Deriving High-Resolution Non-Linear Deformation Time Series from TerraSAR-X Interferograms with the Method of Least Squares

Nan Ge, Steffen Knospe, Wolfgang Busch

Clausthal University of Technology
Institute of Geotechnical Engineering and Mine Surveying

{nan.ge, steffen.knospe, wolfgang.busch}@tu-clausthal.de
Outline

- Adjustment calculation in the conventional Small Baseline (SB) method
- Motivation
- An SB method for phase observations with different accuracy
- Data processing
- Conclusions and future perspectives
Adjustment calculation in the conventional SB method

- Functional model \[Ax = l + v \]

- Stochastic model \[\sum_{ll} = \sigma_0^2 Q_{ll} = E \]

- Optimization criterion \[v^T P v \Rightarrow \min \]

- Solution \[\hat{x} = (A^T P A)^{-1} A^T P l \]

- Error of estimation \[\hat{\sigma}_0^2 = \frac{v^T P v}{n - u} \]

Motivation

TerraSAR-X data is suitable for the conventional SB method

- Large critical deformation gradient
Motivation

TerraSAR-X data is suitable for the conventional SB method

- Large critical deformation gradient
- High spatial resolution
- Short revisit time
Motivation

TerraSAR-X data is suitable for the conventional SB method

- Large critical deformation gradient
- High spatial resolution
- Short revisit time
- Limited spatial baselines
Motivation

TerraSAR-X data is suitable for the conventional SB method

- Large critical deformation gradient
- High spatial resolution
- Short revisit time
- Limited spatial baselines

But why not in every case?

- Temporal decorrelation => difficult to retrieve unambiguous phase
Motivation

(c)
An SB method for phase observations with different accuracy

- Functional model
 \[Ax = l + v \]

- Stochastic model
 \[\sum_{ll} = \sigma_0^2 Q_{ll} \neq E \]

- Optimization criterion
 \[v^T P v \Rightarrow \min \]

- Solution
 \[\hat{x} = (A^T PA)^{-1} A^T P l \]

- Error of estimation
 \[\hat{\sigma}_0^2 = \frac{v^T P v}{n - u} \]
An SB method for phase observations with different accuracy

Phase variance

- Variance of interferometric phase

\[
\text{var}(\phi) = E\left((\phi - E(\phi))^2\right)
\]
An SB method for phase observations with different accuracy

Phase variance

- Variance of interferometric phase
 \[\text{var}(\phi) = E\left((\phi - E(\phi))^2\right) \]

- Error propagation in a 2D path-following phase-unwrapping network
 \[\Delta\phi_i = W^{-1}(\phi_i) - W^{-1}(\phi_{i-1}) = \phi_i - \phi_{i-1} + 2\pi k_i \]

 \[\text{var}(\Delta\phi_i) = \text{var}(\phi_i) + \text{var}(\phi_{i-1}) - \text{cov}(\phi_i, \phi_{i-1}) \]
An SB method for phase observations with different accuracy

Phase variance

- Variance of interferometric phase
 \[
 \text{var}(\phi) = E\left((\phi - E(\phi))^2\right)
 \]

- Error propagation in a 2D path-following phase-unwrapping network
 \[
 \Delta \phi_i = W^{-1}(\phi_i) - W^{-1}(\phi_{i-1}) = \phi_i - \phi_{i-1} + 2\pi k_i
 \]

 \[
 \text{var}(\Delta \phi_i) = \text{var}(\phi_i) + \text{var}(\phi_{i-1}) - \text{cov}(\phi_i, \phi_{i-1})
 \]

 \[
 W^{-1}(\phi_i) = \sum_{j=1}^{M-1} \Delta \phi_j
 \]

 \[
 \text{var}(W^{-1}(\phi_i)) = \sum_{j=1}^{M-1} \text{var}(\Delta \phi_j)
 \]
An SB method for phase observations with different accuracy

Phase variance

- Variance of interferometric phase
 \[
 \text{var}(\phi) = E((\phi - E(\phi))^2)
 \]

