Minimize Suomi NPP

Suomi NPP (National Polar-orbiting Partnership) Mission

In January 2012, NASA has renamed its newest Earth-observing satellite, namely NPP (NPOESS Preparatory Project) launched on October 28, 2011, to Suomi NPP (National Polar-orbiting Partnership). This is in honor of the late Verner E. Suomi, a meteorologist at the University of Wisconsin, who is recognized widely as "the father of satellite meteorology." The announcement was made on January 24, 2012 at the annual meeting of the American Meteorological Society in New Orleans, Louisiana.

Verner Suomi (1915-1995) was born and raised in Minnesota. He spent nearly his entire career at the University of Wisconsin-Madison, where in 1965 he founded the university's Space Science and Engineering Center (SSEC) with funding from NASA. The center is known for Earth-observing satellite research and development. In 1964, Suomi served as chief scientist of the U.S. Weather Bureau for one year. Suomi's research and inventions have radically improved weather forecasting and our understanding of global weather.

Table 1: Some background on the renaming of the NPP mission 1) 2)

NPP is a joint NASA/IPO (Integrated Program Office)/NOAA LEO weather satellite mission initiated in 1998. The primary mission objectives are:

1) To demonstrate the performance of four advanced sensors (risk reduction mission for key parts of the NPOESS mission) and their associated Environmental Data Records (EDR), such as sea surface temperature retrieval.

2) To provide data continuity for key data series observations initiated by NASA's EOS series missions (Terra, Aqua and Aura) - and prior to the launch of the first NPOESS series spacecraft. Because of this second role, NPP is sometimes referred to as the EOS-NPOESS bridging mission.

Three of the mission instruments on NPP are VIIRS (Visible/Infrared Imager and Radiometer Suite), CrIS (Cross-Track Infrared Sounder), and OMPS (Ozone Mapping and Profiler Suite). These are under development by the IPO. NASA/GSFC developed a fourth sensor, namely ATMS (Advanced Technology Microwave Sounder). This suite of sensors is able to provide cloud, land and ocean imagery, covering the spectral range from the visible to the thermal infrared, as well as temperature and humidity profiles of the atmosphere, including ozone distributions. In addition, NASA is developing the NPP S/C and providing the launch vehicle (Delta-2 class). IPO is providing satellite operations and data processing for the operational community; NASA is supplying additional ground processing to support the needs of the Earth science community. 3) 4) 5) 6) 7) 8)

CERES instrument selected for NPP and NPOESS-C1 missions: 9)

In early 2008, the tri-agency (DOC, DoD, and NASA) decision gave the approval to add the CERES (Clouds and the Earth's Radiant Energy System) instrument of NASA/LaRC to the NPP payload. The overall objective of CERES is to provide continuity of the top-of-the-atmosphere radiant energy measurements - involving in particular the role of clouds in Earth's energy budget. Clouds play a significant, but still not completely understood, role in the Earth's radiation budget. Low, thick clouds can reflect the sun's energy back into space before solar radiation reaches the surface, while high clouds trap the radiation emitted by the Earth from escaping into space. The total effect of high and low clouds determines the amount of greenhouse warming. - CERES products include both solar-reflected and Earth-emitted radiation from the top of the atmosphere to the Earth's surface.

In addition, the tri-agency decision called also for adding two instruments, namely CERES and TSIS (Total Solar Irradiance Sensor), to the payload of the NPOESS-C1 mission.

Background: The CERES instrument is of ERBE (Earth Radiation Budget Experiment) heritage of NASA/LaRC, first flown on the ERBS (Earth Radiation Budget Satellite) mission, launch Oct. 5, 1984, then on NOAA-9 (launch Dec. 12, 1984), and NOAA-10 (launch Sept. 17, 1986). The CERES instrument is flown on TRMM (Tropical Rainfall Measuring Mission), launch Nov. 27, 1997, as a single cross-track radiance sensor of short (0.3-5 μm), long- (8-12 μm) and total wave (0.3-100 μm; prototype flight model flown on TRMM). Two further advanced CERES instrument assemblies are also being flown on NASA's Terra mission (launch Dec. 18, 1999) as a dual-track scanner (two radiometers) in XT (Cross-Track ) support or in a RAPS (Rotational Azimuth Plane Scan) support mode. Another CERES instrument system (two radiometers) are being flown on Aqua of NASA (launch May 4, 2002).

The CERES instrument on NPP will provide continuity the long climate data record of the Earth's radiant energy.


In Feb. 2010, the NPOESS (National Polar-orbiting Environmental Satellite System) tri-agency program was terminated by the US government due to severe cost overruns and program delays. In 2009, an IRT (Independent Review Team) concluded that the current NPOESS program, in the absence of managerial and funding adjustments, has a low probability of success and data continuity is at extreme risk. The Office of Science and Technology, with the Office of Management and Budget and the National Security Council, as well as representatives from each agency, examined various options to increase the probability of success and reduce the risk to data continuity.

NOAA's restructured satellite program, the civilian JPSS (Joint Polar Satellite System), was created in the aftermath of the White House's Feb. 2010 decision to cancel NPOESS. The development of the new JPSS will be managed by NASA/GSFC while the spacecraft will be owned and operated by NOAA. The launch of JPSS-1 is planned for 2016.

NOAA, through NASA as its acquisition agent, will procure the afternoon orbit assets that support its civil weather and climate requirements and DoD will independently procure assets for the morning orbit military mission - referred to as DWSS (Defense Weather Satellite System). Both agencies will continue to share environmental measurements made by the system and support the operations of a shared common ground system.

The Administration decision for the restructured Joint Polar Satellite System will continue the development of critical Earth observing instruments required for improving weather forecasts, climate monitoring, and warning lead times of severe storms. NASA’s role in the restructured program will be modeled after the procurement structure of the successful POES (Polar Operational Environmental Satellite) and GOES (Geostationary Operational Environmental Satellite) programs, where NASA and NOAA have a long and effective partnership. The partner agencies are committed to maintaining collaborations towards the goal of continuity of earth observations from space.

The restructured Joint Polar Satellite System is planned to provide launch readiness capability in FY 2015 and FY 2018 (with launches of JPSS-1 in 2016 and JPSS-2 in 2019, respectively) in order to minimize any potential loss of continuity of data for the afternoon orbit in the event of an on orbit or launch failure of other components in the system. Final readiness dates will not be baselined until all transition activities are completed.

The NPP project, as preparatory mission for the NPOESS program, received its OK to continue in the early spring of 2010. However, the close partnership with NPOESS can still be seen in all the references throughout the documentation of this file.

NPP serves as a bridge mission between NASA's EOS (Earth Observing System) series of satellites and the next-generation JPSS (Joint Polar Satellite System), a NOAA program that will also collect weather and climate data.

NPP will provide on-orbit testing and validation of sensors, algorithms, ground-based operations, and data processing systems that will be used in the operational JPSS mission. By 2016, the first JPSS spacecraft will be launched into the afternoon orbit to provide significantly improved operational capabilities and benefits to satisfy critical civil and national security requirements for spaceborne, remotely sensed environmental data. The last satellite in the JPSS mission constellation is expected to continue operations until about 2037.

Table 2: JPSS (Joint Polar Satellite System) - NPOESS program terminated 10)



Figure 1: Overview of Suomi NPP mission segments and architecture (image credit: NASA) 11)




The Suomi NPP spacecraft has been built and integrated by BATC (Ball Aerospace and Technologies Corporation) of Boulder, CO (NASA/GSFC contract award in May 2002). The platform design is a variation of BATC's BCP 2000 (Ball Commercial Platform) bus of ICESat and CloudSat heritage. The spacecraft consists of an aluminum honeycomb structure. 12) 13) 14)

The ADCS (Attitude Determination and Control Subsystem) provides 3-axis stabilization using 4 reaction wheels for fine attitude control, 3 torquer bars for momentum unloading, thrusters for coarse attitude control (such as during large-angle slews for orbital maintenance), 2 star trackers for fine attitude determination, 3 gyros for attitude and attitude rate determination between star tracker updates, 2 Earth sensors for safe-mode attitude control, and coarse sun sensors for initial attitude acquisition, all monitored and controlled by the spacecraft controls computer. ADCS provides real-time attitude knowledge of 10 arcsec (1 sigma) at the S/C navigation reference base, real-time spacecraft position knowledge of 25 m (1 sigma), and attitude control of 36 arcsec (1 sigma).

The EPS (Electrical Power Subsystem) uses GaAs solar cells to generate an average power of about 2 kW (EOL). The solar array rotates once per orbit to maintain a nominally normal orientation to the sun). In addition, a single-wing solar array is mounted on the anti-solar side of the S/C; its function is to preclude thermal input into the sensitive cryo radiators of the VIIRS and CrIS instruments. A regulated 28 ±6 VDC power bus distributes energy to all S/C subsystems and instruments. A NiH (Nickel Hydrogen) battery system provides power for eclipse phase operations.


Figure 2: Artist's rendition of the deployed Suomi NPP spacecraft (image credit: BATC)

The C&DHS (Command & Data Handling Subsystem) collects instrument data (12 Mbit/s max total) via an IEEE 1394a-2000 “FireWire” interface (VIIRS, CrIS and OMPS instruments), and stores the data on board. Communications with ATMS occurs across the MIL-STD-1553 data bus. A new 1394/FireWire chipset was developed for the communication support, bringing spaceborne communications (onboard data handling and RF data transmission) onto a new level of service range and performance.

Upon ground command or autonomously, the C&DHS transmits stored instrument data to the communication system for transmission to the ground. Also, the C&DHS generates a real-time 15 Mbit/s data stream consisting of instrument science and telemetry data for direct broadcast via X-band to in-situ ground stations.





S/C dimensions

1.3 m x 1.3 m x 4.2 m

S/C total mass

~2200 kg

Instrument data rate

12.5 Mbit/s

Payload mass

464 kg

Downlink data rate

300 Mbit/s in X-band
128 kbit/s in S-band

Position knowledge
Attitude knowledge
Attitude control

75 m each axis
< 21 arcsec each axis
<108 arcsec each axis

Table 3: Some NPP spacecraft characteristics

The spacecraft is designed to be highly autonomous. For satellite safety, the S/C controls computer monitors spacecraft subsystem and instrument health. It can take action to protect itself (for example, in the event of an anomaly that threatens the thermal or optical safety and health of the S/C, then it can enter into a safe or survival mode and stay in the mode indefinitely until ground analysis and resolution of the anomaly). In addition, the satellite is designed to require infrequent uploads of commands (the instruments operate mainly in a mapping mode and therefore require few commands even for periodic calibration activities, and a sufficiently large command buffer is available for storage of approximately 16 days of commands).

The spacecraft has an on-orbit design lifetime of 5 years (available consumables for 7 years). The S/C dry mass is about 1400 kg. NPP is designed to support controlled reentry at the end of its mission life (via propulsive maneuvers to lower the orbit perigee to approximately 50 km and target any surviving debris for open ocean entry). NPP is expected to have sufficient debris that survives reentry so as to require controlled reentry to place the debris in a pre-determined location in the ocean.


Figure 3: Photo of the nadir deck of the NPP spacecraft (image credit: BATC, IPO)


Figure 4: Suomi NPP spacecraft on-orbit configuration (image credit: NASA)


Launch: The NPP spacecraft was launched on October 28, 2011 on a Delta-2-7920-10 vehicle from VAFB, CA (launch provider: ULA). The launch delay of nearly a year was due to development/testing problems of the CrIS (Cross-track Infrared Sounder) instrument. 15) 16) 17)

Orbit: Sun-synchronous near-circular polar orbit (of the primary NPP), altitude = 824 km, inclination =98.74º, period = 101 minutes, LTDN (Local Time on Descending Node) at 10:30 hours. The repeat cycle is 16 days (quasi 8-day).


Figure 5: Photo of the NPP launch (image credit: NASA)

Secondary payloads: The secondary payloads on the Suomi NPP mission are part of NASA's ElaNa-3 (Educational Launch of Nanosatellites) initiative. All secondary payloads will be deployed from standard P-PODs (Poly Picosatellite Orbital Deployer). 18)

• AubieSat-1, a 1 U CubeSat of AUSSP (Auburn University Student Space Program), Auburn, AL, USA.

