PSI validation results
and open issues

Michele Crosetto, Oriol Monserrat,
Jorge De Arriba, Rubén Iglesias

Institute of Geomatics
Castelldefels
Introduction

- What is PSI validation about?
 - Not a simple comparison against ground truth, e.g. thermometer:
 - PSI products are “complex” and not easy-to-understand
 - It is a learning process, which involves:
 - Product characterization, sometimes “discovering” “new” pros and cons that are not well understood or documented
 - Highlighting pros & cons ➔ Communicate to end users (a lot to be done)
 - Increasing product acceptability (a lot to be done)

- Remark: often multi-purpose PSI products are assumed: some validation outcomes can be irrelevant for some specific application (I do not care about mm!). But usually are relevant for many applications.

- Remark: we do (mainly) “technical validation”; the “user validation” will follow (especially at the beginning of the learning process the user can be “still to be found”)
A learning process: examples

- PSIC4:
 - blind test
 - “big deformation” (C-band viewpoint!) ➔ aliasing
Is this still valid?
What are the performances of new unwrapping techniques?
A learning process: examples

- **PSIC4:**
 - blind test (detection not working)
 - “big defo” (C-band viewpoint!) ➔ aliasing

- **Jubilee Line:**
 - Very focused target, both spatially and temporally
 - “Non linear” deformation
JLE: deformation of Treasury building

- Out of standard PSI capabilities in 2004 (a posteriori statement!)
- Result relevant to key civil engineering applications (e.g. tunnels)
- Is this still valid?

http://www.terrafirma.eu.com/JLE_intercomparison.htm
Another example from tunnel monitoring
TF Validation Project: inter-comparison

- Comparison of the outputs from the different PSI processing chains
 - comparison in the radar space (not affected by geocoding errors)
 - considering all combinations (4 results, 6 possible pairs)

- Three test sites, four teams:
 - number of datasets: 12
 - number of PS: ~ 700,000
 - For each PS: > 39 samples (ASAR)
 - > 83 samples (ERS)
 - number of PS pairs: ~ 370,000

“Average PS” vs. “the PS champion”

www.terrafirma.eu.com/Terrafirma_validation.htm
Inter-comparison of velocities

<table>
<thead>
<tr>
<th></th>
<th>Max.</th>
<th>Min.</th>
<th>Mean</th>
<th>Stdev</th>
<th># PS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA-TB</td>
<td>4.70</td>
<td>-5.20</td>
<td>-0.07</td>
<td>0.61</td>
<td>9683</td>
</tr>
<tr>
<td>TA-TC</td>
<td>4.40</td>
<td>-8.22</td>
<td>-0.04</td>
<td>0.51</td>
<td>6257</td>
</tr>
<tr>
<td>TA-TD</td>
<td>4.29</td>
<td>-5.06</td>
<td>0.00</td>
<td>0.56</td>
<td>5586</td>
</tr>
<tr>
<td>TB-TC</td>
<td>12.88</td>
<td>-8.62</td>
<td>0.03</td>
<td>0.66</td>
<td>13954</td>
</tr>
<tr>
<td>TB-TD</td>
<td>8.73</td>
<td>-8.62</td>
<td>0.10</td>
<td>0.59</td>
<td>11341</td>
</tr>
<tr>
<td>TC-TD</td>
<td>9.06</td>
<td>-8.73</td>
<td>0.06</td>
<td>0.45</td>
<td>17989</td>
</tr>
</tbody>
</table>

These values are representative of the PSI studies that concern areas with similar characteristics to those of the three test sites.

Key: avoid extrapolation to different application contexts, e.g. mining

Statistics for the velocity differences computed over all the common PS for ERS Alkmaar dataset.
Inter-comp. of time series (key product)

Correlation = 0.301
VHR PSI
VHR: Cosmo Skymed
VHR PSI: time series

- X-band: remarkable quality improvement wrt C-band
VHR PSI: thermal dilation

1) Worth to properly validate

2) Important to document the (remaining) limitations