- Error propagation in a 2D path-following phase-unwrapping network

This could be simplified as

\[
W^{-1}(\phi_i) = \sum_{j=1}^{M-1} \Delta \phi_j
\]
\[
W^{-1}(\phi_i)' = W^{-1}(\phi_i) - W^{-1}(\phi_0)
\]
\[
\text{var}(W^{-1}(\phi_i)) = \sum_{j=1}^{M-1} \text{var}(\Delta \phi_j)
\]
\[
\text{var}(W^{-1}(\phi_i)) = \text{var}(\phi_i) + \text{var}(\phi_0) - \text{cov}(\phi_i, \phi_0)
\]
An SB method for phase observations with different accuracy

Outlier test

- What could an outlier in this case be?
An SB method for phase observations with different accuracy

Outlier test

- What could an outlier in this case be?

- Detection of possible outliers
 - The normalized refinements
 \[w_i = \frac{v_i}{\sigma_i} \]
An SB method for phase observations with different accuracy

Outlier test

- What could an outlier in this case be?

- Detection of possible outliers

 - The normalized refinements

 \[w_i = \frac{v_i}{\sigma_v} \]

 - The assumptions

 \[l \sim N(Ax, \sigma^2_0 Q_{ll}) \]

 \[H_0 : E(l) = Ax \]
An SB method for phase observations with different accuracy

Outlier test

- What could an outlier in this case be?

- Detection of possible outliers
 - The normalized refinements
 \[w_i = \frac{v_i}{\sigma_{v_i}} \]
 - The assumptions
 \[l \sim N(Ax, \sigma_0^2 Q_{ll}) \]
 \[H_0 : E(l) = Ax \]
 - Which lead to
 \[H_0 : w_i \sim N(0,1) \]
Simulated data processing

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Simulated data processing with outlier test

<table>
<thead>
<tr>
<th>(a)</th>
<th>Simulated data processing with outlier test</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>(d)</th>
<th>Simulated data processing with outlier test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(e)</th>
<th>Simulated data processing with outlier test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Identification of coherent pixels

- Coherence magnitude model

\[|\gamma| = \left(|\gamma_{\text{geom}}| \cdot |\gamma_{\text{DC}}| \cdot |\gamma_{\text{thermal}}| \right) \cdot \left(|\gamma_{\text{temporal}}| \cdot |\gamma_{\text{vol}}| \right) \cdot |\gamma_{\text{process}}| \]

acquisition-related components \quad object-related components

Identification of coherent pixels

- Coherence magnitude model

\[|\gamma| = \left(|\gamma_{\text{geom}}| \cdot |\gamma_{\text{DC}}| \cdot |\gamma_{\text{thermal}}| \right) \cdot \left(|\gamma_{\text{temporal}}| \cdot |\gamma_{\text{vol}}| \right) \cdot |\gamma_{\text{process}}| \]

acquisition-related components \quad object-related components

- Weighted mean of decomposed object-related coherence magnitude

\[|\hat{\gamma}_{\text{object}}| = \frac{\sum_{i=0}^{n-1} w_i \left(|\hat{\gamma}_{\text{temporal},i}| \cdot |\hat{\gamma}_{\text{vol},i}| \right)}{\sum_{i=0}^{n-1} w_i} \]

Real data processing

- Phase decomposition result of a soccer stadium and its surrounding vs. Google Earth™
And their deformation time series
And their deformation time series
And their deformation time series
Another deformation time series of a subsidence trough
Another deformation time series of a subsidence trough
Another deformation time series of a subsidence trough
Conclusions

- Phase accuracy to be taken into account as weight in adjustment calculation

- Only object-related coherence components to identify coherent pixels
Conclusions

- Phase accuracy to be taken into account as weight in adjustment calculation
- Only object-related coherence components to identify coherent pixels

And future perspectives

- Developing error propagation models for phase-unwrapping algorithms
- Improving phase quality by unwrapping phase in (pseudo-)3Ds
- Validating with reference data
Acknowledgements

- **DLR Science Coordinator and DFD** for providing TerraSAR-X and SRTM/X-SAR data and for their support, especially for solving data order conflicts in our interest.

- **TerraSAR-X data** we used are provided by DLR in the frame of General AO project GEO0295.

- **GAMMA Remote Sensing** for providing dInSAR processing software.

- **David Bornemann** from Berlin University of Technology for discussions.