HDO variability in the upper troposphere and lower stratosphere

J. Steinwagner1, S. Füglistaler2, G.P. Stiller3, T. von Clarmann3 and T. Röckmann1

(1) Universiteit Utrecht, Institute for Marine and Atmospheric Research Utrecht, The Netherlands
(2) University Cambridge, DAMTP, UK,
(3) Forschungszentrum Karlsruhe, Institut für Meteorologie und Klimaforschung, AME Group, Germany

Presented @EGU 2009, Vienna, Austria, AS1.10, Room 10
Motivation

• Stratospheric water plays an important role for ozone chemistry and radiative balance
• It is still not entirely clear how water enters the stratosphere
Method

• Isotopes as marker

• The amount of HDO and H₂O changes due to
 • Evaporation/Condensation
 • Transport
 • Chemistry

• A measure for the relative change in HDO and H₂O is the δD value
 • The more negative δD the less HDO is contained in a sample of probed air and vice versa
Dataset

- Measurements have been carried out using MIPAS onboard Envisat

- 1-4 measurement days per month
Processes

• Determination of relative magnitudes of different sources

• We interprete our remote sensing measurements on the proposal of three main processes
Observation

- While entering the stratosphere from the troposphere water faces a cold trap
 - Due to increasing T in the stratosphere this signature is conserved and transported upwards
 - Temperature minimum shows seasonal variation
 - Phenomenon is known as water “tape recorder”
- A Rayleigh process leads to a similar tape recorder like signature in HDO (δD)
Pathway B

- If Rayleigh was the only process a HDO:H2O correlation should follow a Rayleigh curve (red line)
- What is the reason for the differences?
 - Not supersaturation
Pathway C

• The slope of the stratospheric HDO:H2O correlation is more or less identical to that at the tropopause
 – contribution via pathway C is uniform on different altitudes
Pathway A

• Is there information about convection in delta D?
 • It should be possible to distinguish regions with high convective activity from such with low convective activity
 • Convective activity is on average stronger on the NH than on the SH

• Indeed, there is a significant difference between NH and SH (zonally averaged data)

Av. δD @ 18 km
Pathway A

- We observe no substantial moistening
 - Convection does not reach up to stratospheric levels
 - Detrainment moistens upper TTL
 - Stratospheric moisture level is still set by “last step dehydration”

Av. H$_2$O @18 km

29. September 2009

ESA symposium j.steinwagner@uu.nl
Conclusion

• Convection affects UT/LS δD values
 • Leaves a signal
 • No significant influence on stratospheric moisture
• dD values should not be generalized from “point measurements”

Open questions

• Seasonality in supersaturation?
• Appropriate treatment of cloudy measurement scenes
• Improve data quality
• More data
• Much more data!!
• A whole lot more data !!!