Atmosphere Overview
Astronauts marvel at the narrow blue band of Earth’s atmosphere, glimpsed side-on from orbit. This is the place where we live: the atmosphere is the source of all the air we breathe and shields us from harmful radiation. Though change is in the air, unfortunately ongoing human activity is altering the composition of the atmosphere, adding vast levels of carbon dioxide, nitrogen, methane, other trace gases and aerosols. Global warming is only one unwelcome consequence – its future effects still unclear – along with atmospheric ozone depletion, acid rain and pollution plumes that impact human health. Space-based sensors help detect otherwise invisible changes, peering either sideways or down through the atmosphere to build up three-dimensional views of its chemical composition, sensitive to a few parts per billion. ERS-2’s GOME tracked the polar ozone holes for more than 15 years, supplemented since 2002 by Envisat’s GOMOS and MIPAS. The same satellite’s SCIAMACHY sensor shows concentrations of carbon dioxide and other key greenhouse gases. Meanwhile imaging spectrometers – such as Envisat’s MERIS and Proba-1’s CHRIS – are sensitive to clouds and aerosols whose climate effects are yet to be fully quantified.
Atmosphere News
![]() Sentinel-1 sees through hurricanes25 October 2017This year's Atlantic hurricane season has been a harsh reminder of the grief and devastation brought by these vast storms. Imaging the top of hurricanes from space is nothing new, but the Sentinel-1 satellites can see right through these towering spinning weather systems, measuring the sea surface below to help predict the storm's path. ![]() See our seasons change from space06 July 2017With the Copernicus Sentinel-3A satellite fully fledged and its data freely available, the task of monitoring and understanding our changing planet has been made that much easier. Seeing the effect spring has on our plant life is just one of its many uses.
Specific Topics on Atmosphere
ChemistryA number of live operational products are produced which are aimed at increasing our understanding of the complexity of atmospheric chemistry: both trace gases and aerosols. Climate Change/KyotoWith the increased interest in supporting and monitoring the implementation of international treaties on the World's Climate, such as Kyoto, the work dedicated to the study of the full range of variables is extensive. Clouds & PrecipitationThe analysis of the properties of clouds is aimed at understanding their evolution and development. In particular this work hopes to improve rainfall prediction techniques. OzoneThe measurement of change in the ozone layer is today operationally possible at a high temporal and spatial resolution in near real-time allowing ongoing updates of the effects of pollution. PhenomenonThe input of satellite data into meteorological modeling for weather forecasting is well established with satellites fully dedicated to supporting its operational requirements. Radiation & TemperatureThe modelling of radiation processes are essential to our understanding of the energy cycles between the land surface and the atmosphere. In addition to which they provide an important input to the planning of solar energy programmes. |
Related (Key) Documentation
Related Research Results
|
|