Workshop
ESTEC Oct 12th-14th 2004
The calibration of the short-wavelength channels of the ATSR series of Instruments

Visible Calibration System (VISCAL)

\[r_{\text{VISCAL}} = \frac{A_{M2}}{A_{\text{AATSR}}} \cos(\pi/4) r_{M1} r_{M2} \tau_{UV} R_{\lambda}(0, \pi/4) \]
Calibration Algorithms

- Radiance detected by (A)ATSR from scene of reflectance R_{Scene} is
 \[L_{\text{scene}} = R_{\text{scene}} I_0 d\lambda \frac{\cos(\text{sza})}{\pi} = \alpha \frac{(C_{\text{scene}} - C_{\text{dark}})}{\text{SCP_Gain}} \]

- Similarly the VISCAL unit produces a radiance L_{VISCAL}
 \[L_{\text{VISCAL}} = R_{\text{VISCAL}} I_0 d\lambda / \pi = \alpha \frac{(C_{\text{VISCAL}} - C_{\text{DARK}})}{\text{SCP_Gain}} \]

- Using this we can calibrate the AATSR raw counts to give a normalised top-of-atmosphere radiance such that
 \[\text{VIS_GBTR} = R_{\text{scene}} \cos(\text{sza}) = R_{\text{VISCAL}} \frac{(C_{\text{scene}} - C_{\text{dark}})}{(C_{\text{VISCAL}} - C_{\text{DARK}})} \]

- The aim of the pre-launch calibrations is to measure α and R_{VISCAL}

- Post launch calibration verifies R_{VISCAL} and monitors long-term stability
Pre-Launch Calibration

• ATSR-2
 – Limited to measurement of radiometric responses α for 0.56 μm, 0.67μm and 0.87μm only
 – R_{VISCAL} values derived from reflectance/transmission measurements of components
 • $r_{M1}, r_{M2}, \tau_{\text{UV}}, R_{\lambda}(0,\pi/4)$

• AATSR
 – Extensive pre-launch calibration performed
 – Response α and reflectance factor R_{VISCAL} measured for all VNIR channels
 – Polarisation responses measured
 – Linearity measured
 – Calibration repeated under different conditions to measure effect of vacuum + operation of cryo-cooler.
AATSR Visible Calibration - Results

<table>
<thead>
<tr>
<th>Error in radiometric response</th>
<th>1.6µm</th>
<th>0.87µm</th>
<th>0.66µm</th>
<th>0.56µm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error in VISCAL reflectance factor</td>
<td>9.0%</td>
<td>3.6%</td>
<td>3.4%</td>
<td>3.9%</td>
</tr>
<tr>
<td>S/N at 0.5% albedo</td>
<td>31:1</td>
<td>25:1</td>
<td>28:1</td>
<td>25:1</td>
</tr>
</tbody>
</table>

The calibration of the short-wavelength channels of the ATSR series of Instruments

CEOS IVOS Workshop
ESTEC Oct 12th-14th 2004
ATSR-2 Calibration Studies & Campaigns

- First light check against pre-launch calibration
 - Smith, 1995 (RAL internal communication)

- In-Situ Validation Campaigns
 - La-Crau (Rondeaux, IJRS 1998 – measurements in 1995)
 - Hay, Amburla (Rondeaux & Prata, Private communication 1997)

- Polder Intercomparisons
 - Intercomparisons with Polder (with Cabot, Hagolle, and Henry 1999)

- Desert model (incl. comparisons with MISR, SEAWIFS)
 - Goaverts and Clerici, COSPAR 2002

- Comparisons with MISR, SEAWIFS (Goaverts and Clerici, COSPAR 2002)

- Long-Term Stability Monitoring
 - Smith, Mutlow & Rao, App. Optics. 2002

- GOME Intercomparisons
 - Stevens, 1997 (RAL internal communication)

- Cloud Models
 - Watts (RAL Internal Communication)

- Sun Glint (1.6um only)
The calibration of the short-wavelength channels of the ATSR series of Instruments

- Consistent results at 1.6µm
 - average of 1.06±0.03 applied to subsequent calibration tables

- Greater variation at shorter wavelengths
 - Most measurements show –ve bias
 - Effect of drift not considered in earlier measurements

CEOS IVOS Workshop
ESTEC Oct 12th-14th 2004
• Data from stable Desert and Ice targets used to determine long term drift