• DICE (Dynamic Ionosphere CubeSat Experiment), two nanosatellites (1.5U CubeSats) of the DICE consortium (Utah State University, Logan, UT, USA) with a total mass of 4 kg.

• E1P-2 (Explorer-1 PRIME-2) flight unit-2, a CubeSat mission of MSU (Montana State University), Bozeman, MT, USA.

• RAX-2 (Radio Aurora eXplorer-2), an NSF-sponsored 3U CubeSat of the University of Michigan, Ann Arbor, MI, USA

• M-Cubed (Michigan Multipurpose Minisat), a 1U CubeSat of the University of Michigan, Ann Arbor, MI. M-Cubed features also the collaborative JPL payload called COVE (CubeSat On-board processing Validation Experiment).

Orbit of the secondary payloads: After the deployment of the NPP primary mission, the launch vehicle transfers all secondary payloads into an elliptical orbit for subsequent deployment. This is to meet the CubeSat standard of a 25 year de-orbit lifetime as well as the science requirements of the payloads riding on this rocket. The rocket will take care of the maneuvering and when it reaches the correct orbit, it will deploy all of the secondary payloads, into an orbit of ~ 830 km x ~ 350 km, inclination = 99º.


RF communications:

The NPP satellite collects instrument data, stores the data onto a solid-state recorder of about 280 Gbit capacity. A two-axis gimbaled X-band antenna is mounted on a post above the payload to provide a high bandwidth downlink. Source science data are generated at a rate of about 12.5 Mbit/s. Global, or stored mission data will be downlinked at X-band frequencies (8212.5 MHz, data rate of 300 Mbit/s) to a 13 m ground receiving station located at Svalbard, Norway.

Two wideband transmissions carry NPP mission data: SMD (Stored Mission Data) and HRD (High-Rate Data). These transmissions are distinct from the narrowband data streams containing the satellite's housekeeping telemetry. Mission data are collected from each of the five instruments (ATMS, VIIRS, CrIS, OMPS, CERES).

These data, along with spacecraft housekeeping data, are merged and provided to the ground on a real-time 15 Mbit/s downlink, called HRD direct broadcast. Instrument and housekeeping data are also provided to the SSR (Solid State Recorder) for onboard storage and playback as SMD. The SMD are stored in the spacecraft's SSR and downlinked at 300 Mbit/ss through playback of the SSR once per orbit over the NPP/NPOESS SvalSat ground station in Svalbard, Norway.

The HRD stream is similar to the SMD as it consists of instrument science, calibration and engineering data, but it does not contain data from instrument diagnostic activities. The HRD is constantly transmitted in real time by the spacecraft to distributed direct broadcast users. Output to the HRD transmitter is at a constant 15 Mbit/s rate.

Data acquisition: In early 2004, IPO in cooperation with NSC (Norwegian Space Center), installed a 13 m antenna dish - a dual X/S-band configuration, at SGS (Svalbard Ground Station), located at 78.216º N, 20º E on the Norwegian Svalbard archipelago (also referred to as Spitzbergen) near the town of Longyearbyen. The SGS complex is owned by the Norwegian Space Center (Norsk Romsenter), Oslo, Norway, and operated by the Tromsø Satellite Station (TSS) through its contractor KSAT (Kongsberg Satellite Services). SGS is the primary data downlink site for global stored mission data (SMD) from NPP. Svalbard is located at a high enough latitude to be able to “see” (i.e., track) all 14 daily NPP satellite passes. 19)

The global NPP data will be transmitted from Svalbard within minutes to the USA via a fiber-optic cable system that was completed in January 2004 as a joint venture between the IPO, NASA, and NSC. Once the data stream is in the USA, the RDRs (Raw Data Records) will be processed into SDRs (Sensor Data Records) and EDRs by the Interface Data Processing Segment (IDPS). The performance goal calls for EDR delivery within 3 hours of acquisition. - NPP also focuses on ground segment risk reduction by providing and testing a subset of an NPOESS-like ground segment. Developed algorithms can be thoroughly tested and evaluated. This applies also to the methods of instrument verification, calibration, and validation.

Note: The new antenna and fiber-optic link at SGS are already being used to acquire data of five to ten Coriolis/WindSat passes/day and delivery of the data to users in a reliable and timely manner. Subsequent to the NPP mission, the Svalbard site and the high-speed fiber-optic link will also serve as one node in a distributed ground data communications system for NPOESS acquisition service.

The TT&C function uses S-band communications with uplink data rates of up to 32 kbit/s and downlink rates of up to 128 kbit/s. The NOAA network of polar ground stations will be used for mission operations (back-up TT&C services via TDRSS through S-band omni antennas on the satellite).


Figure 6: Overview of Suomi NPP spacecraft communications with the ground segment (image credit: NASA) 20)


Suomi NPP broadcast services:

In addition, NPP will have a real-time HRD (High Rate Data) downlink in X-band (7812.0 MHz ± 0.03 MHz) direct broadcast modeto users equipped with appropriate field terminals. The objectives are to validate the innovative operations concepts and data processing schemes for NPOESS services. NPP world-wide users will already experience NPOESS-like data well in advance of the first NPOESS flight in 2013. The NPP broadcast services to the global user community are: 21) 22) 23) 24)

• X-band downlink at 30 Mbit/s

• Convolutional coding

• QPSK (Quadra-Phase Shift Keying) modulation

• An X-band acquisition system of 2.4 m diameter aperture is sufficient for all data reception. NASA will provide:

• Real-Time Software Telemetry Processing System

• Ground-Based Attitude Determination module

• Stand-alone Instrument Level-1 and select Level-2 (EDR) algorithms

• Instrument-specific Level 1 (SDR) & select Level-2 (EDR) visualization & data formatting tools


Figure 7: The field terminal architecture of the NPP / NPOESS satellites (image credit: NASA, NOAA, IPO)

The DRL (Direct Readout Laboratory) of NASA/GSFC is committed to promote continuity and compatibility among evolving EOS direct broadcast satellite downlink configurations and direct readout acquisition and processing systems. The DRL bridges the EOS missions with the global direct readout community by establishing a clear path and foundation for the continued use of NASA’s Earth science DB data. The DRL is also involved in continued efforts to ensure smooth transitions of the Direct Broadcast infrastructure from the EOS mission to the next generation NPP (NPOESS Preparatory Project) and NPOESS (National Polar-orbiting Operational Environmental Satellite System) missions in the future. In an effort to foster global data exchange and to promote scientific collaboration, the DRL with support from other groups, is providing the user community access to Earth remote sensing data technologies and tools that enable the DB community to receive, process, and analyze direct readout data.

DRL developed IPOPP (International Polar Orbiter Processing Package), the primary processing package that will enable the Direct Readout community to process, visualize, and evaluate NPP and NPOESS sensor and EDRs (Environmental Data Records), which is a necessity for the Direct Readout community during the transition from the Earth Observing System (EOS) era to the NPOESS era. DRL developed also the NISGS (NPP In-Situ Ground System). The IPOPP will be: 25)

• Freely available

• Portable to Linux x86 platforms

• Efficient to run on modest hardware

• Simple to install and easy to use

• Able to ingest and process Direct Broadcast overpasses of arbitrary size

• Able to produce core and regional value-added EDR products.


High Data Rate

Low Data Rate

Carrier frequency:

7812 MHz NPP

1707 MHz

Max occupied bandwidth: NPP
Max occupied bandwidth: NPOESS

30 MHz NPP
30.8 MHz

12.0 MHz

Channel data rate: (includes all CCSDS overhead, Reed-Solomon forward error correction, and convolutional encoding)

30 Mbit/s NPP
40 Mbit/s NPOESS

7.76 Mbit/s

Ground antenna aperture size

2-3 m

1 m

Minimum elevation angle

VIIRS compression

Lossless – RICE

Lossy – JPEG2000

Table 4: NPP & NPOESS Direct Readout link characteristics



Mission status:

• December 2013: NASA scientists have revealed the inner workings of the ozone hole that forms annually over Antarctica and found that declining chlorine in the stratosphere has not yet caused a recovery of the ozone hole. — More than 20 years after the Montreal Protocol agreement limited human emissions of ozone-depleting substances, satellites have monitored the area of the annual ozone hole and watched it essentially stabilize, ceasing to grow substantially larger. However, two new studies show that signs of recovery are not yet present, and that temperature and winds are still driving any annual changes in ozone hole size. 26)


Figure 8: The area of the ozone hole, such as in October 2013, is one way to view the ozone hole from year to year. However, the classic metrics have limitations (image credit: NASA, Ozone Hole Watch)

The 2012 ozone hole was the second-smallest hole since the mid 1980s. To find out what caused the hole's diminutive area, the researchers, Susan Strahan and Natalya Kramarova, turned to data from the NASA-NOAA Suomi National Polar-orbiting Partnership satellite, and gained a first look inside the hole with the satellite's OMPS (Ozone Mapping and Profiler Suite). Next, data were converted into a map that shows how the amount of ozone differed with altitude throughout the stratosphere in the center of the hole during the 2012 season, from September through November.

The map revealed that the 2012 ozone hole was more complex than previously thought. Increases of ozone at upper altitudes in early October, carried there by winds, occurred above the ozone destruction in the lower stratosphere.

The classic metrics create the impression that the ozone hole has improved as a result of the Montreal protocol. In reality, meteorology was responsible for the increased ozone and resulting smaller hole, as ozone-depleting substances that year were still elevated. The study has been submitted to the journal of Atmospheric Chemistry and Physics (Ref. 26).


Figure 9: A look inside the 2012 ozone hole with the Ozone Mapper and Profiler Suite shows how the build-up of ozone (parts per million by volume) in the middle stratosphere masks the ozone loss in the lower stratosphere (image credit: NASA)

• Aug. 2013: Tracking of the Chelyabinsk Meteor Plume. On Feb. 15, 2013, a meteor (or meteoroid) with a mass of ~ 10,000 tons exploded above the Russian city of Chelyabinsk. Travelling at a speed of ~18 km/s, the meteoroid quickly became a brilliant fireball as it passed over the southern Ural region, exploding in an air burst over Chelyabinsk. The atmosphere absorbed most of the released energy, which was equivalent to nearly 500 kilotons of TNT making it ~30 times more powerful than either of the atomic bombs detonated at Hiroshima and Nagasaki. About 1,500 people were injured, Over 4,300 buildings in six cities across the region were damaged by the explosion. 27)

- Some of the surviving pieces of the Chelyabinsk bolide (meteor) fell to the ground. But the explosion also deposited hundreds of tons of dust up in the stratosphere, allowing a NASA satellite to make unprecedented measurements of how the material formed a thin but cohesive and persistent stratospheric dust belt. 28) 29)

About 3.5 hours after the initial explosion, the OMPS (Ozone Mapping Profiling Suite) instrument’s limb profiler on the NASA/NOAA Suomi NPP spacecraft detected the plume high in the atmosphere at an altitude of about 40 km, quickly moving east at more than 300 km/h. The day after the explosion, the satellite detected the plume continuing its eastward flow in the jet stream and reaching the Aleutian Islands. Larger, heavier particles began to lose altitude and speed, while their smaller, lighter counterparts stayed aloft and retained speed – consistent with wind speed variations at the different altitudes.

By Feb. 19, 2013, four days after the explosion, the faster, higher portion of the plume had snaked its way entirely around the Northern Hemisphere and back to Chelyabinsk. But the plume’s evolution continued: At least three months later, a detectable belt of bolide dust persisted around the planet.

The scientists' model simulations, based on the initial Suomi NPP observations and knowledge about stratospheric circulation, confirmed the observed evolution of the plume, showing agreement in location and vertical structure.


Figure 10: Model and satellite data show that four days after the bolide explosion, the faster, higher portion of the plume (red) had snaked its way entirely around the northern hemisphere and back to Chelyabinsk, Russia (image credit: NASA/GSFC)

• July/August, 2013: Each year, hundreds of millions of tons of dust are picked up from the deserts of Africa and blown across the Atlantic Ocean (Figure 11). That dust helps build beaches in the Caribbean and fertilizes soils in the Amazon region. It affects air quality in North and South America. And some say dust storms might play a role in the suppression of hurricanes and the decline of coral reefs. 30)


Figure 11: Tracking dust across the Atlantic: the image was aquired by the VIIRS instrument on July 31, 2013 (image credit: NASA)

Legend to Figure 11: Dust from the Sahara Desert and other points in interior Africa were lofted into the sky in late July 2013. Figure 11shows the general westerly and northwesterly progression of the airborne particles across the Atlantic Ocean. (Note that the milky lines running vertically across each image are caused by sunglint, the reflection of sunlight off the ocean directly back at the sensor.) Such an image helps to reveal wind patterns (trade winds) that steer plumes and clouds. At several points, dust stretched continuously from North Africa to South America.

The dust also was detected by the OMPS (Ozone Mapping Profiling Suite) on Suomi NPP. The maps of Figure 12 show the relative concentrations of aerosol particles on July 31 and August 1-2, 2013. While designed to measure ozone in the atmosphere, OMPS gathers ultraviolet spectral information that reveals the presence of smoke and airborne dust. Lower concentrations appear in yellow, and greater concentrations appear in orange-brown. Each map includes roughly six satellite passes. Note: sunglint also causes some vertical banding in these images.

Dust has long blown across the Atlantic from Africa, but only during the past several decades of satellite observations have meteorologists begun to appreciate the vast scale of these events. While estimates of the dust transported run to hundreds of millions of tons per year, humankind still knows relatively little about the effects on phytoplankton productivity, climate, and human health. 31)


Figure 12: The 3 images show the Saharan dust storm of the OMPS instrument acquired on July 21 to August 2, 2013 (image credit: NASA)

The VIIRS instrument acquires data in 16 spectral channels from visible to thermal infrared domains at moderate spatial resolution, i.e. spatial resolution of around 750 m at nadir. It scans around ±60° from nadir and provides daytime and nighttime imaging of any point on the Earth everyday. The LST (Land Surface Temperature) retrieval algorithm for VIIRS is based on a viewing angle dependent generalized split-window algorithm to correct for absorption and re-emission of radiation by atmospheric gases, predominately water vapor, and derive LST products from channels 15 (T15) and 16 (T16) centered on 10.8 and 12.0 µm, respectively.

An international team of experts evaluated the precision and accuracy of one year of VIIRS LST products (from March 2012 to March 2013) over SURFRAD (Surface Radiation Budget) networkvalidation sites in the U.S. The SURFRAD network mainly represents short vegetation covers: grassland, cropland and arid/desert areas. In parallel, a similar analysis was run for MODIS LST to be able to compare both VIIRS and MODIS algorithms performance.

The VIIRS LST validation team selected 51 validation sites worldwide to represent a large range of climate regimes and land cover types, including forests and mixed vegetated areas. The stations are part of operational networks, e.g. the SURFRAD (Surface Radiation Budget) network, the USCRN (U.S. Climate Reference Network), Figure 13, and Ameriflux, or are specifically designed for the validation of LST products derived from other satellite sensors: such as MODIS (Moderate Resolution Imaging Spectroradiometer) on Terra, the MSG/SEVIRI (Spinning Enhanced Visible and Infrared Imager) on the Meteosat-8 spacecraft of EUMETSAT, and the AATSR (Advanced Along Track Scanning Radiometer) instrument on Envisat of ESA.

First results show that the VIIRS LST products verify the JPSS program quality requirements over most validation sites. The bias and precision specifications of LST products are 1.4 K and 2.5 K, respectively. At daytime, VIIRS and MODIS LST agree better with scaled-up field data than with non-scaled field observations over mixed vegetation areas. Nevertheless, observed biases between ground and satellite-based LST obtained over heterogeneous areas are strongly reduced when using nighttime data since effects of structural shading, evaporative cooling and surface-air temperature differences are smaller.

The first results clearly illustrate that validation of satellite LST products over heterogeneous landscapes should be performed at nighttime only if no scaling is accounted for. Ultimately, this validation approach should lead to an accurate and continuously-assessed VIIRS LST products suitable to support weather forecast, hydrological applications, or climate studies. Readily adaptable to other moderate resolution satellite systems, this work is part of the “EarthTemp Network” initiative whose main goal is to develop more integrated, collaborative approaches to observing and understanding Earth’s surface temperatures.

Table 5: First results of a long-term VIIRS LST (Land Surface Teperature) validation 32)


Figure 13: Schematic description of a USCRN (US Climate reference Network) station (image credit: NOAA, NASA)

• June 21, 2013: Images crafted from a year's worth of data collected by the Suomi NPP satellite, provide a vivid depiction of worldwide vegetation (Figure 14). The image, provided by NASA and NOAA on June 19, 2013, shows the difference between green and arid areas of Earth as seen in data from the VIIRS (Visible-Infrared Imager/Radiometer Suite) instrument aboard Suomi NPP. VIIRS detects changes in the reflection of light, producing images that measure vegetation changes over time. 33) 34) 35)

Vegetation Index: There are many types of indices that measure vegetation and many are calculated by using satellite data to compare the relative difference between how much energy is absorbed by the land surface versus how much is reflected back into space. Plants absorb visible light to undergo photosynthesis, so when vegetation is lush, nearly all of the visible light is absorbed by the photosynthetic leaves, and much more near-infrared light is reflected back into space. However for deserts and regions with sparse vegetation, the amount of reflected visible and near-infrared light are both relatively high. The VIIRS sensor on the Suomi NPP satellite is sensitive to these different types of visible and near-infrared light.


Figure 14: Vegetation as seen by Suomi NPP (image credit: NASA/NOAA)

• On March 4, 2013, NASA transferred operational control of the Suomi-NPP mission to NOAA. The NOAA operations group now assumes responsibility for Suomi NPP. 36) 37)

Suomi NPP continues the observations of Earth from space that were pioneered by NASA's Earth Observing System. The satellite's five instruments are providing scientists with data to extend more than 30 key long-term datasets. These records, which include observations of the ozone layer, land cover, atmospheric temperatures and ice cover, provide critical data for global change science.

Suomi NPP also collects critical data for our understanding of long-term climate change while increasing our ability to improve weather forecasts in the short term. NOAA meteorologists are incorporating Suomi NPP information into their weather prediction models to produce forecasts and warnings that already are helping emergency responders anticipate, monitor, and react to many types of natural events.

• VIIRS instrument calibration: 38)

- VIIRS continues to operate and calibrate satisfactorily (as planned and expected)

- Overall on-orbit performance meets the design requirements (such as SNR/NEdT)

- Continuous and dedicated calibration efforts are critical for maintaining SDR data and calibration quality

- The modulated RSR, as a result of mirror degradation, have been developed and applied to sensor SDR calibration and data production.

• December 05, 2012: Scientists unveiled an unprecedented new look at our planet at night at the American Geophysical Union meeting in San Francisco, CA. A global composite image, constructed using cloud-free night images from the Suomi-NPP satellite, shows the glow of natural and human-built phenomena across the planet in greater detail than ever before. 39)


Figure 15: Composite map of the world assembled from data acquired by the Suomi NPP satellite in April and October 2012 (image credit: NASA Earth Observatory/NOAA NGDC)


Figure 16: This image of the continental United States at night is a composite assembled from data acquired by the Suomi NPP satellite in April and October 2012 (image credit: NASA Earth Observatory/NOAA NGDC, Ref. 39)

Legend to Figure 16: The image was made possible by the satellite's "day-night band" of the VIIRS (Visible Infrared Imaging Radiometer Suite) instrument, which detects light in a range of wavelengths from green to near-infrared and uses filtering techniques to observe dim signals such as city lights, gas flares, auroras, wildfires and reflected moonlight.

• On October 28, 2012, Suomi NPP celebrated its first anniversary on orbit. 40)

• October 2012: Hurricane Sandy (also referred to as Superstorm Sandy) made landfall along the southern New Jersey coast on the evening of Oct. 29, 2012. The Suomi NPP satellite acquired the accompanying image (Figure 17) of the storm around 3:35 a.m. Eastern Daylight Time on October 30 (UTC 7:35 hours on Oct. 30). The full moon, which exacerbated the water height at the time of the storm surge, lit up the tops of the clouds. 41)

Sandy’s clouds stretched from the Atlantic Ocean westward to Chicago. Clusters of lights gave away the locations of cities throughout the region, but along the East Coast, clouds obscured city lights, many of which were out due to the storm. On October 30, CNN reported that several millions of customers in multiple states were without electricity.

On Nov. 1, 2012, the reported death toll from hurricane Sandy's flooding and high winds has now reached 160 (88 in the U.S., 54 in Haiti, 11 in Cuba), with first damage estimates ranging from $20 – $55 billion. 42)
Hurricane Sandy made landfall on the New Jersey coast during the night of Oct. 29 and left more than eight million people without electricity from Maine to SouthCarolina, and as far west as Ohio. Hardest hit were New York City and northeastern New Jersey as is evident in a comparison of Suomi NPP images before and after the storm. 43)


Figure 17: Suomi NPP VIIR (Visible Infrared Imaging Radiometer Suite) image of Hurricane Sandy on Oct. 30, 2012 (image credit: NASA)


Figure 18: Suomi NPP VIIRS true-color imagery from bands M3–M5, composited from three consecutive daytime passes on 17 June 2012, shows the continental United States and surroundings in vivid color detail (image credit: NOAA) 44)

• In July 2012, Suomi NPP started the Direct Broadcast Service with the HRD (High Rate Data) link. Direct Broadcast data is unique in that it provides real-time data on a regional basis which enables quick evaluation of events at a local level. Researchers world-wide are then able to use customized algorithms, or mathematical formulas, turning raw data into images to help manage quickly changing regional events, such as rapidly spreading forest fires, rushing flood waters and floating icebergs at the poles that could affect the shipping and fishing industries. 45)

Ultimately, Suomi NPP's direct broadcast data does two things: continue NASA's role in data continuity by picking up where MODIS will leave off, and enable users to pluck data that is of importance to them from the reservoir of information that comes down from Suomi NPP.

The DRL (Direct Readout Laboratory) at NASA/GSFC organizes and manages the funneling of data to the roughly 200 ground stations around the world that will use it. The DLR also provides the user community with a baseline processing system called IPOPP (International Polar Orbiter Processing Package). This framework is a real-time data processing system that enables the user community to process, generate and visualize direct broadcast data as it is transmitted to Earth (Ref. 45).

• In early March 2012, NASA has completed commissioning of the Suomi NPP spacecraft and its sensor complement. With the completion of commissioning activities, operation of the Suomi NPP has now been turned over to the JPSS (Joint Polar Satellite System) team. NOAA's JPSS Program provided three of the five instruments and the ground segment for Suomi NPP. A government team from the NOAA Satellite Operations Facility in Suitland, Md., will operate the satellite. 46) 47)

• In February 2012, the CrIS (Cross-track Infrared Sounder) became operational. Hence, CrIS is joining the other four instruments aboard the Suomi NPP spacecraft. 48)

• In Feb. 2012, the OMPS instrument began to continue an over three decade-long partnership between NASA and NOAA in studying ozone (Figure 19). 49)


Figure 19: The ozone suite on Suomi NPP continues more than 30 years of ozone data (image credit: NASA)

Legend to Figure 19: The image shows the thickness of the Earth's ozone layer on January 27th from 1982 to 2012. This atmospheric layer protects Earth from dangerous levels of solar ultraviolet radiation. The thickness is measured in Dobson units, in this image, smaller amounts of overhead ozone are shown in blue, while larger amounts are shown in orange and yellow.

• The CERES instrument cover was opened on January 26, 2012. The "first light" process represented the transition from engineering checkout to science observations. The next morning CERES began taking Earth-viewing data, and on Jan. 29 scientists produced an image from the scans. 50)


Figure 20: “First light” image of the CERES instrument observed on January 29, 2012 (image credit: NASA/NOAA CERES Team, Ref. 50)

Legend to Figure 20: The thick cloud cover tends to reflect a large amount of incoming solar energy back to space (blue/green/white image), but at the same time, reduce the amount of outgoing heat lost to space (red/blue/orange image). Contrast the areas that do not have cloud cover (darker colored regions) to get a sense for how much impact the clouds have on incoming and outgoing energy.

• The former NPP (NPOESS Preparatory Project) spacecraft has been renamed to Suomi NPP (National Polar-orbiting Partnership) on January 24, 2012 to honor the late Verner Suomi (1915-1995), a longtime UW (University of Wisconsin) -Madison professor and meteorologist (Ref. 1).

Suomi NPP is currently in its initial checkout phase before starting regular observations with all of its five instruments. The commissioning activities are expected to be completed by March 2012.


Figure 21: High-definition image of Earth observed on January 4, 2012 by the VIIRS instrument of Suomi NPP (image credit:NASA) 51) 52)

Legend to Figure 21: This composite image uses a number of swaths of the Earth's surface taken on January 4, 2012. The VIIRS instrument gets a complete daily view of Earth.

• The VIIRS instrument acquired its first visible range measurements on November 21, 2011 (Figure 23). To date, the images are preliminary, used to gage the health of the sensor as engineers continue to power it up for full operation.


Figure 22: A first full Earth view of VIIRS acquired on November 24, 2011 (image credit: NASA) 53)

Legend to Figure 22: Rising from the south and setting in the north on the daylight side of Earth, VIIRS images the surface in long wedges measuring 3,000 km across. The swaths from each successive orbit overlap one another, so that at the end of the day, the sensor has a complete view of the globe. The Arctic is missing because it is too dark to view in visible light during the winter.


Figure 23: Excerpt of the first natural color image of eastern North America acquired on Nov. 21, 2011 with VIIRS (image credit: NASA/NPP Team) 54)


Figure 24: The ATMS instrument acquired its first measurements on Nov. 8, 2011 (image credit: NASA/NPP Team) 55)

Legend to Figure 24: This global image shows the ATMS channel 18 microwave antenna temperature at 183.3 GHz on November 8, 2011. This channel measures atmospheric water vapor; note that Tropical Storm Sean is visible in the data, as the blue patch, in the Atlantic off the coast of the Southeastern United States. The ATMS data were processed at the NOAA Satellite Operations Facility (NSOF)



Sensor complement: (ATMS, VIIRS, CrIS, OMPS, CERES)

The NPP instruments will demonstrate the utility of improved imaging and sounding data in short-term weather “nowcasting” and forecasting and in other oceanic and terrestrial applications, such as harmful algal blooms, volcanic ash, and wildfire detection. NPP will also extend the series of key measurements in support of long-term monitoring of climate change and of global biological productivity. 56)


Figure 25: Nadir deck view of the NPP spacecraft (image credit: NASA)


ATMS (Advanced Technology Microwave Sounder)

A NASA-provided new-generation instrument developed by NGES (Northrop Grumman Electronic Systems) in Azusa, CA as prime contractor (NGES is teamed with BAE Systems and Lockheed Martin). The objective is to combine the passive-microwave observation capabilities of three heritage instruments, namely AMSU-A1/A2 and AMSU-B/MHS, into a single instrument with a correspondingly reduced mass and power consumption and with advanced microwave-receiver electronics technologies. ATMS is a passive total power microwave sounder whose observations (measurement of microwave energy emitted and scattered by the atmosphere), when combined with observations from an infrared sounder (CrIS), provide daily global atmospheric temperature, moisture, and pressure profiles. ATMS observations are co-registered with those of CrIS. 57) 58) 59)

ATMS will replace instruments currently flying on the POES satellites. The new instrument is about one-third the size and mass of the existing microwave sounding instruments (on POES and on Aqua). This miniaturization of ATMS is enabled by the application of new technologies, principally in the area of microwave electronics. Also, this miniaturization enables the use of smaller spacecraft to fly ATMS and the other required instruments, thereby reducing the cost of future weather and climate research satellites.

ATMS is a cross-track scanning total power microwave radiometer, with a swath width of 2300 km and a spot size of approximately 1.5 km [the native observation resolution is finer than 1.5 km (in fact about 0.5 km), but ground processing performs a spatial averaging computation to increase the SNR]. Thus, the spatial resolution of the ATMS data products is 1.5 km.

The microwave emissions from the atmosphere entering the antenna apertures are reflected by a scanning, flat-plate reflector to a stationary parabolic reflector, which focuses the energy to a feed-horn. Behind the feedhorn, channels are frequency-diplexed into separate channels that are then amplified and fed though a bandpass filter to a detector.

The microwave detectors and associated electronics filter the microwave signal to measure 22 separate channels from 23 to 183 GHz, and convert the channels into electrical signals that are then digitized. Beginning with the front-end microwave optics, the 22 channels of the ATMS are divided into two groups: a low-frequency (23 to 57 GHz) group, and a high-frequency (88 to 183 GHz) group. The low frequency channels, 1 through 15, are primarily for temperature soundings and the high-frequency channels, 16 through 22, are primarily for humidity soundings (water vapor profiling).

Each group has an antenna aperture followed by a diplexing subsystem to further separate the channels. The input antenna elements are two flat reflectors joined together mechanically and driven by a single scan-drive motor with its associated control electronics. The single scanner design is necessary to realize the small sensor volume of approximately 40 cm x 60 cm x 70 cm.

The ATMS instrument data are transmitted to the spacecraft via a MIL-STD-1553B bus interface. ATMS has a mass of about 85 kg and consumes about 110 W of orbital average power. The ATMS science data rate is 20 kbit/s (average) and 28 kbit/s (max).


frequency (GHz)

Max. bandwidth (GHz)

Center frequency stability (MHz)

Temp. sensitivity NEΔT (K)

Calibration accuracy (K)

Static beamwidth (º)

Quasi polarization

Characterization at nadir
(reference only)









Vapor 100 mm









Vapor 500 mm



























Surface air


53.596 ±0.115







4 km ~700 mb









9 km ~ 400 mb









11 km ~ 250 mb









13 km ~ 180 mb









17 km ~ 90 mb


57.290344 ±0.217







19 km ~ 50 mb


57.290344 ±0.3222 ±0.048







25 km ~ 25 mb


57.290344 ±0.3222







29 km ~ 10 mb


57.290344 ±0.3222







32 km ~ 6 mb


57.290344 ±0.3222







37 km ~ 3 mb









H2O 150 mm









H2O 18 mm









H2O 8 mm









H2O 4.5 mm









H2O 2.5 mm









H2O 1.2 mm









H2O 0.5 mm

Table 6: Channel characteristics of ATMS

Instrument calibration: The instrument includes on-board calibration sources viewed by the reflectors during each scan cycle. The calibration of the ATMS is a so-called through-the-aperture type, two-point calibration subsystem. The warm reference point is a microwave blackbody target whose temperature is monitored. In addition, cold space is viewed during each scan cycle. Both calibrations provide for the highly accurate microwave sounding measurements required by the operational and science applications of ATMS data.


Specified value



Calibration accuracy (K)

< 0.75

< 0.41

Analysis, with partial measurements validation

Nonlinearity (K)

< 0.10

< 0.088

Worst-case EDU (Engineering Development Unit) measurement + analysis

Beam efficiency (%)

> 95

> 95

Analysis, with partial measurement validation

Frequency stability (MHz)

< 0.50


Measurement + analysis

Pointing knowledge (º)

< 0.05



Instrument mass (kg)

< 85



Instrument power (W)

< 110



Data rate (kbit/s)

< 30



Instrument reliability

> 0,86



Table 7: Some performance parameters of ATMS

There are three antenna beamwidths. The temperature sounding channels are 2.2º (Nyquist-sampling in both along-scan & down-track directions) while the humidity channels are 1.1º. Channels 1 and 2 have a larger beam width of 5.2º. This is due to the limited volume available on the spacecraft for ATMS.


Figure 26: Functional block diagram of ATMS (image credit: NASA)


Figure 27: Schematic illustration of ATMS (image credit: NASA)


Figure 28: Elements of the ATMS design configuration (image credit: NASA)


Figure 29: Alternate view of ATMS (image credit: IPO)

On the ground, ATMS raw data are converted into brightness temperature measurements by channel, are radiometrically corrected using calibration data, and are ortho-rectified. ATMS brightness temperatures by channel are then used in conjunction with the corresponding data from the infrared sounder (CrIS) to retrieve atmospheric temperature and humidity profiles for use in data assimilation algorithms for operational or climate research use.

Data availability requirements:

• Make Raw Data Records (RDRs), Sensor Data Records (SDRs), and Environmental Data Records (EDRs) available within 180 minutes of observation, minimally 95% of the time over an annual basis

- RDR definition: Full resolution, digital sensor data, time-referenced and locatable in earth coordinates with absolute radiometric and geometric calibration coefficients appended, but not applied, to the data.

- SDR definition: Data record produced when an algorithm is used to convert Raw Data Records (RDRs) to geolocated, calibrated detected fluxes with associated ephemeris data. Calibration, ephemeris, and any other ancillary data necessary to convert the sensor units back to sensor raw data (counts) are included.

- EDR definition: Data records produced when an algorithm is used to convert SDRs to geophysical parameters (including ancillary parameters, e.g., cloud clear radiation, etc.).

• Make RDRs, SDRs, and EDRs available for at least 98% of all observations over an annual basis

• Provide a High Rate Direct-broadcast (HRD) link for in-situ users

• Store at least two and a half orbits of mission data on the satellite


Figure 30: Photo of the ATMS instrument (image credit: NASA)

Data products: The NPP instrument data will be used to produce 29 of the 59 NPOESS EDRs. Of the 59 NPOESS EDRs six are considered key performance parameters. That is, the mission must as a minimum successfully generate those EDRs to be considered successful. NPP will generate data for all six of the key performance EDRs (Table 8).




Atmospheric vertical moisture profile


14 x 2 km spatial resolution @ nadir
Clear Sky: 15% uncertainty from Surface to 600 mb;
Cloud Cover: 16% uncertainty from Surface to 600 mb;

Atmospheric vertical temperature profile


Clear Sky: 14 km horizontal spatial resolution @ Nadir
0.9º K uncertainty in 1 km layers from surface to 300 mb;
Cloud Cover: 40 Km Horizontal Spatial Resolution @ Nadir
2.0 K uncertainty in 1 km layers from surface to 700 mb;

Soil moisture


Horizontal spatial resolution: 0.75 km @ nadir with clear sky;
Vertical coverage: Surface to -0.1 cm

Ice surface temperature


Horizontal spatial resolution: 0.8 km @ nadir
Uncertainty: 0.5 K



Horizontal spatial resolution: 0.4 km @ nadir

Table 8: Key NPP EDRs

Technology demonstrations:

• Use of advanced low noise amplifier technology for atmospheric sounding (ATMS). Current microwave instruments split the arriving radiation into channels of frequencies, and then amplify them into electrical currents.
The ATMS uses a different approach, the signals are amplified first and then split into the various channels. However, to amplify such a wide range of microwave radiation required the use of new materials such as Indium Phosphide to create a MMIC (Microwave Monolithic Integrated Circuit). Indium Phosphide happens to be the most efficient material to amplify these microwave frequencies.

• S/C on-board processing using reconfigurable computing and RAM-based field-programmable gate arrays for generation of information products (option).


On-orbit ATMS instrument performance: Assessments of the on-orbit data from the Suomi-NPP ATMS indicate all performance parameters are within expected values, confirming radiometric performance superior to AMSU. Furthermore, pitch-maneuver data has been used to develop a physical model for the scan-dependent bias effect, which has been a long-standing issue with cross-track scanning radiometers. Such a model can be used for developing a correction algorithm that could further reduce radiometric calibration errors relative to that of prior instruments. 60)


VIIRS (Visible/Infrared Imager and Radiometer Suite)

Raytheon Santa Barbara Remote Sensing (SBRS) is the prime contractor for this instrument to NGST. VIIRS is an advanced, modular, multi-channel imager and radiometer (of OLS, AVHRR/3, MODIS, and SeaWiFS heritage) with the objective to provide global observations (moderate spatial resolution) of land, ocean, and atmosphere parameters at high temporal resolution (daily). 61) 62) 63) 64) 65) 66) 67)

VIIRS is a multispectral (22-band) opto-mechanical radiometer, employing a cross-track rotating telescope fore-optics design (operating on the whiskbroom scanner principle), to cover a wide swath. The rotating telescope assembly (RTA of 20 cm diameter) concept of SeaWiFS heritage allows a low straylight performance. An observation scene is imaged onto three focal planes, separating the VNIR, SWIR/MWIR, and TIR energy - covering a spectral range of 0.4 - 12.5 µm. The VNIR FPA (Focal Plane Array) has nine spectral bands, the SWIR/MWIR FPA has eight spectral bands, and the TIR FPA four spectral bands. The integral DNB (Day Night Band) capability provides a very large dynamic range low-light capability in all VIIRS orbits. The detector line arrays [16 detectors in each array for the SWIR/MWIR and TIR bands, 32 detectors in the array for the VNIR and DNB (Pan) bands] of the whiskbroom scanner are oriented in the along-track direction. This arrangement provides a parallel coverage of 11.87 km along-track in one scan sweep (cross-track direction). The wide along-track coverage permits sufficient integration time for all cells in each scan sweep. One cross-track scan period of RTA is 1.786 s in length. The data quantization is 12 bits (14 bit A/C converters for lower noise).

Typical data products (types) of VIIRS include atmospheric, clouds, earth radiation budget, clear-air land/water surfaces, sea surface temperature, ocean color, and low-light visible imagery. A swath width of 3000 km is provided (corresponding to FOV=±55.84º) with a spatial resolution for imagery related products of no worse than 0.4 km to 0.8 km (nadir to edge-of-scan). The radiometric bands provide a resolution about twice in size to the imagery bands. Note: Most derived data products will be produced at somewhat coarser resolutions by aggregation of on-board data.


Figure 31: General configuration of the VIIRS instrument (image credit: IPO)

The VIIRS instrument design employs an all-reflective optics assembly taking advantage of recent optics advances: a) single 4 mirror imager, b) 2 dichroics and 1 fold, c) aluminum DPT-bolt together technology (DPT = Diamond Point Turning). A rotating off-axis and afocal TMA (Three Mirror Anastigmatic) telescope assembly is employed [Note: The telescope rotates 360º, thus scanning the Earth scene, and then internal calibration targets.]. The aperture of the imaging optics is 18.4 cm in diameter, the focal length is 114 cm (f/5.97). The VIIRS optical train consists of the fore optics (TMA), the aft optics [an all-reflective FMA (Four Mirror Anastigmatic) imager], and the back-end optics, which include microlenses for the cooled focal planes.

A total of 22 spectral bands have been selected as defined in Table 9. VIIRS features band-to-band registration for all bands (optical alignment of all FPAs). A total of three focal planes and four FPAs (Focal Plane Arrays) cover the spectral range of the instrument, one FPA for DNB (Day-Night Band), one for VNIR, SWIR/MWIR, and TIR. The DNB spectral range of 0.5-0.9 µm CCD detector features four light-sensitive areas (3 with TDI, one without) and near-objective sample spacing.


Figure 32: Illustration of VIIRS instrument elements (image credit: Raytheon SBRS)

The VNIR FPA employs a PIN (Positive Insulator Negative) diode array/ROIC (Readout Integrated Circuit) design collocated with the DNB monolithic CCD. All detectors in the SWIR/MWIR/TIR regions employ photovoltaic (PV) detectors with an element spacing of 12 µm. A ROIC (Readout Integrated Circuit) at each FPA provides improved noise levels and built-in offset correction. A cryogenic module (three-stage radiative cooler) provides FPA cooling.

A single-board instrument computer provides a processing capability including data aggregation, data compression [lossless (2:1 Rice compression) and lossy (JPEG) algorithms are used], and CCSDS data formatting.

VIIRS calibration is performed with three on-board calibrators: a) a solar diffuser (SD) provides full aperture solar calibration, b) a solar diffuser stability monitor (SDSM) for the RSB (Reflective Solar Bands), and c) a BB (Blackbody)for the TEBs (Thermal Emissive Bands) calibration. Instrument calibration of VIIRS is based on that of the MODIS instrument: 68) 69) 70)

• VNIR: 1) View of a spectralon plate at the poles every few days; 2) Deep space view

• SWIR/MWIR/TIR: 1) View of blackbody every scan; 2) Deep space view

As a result of the MODIS-based calibration methods, VIIRS also carries out a series of MODIS-like on-orbit calibration activities, which include regularlyscheduled lunar observations and periodical BB warmup and cool-down (WUCD) operations. A number of MODIS event scheduling and data analysis tools have also been modified for VIIRS applications. Both BB and space view (SV) observations are made on a scanby-scan basis. VIIRS SD calibration is performed every orbit over the South Pole. Currently (2013) the SDSM, designed to track SD on-orbit degradation, is operated on a daily basis. Similar to MODIS operation, the VIIRS BB is nominally controlled at a constant temperature (292.5 K). On a quarterly basis, the BB performs a WUCD operation, during which its temperatures vary from instrument ambient to 315 K. 71)

VIIRS calibration validation: The VIIRS on-orbit calibration performance has been continuously assessed using data collected from its on-board calibrators and from the scheduled lunar observations. The yaw maneuvers have provided valuable data to update the prelaunch LUTs (Look-up Tables), generating new values for the SD bi-directional reflectance factor (BRF) and SD attenuation screen (SAS) transmission product, and SDSM Sun view screen transmission. A pitch maneuver was executed to validate the TEB response versus scan-angle (RVS). The BB WUCD operations scheduled on a quarterly basis have shown an excellent TEB detector nonlinearity and NEdT performance over a wide range of temperatures.

The NASA VCST (VIIRS Characterization Support Team) has provided independent evaluation of the VIIRS calibration and SDR product quality, and has met its design requirements of making recommendations for SDR operational code improvements and calibration coefficients LUT updates. The VCST will continue to support operational processing system to improve radiometric quality and investigate uncertainty assessment and new methodologies for VIIRS SDR improvements (Ref. 71).


Figure 33: Major subsystems/components of VIIRS (functional block diagram)

The NPP Instrument Calibration Support Element (NICSE) is one of the elements within the NASA NPP Science Data Segment (SDS). The primary responsibility of NICSE is to independently monitor and evaluate on-orbit radiometric and geometric performance of the VIIRS instrument and to validate its SDR (Sensor Data Record).

The NICSE interacts and works closely with other SDS Product Evaluation and Analysis Tools Elements (PEATE) and the NPP Science Team (ST) and supports their on-orbit data product calibration and validation efforts. The NICSE also works closely with the NPP Instrument Calibration Support Team (NICST) during sensor pre-launch testing in ambient and thermal vacuum environment. 72)


Figure 34: Schematic of VIIRS rotating TMA (Three Mirror Anastigmatic) telescope assembly

The VIIRS instrument has a mass of 252 kg, power of ~ 240 W (operational average), and a size of 134 cm x 141 cm x 85 cm. The data rate is 10.5 Mbit/s (high rate mode) and 8 Mbit/s (average rate) mode with 10:1 JPEG compression). The VIIRS instrument features a SBC (Single Board Computer) for all instrument operations and control; it communicates with the S/C via an IEEE 1394a cable interface.

Some operational features of VIIRS:

• All functions are individually commandable

• Macro commands (stored sequences, all macros are reprogrammable) simplify the commanding and reduce the uplink data

• Time-tagged commands allow delayed execution (provides for 30 days autonomous operations)

• The swath widths and locations are individually programmable by band (improved resolution views of selected target near nadir)

• Diagnostic mode features improved versatility


Center wave (µm)

Bandwidth (µm)

Comment (driving EDR observation requirements)

VNIR (Visible Near-Infrared) spectral region, use of Si detectors in FPA




Day Night Band, broad bandwidth maximizes signal (essential nighttime reflected band)




Ocean color, suspended matter, net heat flux, mass loading




Ocean color, suspended matter, net heat flux, mass loading




Ocean color EVI, surface type, aerosols suspended matter, net heat flux, mass loading




Ocean color, surface type, suspended matter, net heat flux, mass loading




Imagery, NDVI, cloud mask/cover, cloud optical properties, surface type, albedo, snow/ice, soil moisture




Ocean color, aerosols, suspended matter, net heat flux, littoral transport, mass loading




Ocean color, mass loading




Imagery NDVI (NDVI heritage band), snow/ice, surface type, albedo




Ocean color, cloud mask/cover, aerosols, soil moisture, net heat flux, mass loading

SWIR (Short-Wave Infrared) spectral region, use of PV (Photovoltaic) HgCdTe detectors




Cloud optical properties (essential over snow/ice), active fires




Cloud mask/cover (thin cirrus detection), aerosols, net heat flux




Aerosols, cloud optical properties, cloud mask/cover (cloud/snow detection), active fires, soil moisture, net heat flux




Imagery snow/ice (cloud/snow differentiation), surface type, albedo




Aerosols (optimal aerosol optical thickness over land), cloud optical properties, surface type, active fires, net heat flux

MWIR (Mid-Wave Infrared) spectral region, use of PV (Photovoltaic) HgCdTe detectors




Imagery (identification of low and dark stratus), active fires




SST (Sea Surface Temperature), cloud mask/cover, cloud EDRs, surface type, land/ice surface temperature, aerosols




SST (essential for skin SST in tropics and during daytime), land surface temperature, active fires, precipitable water

TIR (Thermal Infrared) spectral region, use of PV (Photovoltaic) HgCdTe detectors




Cloud mask/cover (pivotal for cloud phase detection at night, cloud optical properties




SST, cloud EDRs and SDRs (Science Data Records), land/ice surface temperature, surface type




Imagery (nighttime imagery band)




SST, cloud mask/cover, land/ice surface temperature, surface type

Table 9: Definition of VIIRS spectral bands

DNB (Day-Night Band) FPA




One broadband

9 bands

8 bands

4 bands, 1 with TDI

CCD detector

Si PIN diodes

PV HgCdTe detector

PV HgCdTe detector

FPIE (Focal Plane Interface Electronics)

ROIC (Readout Integrated Circuit)





Si micro-lens array

Ge micro-lens array

Tops = 253 K

Tops = ambient





Tops = 80 K

Tops = 80 K

Table 10: Overview of the FPA design of VIIRS

Some key EDRs of VIIRS: 73)

• SST (Sea Surface Temperature). VIIRS is capable to provide a nadir resolution of 750 m (by aggregating detectors 3:l in-track near nadir, 2:l in-track aggregation out to a 2,000 swath, and 1:1 out to 3,000 km) to simultaneously optimize spatial resolution and noise performance. - The SST solution combines the traditional long-wave infrared (LWIR) split window with a second split window in the mid-wave infrared (MWIR) for a globally robust SST algorithm. The MWIR split window has a higher transmissivity than the traditional LWIR split window for improved atmospheric correction. The low-noise design is operable day and night with 0.25 K precision, and 0.35 K total measurement uncertainty (rms error).

• Imagery and cloud detection/typing. The imagery solution provided on VIIRS includes six high-resolution bands and an additional 16 moderate-resolution bands. One of these, a reflective panchromatic band (DNB), is operable in low-light conditions down to a quarter moon. A swath with of 3000 km is provided.

• Soil moisture. A VIIRS/CMIS data fusion solution was derived. The approach combines the fine spatial resolution of VIIRS with traditional coarser-resolution microwave-derived soil moisture retrievals to achieve excellent results over both open and partially vegetated scenes. The estimation procedure involves two steps: 1) CMIS estimates soil moisture at coarse spatial resolution. This involves inversion of dual-polarized microwave brightness temperatures. 2) CMIS-derived low-resolution soil moisture is linked to the scene optical parameters, such as NDVI (Normalized Difference Vegetation Index), surface albedo, and LST (Land Surface Temperature). The linkage of the microwave-derived soil moisture to NDVI, surface albedo and LST is based on the “Universal Triangle” approach of relating land surface parameters. The three high-resolution optical parameters are aggregated to microwave resolution for the purpose of building the linkage model. The linkage model, in conjunction with high-resolution NDVI, surface albedo, and LST, is then used to disaggregate microwave soil moisture into high-resolution soil moisture.

VIIRS will collect radiometric and imagery data in 22 spectral bands within the visible and infrared region ranging from 0.4 to 12.5 µm. These data are calibrated and geolocated in ground processing to generate Sensor Data Records (SDRs) that are equivalent to NASA Level 1B products. The VIIRS SDRs in turn will be used to generate 22 EDRs (Environmental Data Records) including two KPPs (Key Performance Parameters): SST (Sea Surface Temperature) and Imagery. Since the quality of these EDRs depends upon the quality of the underlying SDRs, adequate SDR quality is crucial to NPP mission success. 74)


Figure 35: Photo of the VIIRS instrument (image credit: NASA, Raytheon) 75)

DNB (Day Night Band) overview in VIIRS:

The DNB will measure VIS radiances from the Earth and atmosphere (solar/lunar reflection and both natural and anthropogenic nighttime light emissions) during both day and night portions of the orbit. In comparison to the OLS (Operational Linescan System) of the DMSP series, some of the DNB channel improvements include 1) reduced instances of pixel saturation, 2) a smaller IFOV, leading to reduced spatial blurring, 3) superior calibration and radiometric resolution, 4) collocation with multispectral measurements on VIIRS and other NPOESS sensors, 5) and generally increased spatial resolution and elimination of cross-track pixel size variation. 76)

The DNB is implemented as a dedicated focal plane assembly (FPA) that shares the optics and scan mechanism of the other VIIRS spectral bands. This integral design approach offers lower overall system complexity, cost, mass, and volume compared to a separate DNB sensor. Unlike the OLS, the DNB will feature radiometric calibration, with accuracy comparable to the other VIIRS spectral bands.

To achieve satisfactory radiometric resolution across the large dynamic range (seven orders of magnitude) of day/night radiances encountered over a single orbit, the DNB selects its amplification gain dynamically from three simultaneously collecting stages (groups of detectors residing upon the same FPA). The stages detect low-, medium-, and high-radiance scenes with relative radiometric gains of 119,000:477:1 (high:medium:low gain). Each of the three stages covers a radiance range of more than 500:1, so that the three together cover the entire required radiance range with generous overlap. Two identical copies of the high-gain stage are provided, which improves the SNR at very low signal levels and allows for the correction of pixels impacted by high-energy subatomic particles. The scene is scanned sequentially such that each scene is imaged by all three gains virtually simultaneously.

The signals from all gain stages are always digitized, using 14 bits for the high-gain stage and 13 bits for the medium- and low-gain stages. This fine digitization assures the DNB will have a sufficiently fine radiometric resolution across the entire dynamic range. Logic in the VIIRS Electronics Module (EM) then selects, on a pixel-by-pixel basis, the most appropriate of the three stages to be transmitted to Earth. In general, the VIIRS EM logic chooses the most sensitive stage in which the pixel is not saturated. This imaging strategy produces nonsaturated calibrated radiances in bright areas, and data with a lower dynamic range in the darkest areas with less SNR and radiometric accuracy.

In summary, the VIIRS DNB feature will bring significant advances to operational and research applications at night (over OLS operations) due to the increased sensitivity of the instrument.


RSB (Reflective Solar Band) radiometric calibration: 77) 78)

VIIRS features 15 reflective solar bands (RSB) in the range of 0.4-2.25 µm. The reflective bands use sunlight reflected from a SD (Solar Diffuser) after passing through an attenuating SDS (Solar Diffuser Screen) as a reference illumination source. The RSB calibration is currently performed by offline trending of calibration scale factors derived from the SD and SV (Space View) observations. These calibration scale factors are used to periodically update LUT (Look-Up Tables) used by the ground processing to generate the calibrated earth radiance and reflectance in the Sensor Data Records (SDR).

RSB calibration data is acquired once per orbit when sunlight incident on the SD uniformly illuminates the VIIRS detectors, providing a large and calculable reference radiance level. The calibration scale factor is the ratio of the calculated SD radiance at the RTA entrance aperture to the SD radiance measured by the instrument using calibration coefficients derived from the pre-launch calibration. The calibration scale factor in effect measures the change in instrument “gain” as the instrument ages on orbit relative to the gain measured during pre-launch instrument response characterization.

TED (Thermal Emissive Band) calibration: 79)

VIIRS has 7 thermal emissive bands use an OBC-BB (On-Board Calibrator Blackbody) maintained at a constant elevated temperature as a reference illumination source. The 7 emissive bands are centered at 3.74, 11.45, 3.75, 4.05, 8.55, 10.76, and 12.01 µm. The two emissive image bands are mainly for cloud imagery and precise geolocation. The 5 moderate-resolution emissive bands are used to determine surface temperature and cloud top pressure. The only dual gain band TEB M13 is used for determining surface temperature at low radiance, and fire detection at high radiance.

The VIIRS emissive band calibration concept is a common two-point calibration by viewing onboard blackbody and cold space. However, the VIIRS emissive band calibration algorithm is more complicated than other sensors such as AVHRR and MODIS, because of the instrument response verses the scan angle. The TEBs (Thermal Emissive Bands) are calibrated using OBC-BB that has been carefully characterized in prelaunch activities. The OBC-BB emissivity is estimated to be 0.99609-0.99763 for the TEB bands based on prelaunch testing in the thermal vacuum chamber. The OBC-BB temperature is carefully controlled using heater elements and thermistors. The calibration algorithm, based on measured BB temperature and emissivity, computes radiances and compares it with counts to determine gain adjustments.

VIIRS significantly outperforms the legacy AVHRR in spatial, spectral, and radiometric accuracy. Early assessment of the VIIRS TEB calibration shows the sensor is stable and exceeds the specification. The onboard calibration accuracy for NEdT compares very favorably with pre-launch thermal vacuum tests. Consistency tests among VIIRS, MODIS, AVHRR, and CrIS further confirm the stability and accuracy of the VIIRS TEB.


CrIS (Cross-Track Infrared Sounder)

The FTS (Fourier Transform Spectrometer) instrument is being developed by ITT Aerospace/Communications Division of Ft. Wayne, IN, as the prime contractor. CrIS, of HIRS/4 (POES) and AIRS (Aqua) heritage, is a high-spectral and high-spatial resolution infrared sounder for atmospheric profiling applications. The overall objective is to perform daily measurements of Earth's upwelling infrared radiation to determine the vertical atmospheric distribution (surface to the top of the atmosphere) of temperature (profiles to better than 0.9 K accuracy in the lower troposphere and lesser accuracy at higher altitudes), moisture (profiles to better than 20-35% accuracy depending on altitude) and pressure (profiles to better than 1.0% accuracy ) with an associated 1.0 km vertical layer resolution. The Michelson interferometer sounder has over 1300 spectral channels, it covers a spectral range of 650-2550 cm-1 (or 3.9 to 15.4 µm), with a spectral resolution of 0.6525 cm-1 (LWIR), and a ground spatial resolution (IFOV) of 14.0 km. The IFOVs are arranged in a 3 x 3 array. The swath width is 2300 km (FOV of ±48.33º).


Figure 36: Illustration of the CrIS instrument (image credit: ITT, IPO)

The “unapodized spectral resolution” requirement is defined as I/(2L), where L is the maximum optical path difference from ZOND (Zero Path Difference) to MPD (Maximum optical Path Difference). The on-axis unapodized spectral resolution for each spectral band shall be ≤to the values given in Table 11. Since L determines the unapodized spectral resolution, the nominal value for L is also given in the table. 80)

Requirement/Spectral band




Channel center wavenumber range

650-1095 cm-1
15.38-9.14 µm

1210-1750 cm-1
8.26-5.71 µm

2155-2550 cm-1
4.64-3.92 µm

No of channels




Unapodized spectral resolution, nominal L

≤ 0.625, 0.8 cm

≤ 1.25, 0.4 cm

≤ 2.5, 0.2 cm

Absolute spectral uncertainty

< 10 (5) PPM

< 10 (5) PPM

< 10 (5) PPM

Characterize self-apodized ILS for each spectral bin




ILS (Instrument Line Shape) shape uncertainty

< 1.5% FWHM

< 1.5% FWHM

< 1.5% FWHM

ILS shape stability over 30 days

< 1% FWHM

< 1% FWHM

< 1% FWHM

Table 11: Spectral requirements of the CrIS instrument

The flight configuration for the CrIS DPM (Detector Preamplifier Module) consists of three spectrally separate (SWIR, MWIR and LWIR) FPAAs (Focal Plane Array Assemblies), three (SWIR, MWIR and LWIR) signal flex cable assemblies, a warm signal flex cable/vacuum bulk head assembly, and the DPM warm electronics CCAs (Circuit Card Assemblies). The FPAAs are cooled to cryogenic temperature (98 K SWIR, MWIR, 81 K for LWIR) by the detector cooler module. The cryogenic portions of the DPM (FPAAs, and signal flex cable assemblies) mate to the ambient temperature portions of the DPM (warm signal flex cable assembly and the ambient temperature portions of the transimpedance amplifier, mounted within the CCAs) through the vacuum bulk head assembly mounted on the detector cooler assembly housing. 81)

The baseline CrIS instrument design consists of nine independent single-function modules: [telescope, optical bench, aft-optics, interferometer (FTS), ICT (Independent Calibration Target), SSM (Scene Selection Module), detectors, cooler, processing and control electronics, and instrument structure]. 82)

• 8 cm clear aperture

• A collimator is used to perform the spatial and spectral characterizations

• 4-stage split-patch passive cooler (81 K for LWIR patch temperature, 98 K for MWIR/SWIR patch)

• High-performance PV (photovoltaic) detectors

• 3 x 3 arrays (14 km IFOVs)

• Three spectral bands (SWIR, MWIR, TIR), co-registered so that the FOVs of each band see the radiance from the same region of the Earth's atmosphere

• All-reflective telescope

• Proven Bomem plane-mirror Michelson interferometer with dynamic alignment

• Deep-cavity internal calibration target based on MOPITT design

• Two-axis scene selection module with image motion compensation

• A modular design (allowing for future addition of an active cooler and >3 x 3 arrays

Spectral bands
- TIR (also known as LWIR)

Total of 1305 channels
(2155 - 2550 cm-1) or 4.64 - 3.92 µm, 159 channels
(1210 - 1750 cm-1) or 8.62 - 5.7 µm, 433 channels
(650 - 1095 cm-1) or 15.3 - 9.1 µm, 713 channels

Spectral resolution:

(<2.5 cm-1) or 5.4 nm (at 4.64 µm) to 38.4 nm (at 3.92 µm)
(<1.25 cm-1) or 92.8 nm (at 8.62 µm) to 40.6 nm (at 5.7 µm)
(<0.625 cm-1) or 146 nm (at 15.3 µm) to 51.7 nm (at 9.1 µm)

Band-to-band co-registration
IFOV motion (jitter)
Mapping accuracy

< 1.4%
< 50 µrad/axis
< 1.5 km

Number of IFOVs

3 x 3 at 14 km diameter for each band

IFOV diameter

14 km

Absolute radiometric uncertainty

<0.8% (SWIR), <0.6% (MWIR), <0.45% (TIR)

Radiometric stability

<0.65% (SWIR, <0.5% (MWIR), <0.4% (TIR)

Instrument size

71 cm x 88 cm x 94 cm

Instrument mass, power, data rate

165 kg, 124 W (max), 1.5 Mbit/s (average), 1.75 Mbit/s (max)

Table 12: Key performance characteristics of CrIS

The primary data product of the CrIS instrument are interferograms collected from 27 infrared detectors that cover 3 IR bands and 9 FOVs. 83)

Data of CrIS will be combined in particular with those of ATMS to construct atmospheric temperature profiles at 1 K accuracy for 1 km layers in the troposphere and moisture profiles accurate to 15% for 2 km layers. 84)


Figure 37: Illustration of the CrIS instrument (image credit: IPO)


Figure 38: Photo of the CrIS instrument (image credit: ITT, IPO)

CrIS + ATMS = CrIMSS (Cross-track Infrared Microwave Sounding Suite)

CrIS is designed to work in unison with ATMS (Advanced Technology Microwave Sounder); together they create CrIMSS (Cross-track Infrared Microwave Sounding Suite). The objective of CrIMSS is to provide global 3D soundings of atmospheric temperature, moisture and pressure profiles. In addition, CrIMSS has the potential to provide other surface and atmospheric science data, including total ozone and sea surface temperature. ATMS provides high spatial resolution microwave data to support temperature and humidity sounding generation in cloud covered conditions. Note: See ATMS description under NPP.

Primary temperature profiles

Secondary total ozone

Moisture profiles
Pressure profiles
Calibrated radiances

Sea Surface Temperature (SST)
Cloud top parameters
Precipitable water
ERB (Earth Radiation Budget) products

Table 13: CrIMSS mission products (EDRs)


Figure 39: The basic observation scheme of CrIMSS to construct vertical profiles of temperature, moisture & pressure EDRs for NPOESS (image credit: IPO)


Post-launch evaluation of CrIMSS EDRs: 85)

As a part of post-launch validation activities, CrIS/ATMS SDRs generated for February 24, 2012 were used to produce CrIMSS-EDR products. Aqua-AIRS/AMSU SDRs acquired for this day were processed to generate AST heritage algorithm (version 5.9) products. Both these EDR products were evaluated with matched ECMWF analysis fields and RAOB measurements.

The CrIS and ATMS instruments aboard the Suomi NPP satellite provide high quality hyper-spectral Infrared (IR) and Microwave (MW) observations to retrieve atmospheric vertical temperature, moisture, and pressure profiles (AVTP, AVMP and AVPP), and many other EDRs (Environmental Data Records). The CrIS instrument is a Fourier Transform Spectrometer (FTS) instrument with a total of 1305 IR sounding channels. The instrument is similar to other hyper-spectral IR sounding instruments, namely, the IASI (Infrared Atmospheric Sounding Interferometer) aboard MetOp (Meteorological Operational satellite program), and the AIRS (Atmospheric Infrared Sounder) aboard the Aqua satellite. All these hyper-spectral IR sounders are accompanied by MW sounding instruments to assist in the generation of high quality geophysical products in scenes with up to 80% cloud-cover. The IASI instrument is accompanied by the 15-channel AMSU-A (Advanced Microwave Sounding Unit) and the 5-channel MHS (Microwave Humidity Sounder). The Aqua-AIRS is accompanied by the AMSU-A instrument. The ATMS instrument that accompanied the CrIS has a combination of channels similar to that of AMSU-A and MHS. Details of these instruments and their channel characteristics are described in many publications.


Figure 40: Post-launch evaluation of CrIMSS OPS-EDR Product with Aqua-AIRS/AMSU heritage algorithm retrievals and ECMWF analysis fields (image credit: NOAA, NASA)

Legend to Figure 40: Global 850-hPa temperature retrieval for 02/24/2012: (a) CrIMSS second stage ‘IR+MW’ retrieval; (b) ATMS-only retrieval; (c) Corresponding ECMWF analysis; (d) Aqua-AIRS retrieval; (e) Aqua-AMSU retrieval; (f) corresponding ECMWF analysis. The CrIMSS OPS-EDR product depicts patterns reasonably well, and difference maps generated (retrieval vs. truth, not shown) also shows reasonable promise with the AIRS heritage algorithm results.

The AVTP (Atmospheric Vertical Temperature Profile) and AVMP (Atmospheric Vertical Moisture Profile) retrievals produced by the Cross-track Infrared Sounder and the Advanced Technology Microwave Sounder suite (CrIMSS) official algorithm were evaluated with global ECMWF (European Center for Medium Range Weather Forecast) analysis fields, radiosonde (RAOB) measurements, and AIRS (Aqua-Atmospheric Infrared Sounder) heritage algorithm retrievals.

The operational CrIMSS AVTP and AVMP product statistics with truth data sets are quite comparable to the AIRS heritage algorithm statistics. Planned updates and improvements to the CrIMSS algorithm will alleviate many issues observed with ‘day-one’ focus-day results and show promise in meeting the Key Performance Parameter (KPP) specifications.


OMPS (Ozone Mapping and Profiler Suite):

OMPS is a limb- and nadir-viewing UV hyperspectral imaging spectrometer, designed and developed at BATC (Ball Aerospace & Technologies Corp.), Boulder, CO. The objective is to measure the total amount of ozone in the atmosphere and the ozone concentration variation with altitude. OMPS is of SBUV/2, TOMS and GOME heritage. Also, the OMPS limb-sounding concept/technology was already tested with ISIR (Infrared Spectral Imaging Radiometer) flown on Shuttle flight STS-85 (Aug. 7-19, 1997) and with SOLSE/LORE flown on STS-87 (Nov 19 - Dec. 5, 1997). The vertical resolution requirement demands an instrument design to include a limb-viewing sensor in addition to a heritage-based nadir-viewing sensor. 86) 87)

Basic requirement

Measurement parameter


1) Global daily maps of the amount of ozone
in the vertical column of the atmosphere

Horizontal cell size
Long-term stability

50 km @ nadir
50-650 Dobson Units (DU)
15 DU or better
3 DU+0.5% total ozone or better
1% over 7 years or better

2) Provision of volumetric ozone concentration
profiles in specified segments of a vertical column
of the atmosphere with a 4-day revisit time

Vertical cell size
Horizontal cell size
Vertical coverage

Long-term stability

3 km
250 km
Tropopause height to 60 km
0.1 - 15 ppmv
Greater of (20%, 0.1 ppmv) below 15 km
Greater of (10%, 0.1 ppmv) above 15 km
3%, 15-50 km; 10% TH-15 and 50-60 km

Table 14: Overall mission requirements for OMPS ozone observations 88)

The OMPS instrument design features two coregistered spectrometers in the OMPS nadir sensor and a limb sensor, measuring the limb scatter in the UV, VIS, and NIR. The instrument has a total mass of 68 kg, an average power consumption of 108 W, a size of 0.35 m x 0.54 m x 0.56 m, and a data rate of 165 kbit/s.


Figure 41: Schematic view of the OMPS instrument (image credit: IPO)

1) Nadir-viewing instrument:

The nadir sensor wide-field telescope feeds two separate spectrometers, a) for total column observations (mapper) and b) for nadir profiling observations. The total column spectrometer (300-380 nm spectral range, resolution of 0.42 nm) has a 2800 km cross-track swath (FOV = 110º and an along-track slit width of 0.27º) divided into 35 IFOVs of nearly equal angular extent. The CCD pixel measurements from its cross-track spatial dimension are summed into 35 bins. The summed bins subtend 3.35º (50 km) at nadir and 2.84º at ±55º. The along-track resolution is 50 km at nadir due to spacecraft motion during the 7.6 second reporting period. Measurements from this spectrometer are used to generate total column ozone data with a resolution of about 50 km x 50 km at nadir.

The nadir profile spectrometer (250-310 nm) has a 250 km cross-track swath corresponding to a single cell (cross-track FOV = 16.6º, and 0.26º along-track slit width). Co-registration with the total column spectrometer provides the total ozone, surface and cloud cover information needed for nadir profile retrievals. All of the cross-track pixels are binned spatially to form a single cell of 250 km x 250 km. Some instrument parameters are: 89)

- The telescope is a three mirror, near telecentric, off-axis design. The FOV is allowed to curve backward (concave in the anti-ram direction) by 8.5º at 55º cross-track in order to maintain straight entrance slits for the spectrometers. The mirrors are made with a glass which matches the thermal expansion of Titanium, are coated with an enhanced aluminum, and have an rms surface roughness of < 15Å.

- Each of the 2 spectrometers has a CCD detector array, a split column frame transfer CCD 340 x 740 (column x row) operated in a backside illuminated configuration. The pixel pitch is 20 µm in the column (spectral) dimension and 25 µm in the row (spatial) dimension and every pixel in both the active and storage regions contains a lateral overflow antiblooming structure integrated into a 4-phase CCD architecture.

- Both spectrometers sample the spectrum at 0.42 nm, 1 nm FWHM end-to-end resolution

- Electronics: a) CCD preamplifier electronics in sensor housing, b) main electronics box performs A/D conversion and on-orbit pixel correction

- The OMPS nadir instrument has a mass of 12.5 kg and a size of 31 cm x 32 cm x 20 cm.

Polarization compensators are used to reduce polarization sensitivity for both Nadir instruments. Long-term calibration stability is monitored and corrected by periodic solar observations using a “Working” and “Reference” reflective diffuser system (similar to that successfully deployed on the TOMS sensors).


Figure 42: The nadir-viewing OMPS instrument (image credit: BATC)

2) Limb profiler:

The limb profiler consists of the following major elements: telescope, the spectrometer, and the calibration & housing mechanism. It uses a single prism to disperse three vertical slits directed along-track, each separated by 250 km at the limb tangent point (one slit views in the orbital plane and the other two slits view to either side of the orbital plane). The vertical slits are separated by 4.25° across track corresponding to 250 km at the tangent points. Each slit has a vertical FOV of 1.95° corresponding to 112 km at the limb to cover altitudes from 0 to 60 km in the atmosphere and also allow for pointing errors, orbital variation, and the Earth's oblateness. Individual pixels on the CCD are spaced every 1.1 km of vertical image and have a vertical resolution of 2.2 km. The instrument uses prism spectrometers to cover the spectral range from 290 nm to 1000 nm.

To accommodate the very high scene dynamic range, these slit images pass through a beam splitter to divide the scene brightness into three brightness ranges. As a result there are nine limb images of the dispersed slits on the CCD. The measured limb radiances in the ultraviolet, visible, and near-infrared provide data on ozone, aerosols, Rayleigh scattering, surface and clouds that are used to retrieve ozone profiles from the tropopause to 60 km. 90)

Some limb sensor parameters: The sensor consists of a telescope with three separate cross-track fields of view of the limb, a prism spectrometer covering 290 to 1000 nm, and a solar-diffuser calibration mechanism. The sensor provides 2.2 km vertical resolution profiles of atmospheric radiance with channel spectral resolutions (FWHM) ranging from 0.75 nm at 290 nm to 25 nm at 1000 nm and handles the demanding spectral and spatial dynamic range (4-5 orders in magnitude variation) of the limb-scattered solar radiation with the required sensitivity for ozone retrievals (polarization compensators are also used). The large scene dynamic range is accommodated by using two separate apertures in each telescope, producing two optical gains, and by using two integration times, producing two electronic gains. All six spectra (resulting from three slits viewed through two apertures) are captured on a single CCD FPA. The window above the detector is coated with filters for the ultraviolet and visible regions of the spectra to reduce stray light. The limb sensor has a 38 second reporting period (corresponding to 250 km along-track motion) that includes multiple interspersed exposures at long and short integration times.

Limb-viewing measurements of scattered UV sunlight can be registered in altitude if the altitude errors correspond to a rigid vertical shift, if the instrument measures radiances dominated by single Rayleigh scattering at altitudes where good temperature and pressure data are available from another source. 91)


Figure 43: OMPS limb sensor mechanical layout

The staring spectrometer architecture and hyperspectral coverage eliminate the need for any continuous-action mechanisms, increasing the reliability of the sensor.

OMPS calibration: Solar illuminated diffusers are used for radiometric and spectral calibrations (two diffusers for each sensor). The working diffuser is used weekly and the reference diffuser is used twice annually to monitor the on-orbit degradation of the working diffuser.


Nadir Total Column
(Nadir Mapper)

Nadir Profile
(Nadir Profiler)

Limb Soundings

Spectral range

300-380 nm

250-310 nm

290-1000 nm

Spectral radiance range [photons/(s cm2 sr nm)]

9 el 3 (380 nm)
8 el 1 (308 nm)

2 el 3 (310 nm)
1.5 el 8 (252 nm)

9 el 3 (600 nm)
5 el 0 (300 nm)

Minimum SNR


35 (252 nm)
400 (310 nm)

320 (290 nm at 60 km)
1200 (600 nm at 15 km)

Integration time

7.6 s

38 s

38 s

Spectral resolution

1 nm FWHM
2.4 samples/FWHM

1 nm FWHM
2.4 samples/FWHM

2.8-54 nm FWHM
1 sample/FWHM


110º x 1.0º (cross-track x along-track)

16.6º x 0.26º

8.5º x 1.9º (3 sets)

Cell size

49 km x 50 km (nadir)

250 km x 250 km (single cell at nadir)

1 km vertical sampling interval

Revisit time



4 days (average)


2800 km

250 km

3 vertical slits along-track and
500 km (cross-track)

Table 15: Performance parameters of the OMPS spectrometers

In March 2009, BATC had completed integration and risk reduction testing of OMPS PFM (Proto Flight Model) for NPP. 92)

The OMPS program will create five ozone data EDR products:

• Total ozone column: High performance total column environmental data record

• Nadir ozone profile: Heritage SBUV/2 nadir profile data records

• Limb ozone profile: High performance ozone profile product

• Infrared total ozone: data records from CrIS (Cross-track Infrared Sounder) radiances.

• Calibrated radiances: Heritage TOMS V7 total column data records

Secondary OMPS products are: SO2 index, aerosols (index and profile), UV-B radiance on Earth's surface, NO2, surface albedo, and cloud top height.


CERES (Clouds and the Earth's Radiant Energy System):

CERES is a NASA/LaRC instrument built by Northrop Grumman (formerly TRW Space and Technology Group) of Redondo Beach, CA (PI: Bruce Wielicki). The CERES instrument measures the reflected shortwave (SW) and Earth emitted radiances. The objectives are to continue a consistent database of accurately known fields of Earth’s reflected solar and Earth’s emitted thermal radiation. CERES satisfies four NPOESS EDRs, in combination with other instruments (Ref. #: 93) 94) 95) 96) 97)

- Net solar radiation at TOA (Top of the Atmosphere)

- Downward longwave radiation at the surface

- Downward shortwave radiation at the surface

- Outgoing longwave radiation at TOA.

The CERES EDRs are essential to understanding Earth weather & climate.

- Measurement of clear sky fluxes aids in monitoring climate forcing and feedback mechanisms involving surface radiative characteristics

- These data are fundamental inputs to atmospheric and oceanic energetics

- They provide a basic input to extended range (10 day or longer) weather forecasting

- They provide a measure of the effect of clouds on the energy balance, one of the largest sources of uncertainty in climate modeling.

The legacy to CERES builds on the highly successful ERBE (Earth Radiation Budget Experiment) scanners flown on NOAA spacecraft. In addition CERES instruments are flown on the TRMM, Terra and Aqua missions of NASA. The CERES FM-5 (Flight Model 5) is being used on Suomi-NPP.

The CERES instrument consists of three major subassemblies: 1) Cassegrain telescope, 2) baffle for stray light, and 3) detector assembly, consisting of an active and compensating element. Radiation enters the unit through the baffle, passes through the telescope and is imaged onto the IR detector. Uncooled infrared detection is employed.


Figure 44: Cross section of the CERES telescope (image credit: NASA/LaRC) 98)

A CERES instrument consists of 2 identical scanners: total mass of 114 kg , power = 100 W (average, 2 instruments), data rate = 20 kbit/s, duty cycle = 100%, thermal control by heaters and radiators, pointing knowledge = 180 arcsec. The design life is six years. CERES measures longwave (LW) and shortwave (SW) infrared radiation using thermistor bolometers to determine the Earth's radiation budget. There are three spectral channels in each radiometer:

- VNIR+SWIR: 0.3 - 5.0 µm (also referred to as SW channel); measurement of reflected sunlight to an accuracy of 1%.

- Atmospheric window: 8.0 - 12.0 µm (also referred to as LW channel); measurement of Earth-emitted radiation, this includes coverage of water vapor

- Total channel radiance in the spectral range of 0.35 - 125 µm;. reflected or emitted infrared radiation of the Earth-atmosphere system, measurement accuracy of 0.3%.

Limb-to-limb scanning with a nadir IFOV (Instantaneous Field of View) of 14 mrad, FOV = ±78º cross-track, 360º azimuth. Spatial resolution = 10-20 km at nadir. Each channel consists of a precision thermistor-bolometer detector located in a Cassegrain telescope.

Instrument calibration: CERES is a very precisely calibrated radiometer. The instrument is measuring emitted and reflected radiative energy from the surface of the Earth and the atmosphere. A variety of independent methods are used to verify calibration: 99)

• Internal calibration sources (blackbody, lamps)

• MAM (Mirror Attenuator Mosaic) solar diffuser plate. MAM is used to define in-orbit shifts or drifts in the sensor responses. The shortwave and total sensors are calibrated using the solar radiances reflected from the MAM's. Each MAM consists of baffle-solar diffuser plate systems, which guide incoming solar radiances into the instrument FOV of the shortwave and total sensor units.

• 3-channel deep convective cloud test

- Use night-time 8-12 µm window to predict longwave radiation (LW): cloud < 205K

- Total - SW = LW vs Window predicted LW in daytime for same clouds <205K temperatures

• 3-channel day/night tropical ocean test

• Instrument calibration:

- Rotate scan plane to align scanning instruments TRMM, Terra during orbital crossings (Haeffelin: reached 0.1% LW, window, 0.5% SW 95% configuration in 6 weeks of orbital crossings of Terra and TRMM)

- FM-1 and FM-2 instruments on Terra at nadir

Instrument heritage

Earth Radiation Budget Experiment (ERBE)

Prime contractor

Northrop Grumman Aerospace Systems

NASA center responsible

LaRC (Langley Research Center)

Three channels in each radiometer

Total radiance (0.3 to 100 µm); Shortwave (0.3 to 5 µm); Window (8 to 12 µm)


Limb to limb

Spatial resolution

20 km at nadir

Instrument mass, duty cycle

57 kg/scanner, 100%

Instrument power

50 W (average) per scanner, 104 W (peak: biaxial mode) both scanners

Data rate

10.5 kbit/scanner (average)

Thermal control

Use of heaters and radiators

Thermal operating range

38±0.1ºC (detectors)

FOV (Field of View)

±78º cross-track, 360º azimuth


14 mrad

Instrument pointing requirements (3σ)

720 arcsec
180 arcsec
79 arcsec/6.6 sec

Instrument size

60 cm x 60 cm x 57.6 cm/unit

Table 16: CERES instrument parameters


Figure 45: NPP CERES data system architecture (image credit: NASA/LaRC)


Figure 46: Photo of the CERES flight modules in 1999 (image credit: NASA)


Figure 47: Illustration of the CERES instrument (image credit: NASA/LaRC)


Figure 48: Engineers inspect the CERES FM-25 sensor following the completion of thermal vacuum testing at NGC (image credit: NGC) 100)

CERES Flight Model (FM)




PFM (Proto-Flight Model)

TRMM (Tropical Rainfall Measuring Mission)

Nov. 27, 1997

PFM performed for 8 months, then PFM was turned off from Aug. 1998 to June 2002, when it was on to provide a comparison with CERES on Aqua

FM-1, -2

Terra (2 CERES instruments)

Dec. 19, 1999

SSO at 705 km altitude

FM-3, -4

Aqua (2 CERES instruments)

May 04, 2002

SSO at 705 km altitude


Suomi NPP

Oct. 28, 2011

SSO at 824 km altitude


JPSS (Joint Polar Satellite System)-1

Planned 2017

SSO at 833 km altitude

CBERS Follow-on

JPSS (Joint Polar Satellite System)-2

Planned 2022


Table 17: CBERS instruments on NASA missions


Figure 49: Overview of past, current and future missions with corresponding CERES instrument FM generations (image credit: NASA/LaRC, Ref. 98) 101)



Ground Segment of NPP:

The NPP ground segment will consist of the following elements (see NPOESS description):

• C3S (Command Control & Communication Segment), IPO responsibility. The C3S will be responsible for the operations of the NPP satellite. It will also provide the data network to route the mission data to the ground elements and the ground receive stations to communication with the NPP satellite. As part of the NPP operations, the C3S will provide the overall mission management and coordination of joint program operations.

• IDPS (Interface Data Processing Segment), IPO responsibility. The IDPS will ingest the raw sensor data and telemetry received from the C3S. It will process RDRs (Raw Data Records), SDRs (Sensor Data Records), and EDRs (Environmental Data Records). RDRs are defined as full resolution uncalibrated raw data records. SDRs are full resolution geo-located and calibrated sensor data. EDRs are fully processed data containing environmental parameters or imagery. The RDRs, SDRs, and EDRs will be made available to the four US Operational Processing Centers (OPCs) for processing and distribution to end users. The US OPCs consist of the following entities:

- NOAA/NESDIS serves as NCEP (National Centers for Environmental Prediction)

- AFWA (Air Force Weather Agency)

- FNMOC (Fleet Numerical Meteorology and Oceanographic Center)

- Naval Oceanographic Office (NavOceano)

• ADS (Archive & Distribution Segment). NOAA is responsible for providing ADS.

• SDS (Science Data Segment). NASA responsibility.

• PEATE (Product Evaluation and Algorithm Test Element)


Figure 50: NPP mission system architecture (NASA, NOAA)


Figure 51: SDS (Science Data System) architecture (image credit: NASA) 102)

NOAA’s CLASS (Comprehensive Large Array-data Stewardship System) serves as the official repository of NPP mission data, including VIIRS. On line search, order, and distribution of all archived VIIRS mission data (along with tutorials) is available through CLASS. 103) 104)

1) Rani Gran, Steve Cole, “NASA Renames Earth-Observing Mission in Honor of Satellite Pioneer,” NASA, January 25, 2012, URL:

2) Russell Hall, “Verner Suomi (1915-1995),” URL:

3) P. A. Wilczynski, “The National Polar-Orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP): Leading the Change for NPOESS,” IGARSS 2003, Toulouse, France, July 21-25, 2003

4) Information provided by Raynor L. Taylor of NASA/GSFC


6) J. E. Leibee, J. A. Kronenwetter, “NPP: NASA's Continuity Mission for Earth Observation,” Proceedings of SPIE, Vol. 4881, 9th International Symposium on Remote Sensing, Aghia Pelagia, Crete, Greece, Sept. 23-27, 2002

7) D. Jones, S. R. Schneider, P. Wilczynski, C. Nelson, “NPOESS Preparatory Project: The Bridge Between Research and Operations,” EOM (Earth Observation Magazine), Vol. 13, No 3, April/May 2004,

8) Stephen A. Mango, “NPOESS/NPP - Calibration/Validation/Verification Program: Its Role in Emerging Global Remote Sensing Systems and Its Potential for Improved Numerical Weather Prediction and Climate Monitoring,” 2005 CEOS WGCV 24, Frascati, Italy, November 8-11, 2005

9) “NASA Instrument Selected for Multi-Agency Satellite Mission,” Feb. 25, 2008, URL:

10) “Restructuring the National Polar-orbiting Operational Environmental Satellite System,” earthzine, Feb. 23, 2010, URL:

11) “NPP Press Kit,” NASA, Oct. 2011, URL:



14) “NPOESS Preparatory Project (NPP) - Building a Bridge to a New Era of Earth Observations,” NASA Fact Sheet, URL:

15) “NPP: Improving U.S. weather forecast accuracy from space,” NOAA, Oct. 28, 2011, URL:

16) “United Launch Alliance Delivers 50th Delta II Mission to Orbit for NASA with the Successful Launch of the NPOESS Preparatory Project,” Oct. 28, 2011, URL:

17) Debra Werner, “NPOESS Precursor's Launch Delayed Until 2011,” Space News, January 4, 2010, p. 6

18) “CubeSat ELaNa III Launch on NPP Mission,” NASA, October 2011, URL:

19) J. D. Cunningham, C. S. Nelson, D. L. Glackin, “NPOESS: The US Environmental Observation Mission of the Future and NOAA/EUMETSAT Cooperation,” Proceedings of IAC 2004, Vancouver, Canada, Oct. 4-8, 2004, IAC-04-B.1.01

20) Peter A. Wilczynski, “NPOESS Preparatory Project (NPP),” The 14th International TOVS Study Conference, May 26, 2005, Beijing, China, URL:

21) Pete Wilczynski, “NPOESS Preparatory Project (NPP), The Direct Readout Conference,” Dec. 6-10, 2004, Miami, FLA, USA, URL:

22) Patrick Coronado, “NASA Direct Readout - Providing Science Direct Readout Mission Continuity to the Broad User Community,” Dec. 6-10, 2004, Miami, FLA, USA, URL:


24) Liam E. Gumley, “Direct Broadcast Processing Packages for Terra, Aqua, MetOp, NPP and NPOESS: Recent Progress and Future Plans,” URL:

25) “International Polar Orbiter Processing Package (IPOPP) User’s Guide,” Version 1.6a, July 2008

26) Kathryn Hansen, “NASA Reveals New Results From Inside the Ozone Hole,” NASA, Dec. 11, 2013, URL:

27) Bob King, “Russian Fireball Inspires Journey into the World of Meteorites,” Universe Today, Feb. 24, 2013, URL:

28) Kathryn Hansen, and NASA's Earth Science News Team, “Around the World in Four Days: NASA Tracks Chelyabinsk Meteor Plume,” NASA/GSFC, Aug. 14, 2013, URL:

29) Tony Phillips, “NASA Tracks Russian Meteor Plume,” NASA, August 15, 2013, URL:

30) “Tracking Dust Across the Atlantic,” NASA, Earth Observatory, Aug. 29, 2013, URL:

31) “Tracking dust across the Atlantic,” NASA, Sept. 5, 2013, URL:

32) Pierre C. Guillevic, Jeffrey L. Privette, Yunyue Yu, Frank M. Goettsche, Glynn Hulley, Albert Olioso , José Sobrinog, Tilden Meyers, Darren Ghent, