Evolving requirements of Onshore Oil and Gas Exploration

Satellite Earth Observation for the Oil and Gas Sector: New Technologies and Opportunities
15th September 2010

Richard Eyers
Senior Remote Sensing Consultant, Shell
Evolving requirements

- Some definitions
- From an Earth Observation perspective
- From an Explorer’s perspective
- New challenges
- Future successes?
SOME DEFINITIONS
Some definitions

“Earth Observation images show the world through a wide-enough frame so that complete large-scale phenomena can be observed to an accuracy and entirety it would take an army of ground-level observers to match.”

(http://www.esa.int/esaEO)
Some definitions

- “Earth Observation images show the world through a wide-enough frame so that complete large-scale phenomena can be observed to an accuracy and entirety it would take an army of ground-level observers to match.”

 (http://www.esa.int/esaEO)

- “Remote Sensing is the science and art of obtaining information about an object, area, or phenomenon through the analysis of data acquired by a device that is not in physical contact with the object, area, or phenomenon under investigation.”

 (Lilliesand & Kiefer)
Some definitions

- “Earth Observation images show the world through a wide-enough frame so that complete large-scale phenomena can be observed to an accuracy and entirety it would take an army of ground-level observers to match.”
 (http://www.esa.int/esaEO)

- “Remote Sensing is the science and art of obtaining information about an object, area, or phenomenon through the analysis of data acquired by a device that is not in physical contact with the object, area, or phenomenon under investigation.”
 (Lilliesand & Kiefer)

 …using terrain and imagery data, acquired from sensors on satellite and aerial platforms, or on the ground.
FROM AN EO PERSPECTIVE
From an EO perspective

- Satellites and sensors
 - 1972 Landsat 1
 - 1978 Seasat
 - 1991 ERS-1
 - 2000 SRTM
 - 2000 Ikonos
 - 2007 COSMO-SkyMed and TerraSAR-X
 - 2009 World-View-2
From an EO perspective

- Satellites and sensors
 - 1972 Landsat 1
 - 1978 Seasat
 - 1991 ERS-1
 - 2000 SRTM
 - 2000 Ikonos
 - 2007 COSMO-SkyMed and TerraSAR-X
 - 2009 World-View-2

- $200/sq km, $20/sq km or ‘free’
From an EO perspective

- Prints and mylar to GIS
From an EO perspective

- Prints and mylar to GIS
- Pocket stereoscopes to virtual reality
From an EO perspective

- Prints and mylar to GIS

- Pocket stereoscopes to virtual reality

- Mainframes to PCs, PCs to servers
From an EO perspective

- Prints and mylar to GIS

- Pocket stereoscopes to virtual reality

- Mainframes to PCs, PCs to servers

- Megabytes to gigabytes to terabytes
From an EO perspective

- Prints and mylar to GIS
- Pocket stereoscopes to virtual reality
- Mainframes to PCs, PCs to servers
- Megabytes to gigabytes to terabytes
- Expert in a darkened room to amateur on a smart-phone
From an Explorer’s perspective

- Geological mapping – from continent, to region, to prospect
 - Interpretation and spectral analysis
From an Explorer’s perspective

- Geological mapping – from continent, to region, to prospect
 - Interpretation and spectral analysis

- Detecting hydrocarbons
 - Surface alteration and direct detection
From an Explorer’s perspective

- Geological mapping – from continent, to region, to prospect
 - Interpretation and spectral analysis

- Detecting hydrocarbons
 - Surface alteration and direct detection

- Characterising the subsurface
 - From the surface – inference and measurement
 - Analogues
From an Explorer’s perspective

- Geological mapping – from continent, to region, to prospect
 - Interpretation and spectral analysis

- Detecting hydrocarbons
 - Surface alteration and direct detection

- Characterising the subsurface
 - From the surface – inference and measurement
 - Analogues

- Measuring surface deformation
 - Inferring subsurface information
From an Explorer’s perspective

- Geological mapping – from continent, to region, to prospect
 - Interpretation and spectral analysis

- Detecting hydrocarbons
 - Surface alteration and direct detection

- Characterising the subsurface
 - From the surface – inference and measurement
 - Analogues

- Measuring surface deformation
 - Inferring subsurface information

- Logistics and planning
NEW CHALLENGES
New challenges

- Increased scrutiny on offshore activity = more onshore activity?
New challenges

- Increased scrutiny on offshore activity = more onshore activity?
- More onshore wells = more focus on environment, terrain and accessibility
New challenges

- Increased scrutiny on offshore activity = more onshore activity?

- More onshore wells = more focus on environment, terrain and accessibility

- Exploring increasingly challenging environments = do more from the desk
New challenges

- Increased scrutiny on offshore activity = more onshore activity?

- More onshore wells = more focus on environment, terrain and accessibility

- Exploring increasingly challenging environments = do more from the desk

- Pressure on cost, time and quick decisions = less seismic, less drilling
New challenges

- Increased scrutiny on offshore activity = more onshore activity?
- More onshore wells = more focus on environment, terrain and accessibility
- Exploring increasingly challenging environments = do more from the desk
- Pressure on cost, time and quick decisions = less seismic, less drilling
- Health, safety, security and environment
Future successes?

- Work with Exploration teams
Future successes?

- Work with Exploration teams

- Find the right data, with the right licensing
Future successes?

- Work with Exploration teams
- Find the right data, with the right licensing
- Work with the right consultants and experts
Future successes?

- Work with Exploration teams
- Find the right data, with the right licensing
- Work with the right consultants and experts
- Integration, not just combination – 2D, 3D and 4D
Future successes?

- Work with Exploration teams
- Find the right data, with the right licensing
- Work with the right consultants and experts
- Integration, not just combination – 2D, 3D and 4D
- Business drive, not technology drive
Future successes?

- Work with Exploration teams
- Find the right data, with the right licensing
- Work with the right consultants and experts
- Integration, not just combination – 2D, 3D and 4D
- Business drive, not technology drive
- Capture real examples, with real value…