<table>
<thead>
<tr>
<th></th>
<th>0.56μm</th>
<th>0.66μm</th>
<th>0.87μm</th>
<th>1.6μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algeria - East</td>
<td>1.7</td>
<td>1.1</td>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td>Algeria - West</td>
<td>1.8</td>
<td>1.3</td>
<td>1.3</td>
<td>0.4</td>
</tr>
<tr>
<td>Arabia</td>
<td>1.4</td>
<td>0.8</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>Dunhuang *</td>
<td>0.4</td>
<td>-0.1</td>
<td>0</td>
<td>-0.5</td>
</tr>
<tr>
<td>Libya - 1</td>
<td>1.6</td>
<td>1.1</td>
<td>0.9</td>
<td>0.3</td>
</tr>
<tr>
<td>Libya - 2</td>
<td>1.9</td>
<td>1.2</td>
<td>1</td>
<td>0.4</td>
</tr>
<tr>
<td>Libyan Desert</td>
<td>1.4</td>
<td>0.9</td>
<td>0.9</td>
<td>0.1</td>
</tr>
<tr>
<td>Sechura Desert*</td>
<td>0.6</td>
<td>-1</td>
<td>1.4</td>
<td>-0.1</td>
</tr>
<tr>
<td>Sonora Desert*</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>0.8</td>
</tr>
<tr>
<td>Greenland</td>
<td>1.7</td>
<td>1.3</td>
<td>1.8</td>
<td>-</td>
</tr>
<tr>
<td>Average</td>
<td>1.6</td>
<td>1.1</td>
<td>1.1</td>
<td>0.3</td>
</tr>
<tr>
<td>Error</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
</tr>
</tbody>
</table>
The calibration of the short-wavelength channels of the ATSR series of Instruments

ATSR-2 Long Term Monitoring – After Drift Correction

Data from Libyan Desert

0.87μm Drift

Drift = 0.0003 Year⁻¹

October 2002 Data

0.86μm Drift

Drift = 0.0000 Year⁻¹
In-Orbit Calibration Approaches for AATSR

- Intercomparisons against other sensors
 - ATSR-2, MERIS, GOME
 - Whole orbit comparisons
 - Selected calibration sites (Desert, Ice)

- Calibration using Arctic stratus clouds
 - Compare measurements against modelled reflectances

- Long term trend analysis
 - Using stable desert and ice targets
Stable Calibration Targets

• Desert and Ice Targets used extensively for calibration and monitoring of AVHRR, ATSR-2, GOES, POLDER, Vegetation, MISR…

• Uniform reflectance over large area

• Long term-radiometric stability of the calibration sites
 - ensures long-term stability of the top-of-the atmosphere (TOA) albedo (and of seasonal variations, if any) or reflectance over large spatially uniform areas.

• High surface reflectance to maximise the signal-to-noise and minimise atmospheric effects on the radiation measured by the satellite

• Bi-directional reflectance factor (BRDF) due to surface anisotropy and other angular effects, and must be accounted for when determining long-term calibration trends.
The calibration of the short-wavelength channels of the ATSR series of Instruments

Calibration Targets

Desert - Sudan - Egypt

Ice - Greenland

AATSR GBTR image for 1st June superimposed on coincident MERIS Reduced Resolution Image
Site Locations

<table>
<thead>
<tr>
<th></th>
<th>Lat center (°)</th>
<th>Long center(°)</th>
<th>lat-min</th>
<th>lat_max</th>
<th>long_min</th>
<th>long_max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algeria3</td>
<td>30.32</td>
<td>7.66</td>
<td>29.82</td>
<td>30.82</td>
<td>7.16</td>
<td>8.16</td>
</tr>
<tr>
<td>Algeria5</td>
<td>31.02</td>
<td>2.23</td>
<td>30.52</td>
<td>31.52</td>
<td>1.73</td>
<td>2.73</td>
</tr>
<tr>
<td>Arabia1</td>
<td>18.88</td>
<td>46.76</td>
<td>18.38</td>
<td>19.38</td>
<td>46.26</td>
<td>47.26</td>
</tr>
<tr>
<td>Libya1</td>
<td>24.42</td>
<td>13.35</td>
<td>23.92</td>
<td>24.92</td>
<td>12.85</td>
<td>13.85</td>
</tr>
<tr>
<td>Libya2</td>
<td>25.05</td>
<td>20.48</td>
<td>24.55</td>
<td>25.55</td>
<td>19.98</td>
<td>20.98</td>
</tr>
<tr>
<td>Sudan</td>
<td>21.74</td>
<td>28.22</td>
<td>21.24</td>
<td>22.24</td>
<td>27.72</td>
<td>28.72</td>
</tr>
<tr>
<td>Sonora</td>
<td>31.8</td>
<td>-113.86</td>
<td>31.54</td>
<td>32.06</td>
<td>-114.18</td>
<td>-113.54</td>
</tr>
<tr>
<td>Greenland</td>
<td>73.75</td>
<td>-40</td>
<td>70</td>
<td>77.5</td>
<td>-45</td>
<td>-35</td>
</tr>
</tbody>
</table>

Subset of ‘CNES’ calibration sites used + others
Results from Desert Comparisons

- Desert data for AATSR compared with:
 - Archive of ATSR-2 measurements for same view solar geometry
 - Near coincident ATSR-2 measurements

- Short wavelength (0.87µm, 0.67µm and 0.56µm) channels are high WRT ATSR-2

- 1.6µm shows good-agreement wrt. ATSR-2 after non-linearity corrections.
The calibration of the short-wavelength channels of the ATSR series of Instruments

1.6µm Nonlinearity

Pre-Launch Calibration Measurements showed
Non linear response for 1.6µm channel

AATSR vs. ATSR-2
desert targets

CEOS IVOS Workshop
ESTEC Oct 12th-14th 2004
Greenland AATSR vs. ATSR-2

The calibration of the short-wavelength channels of the ATSR series of Instruments

CEOS IVOS Workshop
ESTEC Oct 12th-14th 2004
The calibration of the short-wavelength channels of
the ATSR series of Instruments

Greenland AATSR vs. MERIS

AATSR/MERIS Comparisons over Greenland

0.87μm

AATSR/MERIS 0.87μm = 1.05974

MERIS TOA Reflectance

60 70 80 90 100

AATSR TOA Reflectance

60 70 80 90 100

0.67μm

AATSR/MERIS 0.67μm = 1.05172

MERIS TOA Reflectance

60 70 80 90 100

AATSR TOA Reflectance

60 70 80 90 100

0.56μm

AATSR/MERIS 0.56μm = 1.09258

MERIS TOA Reflectance

60 70 80 90 100

AATSR TOA Reflectance

60 70 80 90 100

CEOS IVOS Workshop
ESTEC Oct 12th-14th 2004
The calibration of the short-wavelength channels of the ATSR series of Instruments

GOME / SCIA / AATSR / ATSR-2 inter-comparison

- Inter-comparison requires
 - Spectral averaging of SCIA/GOME
 - Spatial averaging of AATSR/ATSR-2

- GOME & SCIA pixels not same size or coincident, therefore
 - Perform comparison for accurately co-located GOME/ATSR-2
 - Average SCIA to give scene comparable to GOME; compare to properly averaged AATSR
 - Associate nearest GOME/SCIA pixels to allow cross platform comparison; accept “noise” due to scene variation (time difference).
The calibration of the short-wavelength channels of the ATSR series of Instruments

Comparisons for 15th Dec 2002

SZAs for 6way comparison

CEOS IVOS Workshop
ESTEC Oct 12th-14th 2004
Comparison of AATSR, ATSR-2 and GOME
Reflectance : 0.56μm

The calibration of the short-wavelength channels of the ATSR series of Instruments

CEOS IVOS Workshop
ESTEC Oct 12th-14th 2004
Comparison of AATSR, ATSR-2 and GOME
Reflectance : 0.67µm

The calibration of the short-wavelength channels of the ATSR series of Instruments

CEOS IVOS Workshop
ESTEC Oct 12th-14th 2004
The calibration of the short-wavelength channels of the ATSR series of Instruments

Cloud calibration: techniques

Forward scattering + Oblique path = High reflectance
ATSR along-track view

Side scattering + nadir path = Low reflectance
ATSR nadir view

Rayleigh layer + aerosol

+90 secs

Stratus: homogeneous, 'single layer': not too thick!
Ocean: black

High Northern latitude, descending node

Optically thin atmosphere above cloud 15 -18 Km
Optically thick, spectrally 'neutral' cloud
Non-reflecting surface
Ocean

Cloud optical depth not known,
absolute calibration not possible.
Well defined spectral characteristics allows inter-channel calibration.
The calibration of the short-wavelength channels of the ATSR series of Instruments

<table>
<thead>
<tr>
<th>AATSR calibration factor</th>
<th>Nadir BDRF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.55μm</td>
</tr>
<tr>
<td>Baseline model (800hPa)</td>
<td>1.056</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AATSR relative calibration factor</th>
<th>Nadir 0.67μm / 0.55μm BDRF ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline model</td>
<td>0.982</td>
</tr>
</tbody>
</table>
Summary of Intercomparisons

<table>
<thead>
<tr>
<th>Ratio $R_{\text{AATSR}}/R_{\text{ref}}$</th>
<th>1.6</th>
<th>0.87</th>
<th>0.66</th>
<th>0.56</th>
</tr>
</thead>
<tbody>
<tr>
<td>AATSR vs. ATSR-2 Desert BRDF</td>
<td>1.01</td>
<td>1.08</td>
<td>1.08</td>
<td>1.13</td>
</tr>
<tr>
<td>AATSR vs. ATSR-2 Desert - Coincident Measurements</td>
<td>0.99</td>
<td>1.12</td>
<td>1.09</td>
<td>1.12</td>
</tr>
<tr>
<td>AATSR vs. ATSR-2 Greenland - BRDF</td>
<td>1.11</td>
<td>1.05</td>
<td>1.05</td>
<td>1.03</td>
</tr>
<tr>
<td>AATSR vs. ATSR-2 Greenland - Coincidence</td>
<td>1.16</td>
<td>1.11</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>AATSR vs. ATSR-2 Orbit Difference</td>
<td>1.12</td>
<td>1.08</td>
<td>1.08</td>
<td>1.08</td>
</tr>
<tr>
<td>AATSR-2 Average</td>
<td>1.00</td>
<td>1.12</td>
<td>1.08</td>
<td>1.09</td>
</tr>
<tr>
<td>Artic Stratus Clouds</td>
<td>1.02</td>
<td>1.02</td>
<td>1.06</td>
<td>1.06</td>
</tr>
<tr>
<td>GOME</td>
<td>1.01</td>
<td>1.01</td>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td>MERIS</td>
<td>1.04</td>
<td>1.02</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>SADE (Cabot et al)</td>
<td>1.08</td>
<td>1.07</td>
<td>1.05</td>
<td></td>
</tr>
</tbody>
</table>

- AATSR agreement within 5% of MERIS GOME, & Cloud Comparisons
- AATSR 1.6µm channel agrees well with ATSR-2 after nonlinearity correction.
- AATSR SW channels approx 10% higher than ATSR-2

The calibration of the short-wavelength channels of the ATSR series of Instruments

Summary of AATSR reflectance comparisons

CEOS IVOS Workshop
ESTEC Oct 12th-14th 2004
Long Term Stability using Deserts

AATSR Reflectances normalised to BDRF for Libya1 Site

The calibration of the short-wavelength channels of the ATSR series of Instruments
Long Term Stability using Ice

The calibration of the short-wavelength channels of the ATSR series of Instruments

CEOS IVOS Workshop
ESTEC Oct 12th-14th 2004
AATSR visible calibration drift rates for desert and ice targets

<table>
<thead>
<tr>
<th></th>
<th>1.6um</th>
<th>0.87um</th>
<th>0.67um</th>
<th>0.56um</th>
<th>Date Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algeria3</td>
<td>0.3</td>
<td>0.5</td>
<td>0.1</td>
<td>2.0</td>
<td>Oct-02</td>
</tr>
<tr>
<td>Algeria5</td>
<td>0.1</td>
<td>1.9</td>
<td>2.0</td>
<td>3.8</td>
<td>Oct-02</td>
</tr>
<tr>
<td>Libya1</td>
<td>-0.2</td>
<td>0.9</td>
<td>1.6</td>
<td>4.2</td>
<td>Oct-02</td>
</tr>
<tr>
<td>Libya2</td>
<td>0.1</td>
<td>0.5</td>
<td>1.2</td>
<td>3.6</td>
<td>Oct-02</td>
</tr>
<tr>
<td>Sudan1</td>
<td>0.0</td>
<td>0.8</td>
<td>0.7</td>
<td>2.4</td>
<td>Oct-02</td>
</tr>
<tr>
<td>Arabia1</td>
<td>0.4</td>
<td>1.0</td>
<td>1.4</td>
<td>3.2</td>
<td>Oct-02</td>
</tr>
<tr>
<td>Sonora</td>
<td>-0.8</td>
<td>0.4</td>
<td>0.5</td>
<td>3.0</td>
<td>Oct-02</td>
</tr>
<tr>
<td>Greenland</td>
<td>-</td>
<td>2.3</td>
<td>3.1</td>
<td>6.3</td>
<td>May-03</td>
</tr>
<tr>
<td>Average</td>
<td>0.0</td>
<td>1.0</td>
<td>1.3</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>ATSR-2</td>
<td>0.3</td>
<td>1.1</td>
<td>1.1</td>
<td>1.6</td>
<td>May-95</td>
</tr>
</tbody>
</table>

Drift = exp(-rate*time)
Note: Drifts from Greenland measurements used – may be overcompensating
Drift Correction - Effect on Comparisons (2)

<table>
<thead>
<tr>
<th>Ratio R_{AATSR}/R_{ref}</th>
<th>1.6</th>
<th>0.87</th>
<th>0.66</th>
<th>0.56</th>
</tr>
</thead>
<tbody>
<tr>
<td>AATSR vs. ATSR-2 Desert BRDF</td>
<td>1.01</td>
<td>1.08</td>
<td>1.08</td>
<td>1.13</td>
</tr>
<tr>
<td>AATSR vs. ATSR-2 Desert - Coincident Measurements</td>
<td>0.99</td>
<td>1.11</td>
<td>1.08</td>
<td>1.09</td>
</tr>
<tr>
<td>AATSR vs. ATSR-2 Greenland - BRDF</td>
<td>1.11</td>
<td>1.02</td>
<td>0.95</td>
<td>1.06</td>
</tr>
<tr>
<td>AATSR vs. ATSR-2 Greenland - Coincidence</td>
<td>1.14</td>
<td>1.09</td>
<td>1.06</td>
<td></td>
</tr>
<tr>
<td>AATSR vs. ATSR-2 Orbit Difference</td>
<td>1.12</td>
<td>1.07</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>ATSR-2 Average</td>
<td>1.00</td>
<td>1.11</td>
<td>1.07</td>
<td>1.05</td>
</tr>
<tr>
<td>Artic Stratus Clouds</td>
<td>1.02</td>
<td>1.01</td>
<td>1.00</td>
<td>1.01</td>
</tr>
<tr>
<td>GOME</td>
<td>1.00</td>
<td>0.98</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>MERIS</td>
<td>1.02</td>
<td>0.99</td>
<td>0.99</td>
<td></td>
</tr>
</tbody>
</table>

- Long Term Drift correction reduces differences between MERIS, GOME and Cloud Measurements
- ATSR-2 Low compared to AATSR

The calibration of the short-wavelength channels of the ATSR series of Instruments

CEOS IVOS Workshop
ESTEC Oct 12th-14th 2004
Conclusions

- Early intercomparisons with ATSR-2 show that 0.87µm, 0.67µm and 0.56µm are ~5% lower than other sensors
 - Although significant range of results

- Comparisons with AATSR show that ATSR-2 0.87µm, 0.67µm and 0.56µm channels ~ 10% lower than current measurements
 - Consistent with earlier calibration measurements

- AATSR 1.6µm shows agreement within 1% of ATSR-2
 - Note: dependent on pre-launch nonlinearity correction being applied.

- AATSR shows good agreement (< 3%) between AATSR, MERIS, GOME and Cloud models at 0.87µm, 0.67µm and 0.56µm

- Initial long-term drifts have been measured for AATSR and MERIS using Desert and Ice targets.

- Differences decrease (<1%) after applying long-term drift correction to AATSR reflectances.
Future Work

AATSR
- Continue comparisons with MERIS over desert and ice targets
 - Compare long term stabilities

- Aim to perform additional comparisons with GOME, SCIA (Barry Latter) & Arctic Stratus Calibration (Caroline Poulsen) including drift and nonlinearity corrections.

- Improve Long Term drift analysis using data for extended period
 - Current period Oct-2002 to Dec-2003

- Extend comparisons to include additional sensors (e.g. MODIS…)

ATSR-2
- Revisit early ATSR-2 inter-comparisons
 - Investigate effect of long-term drift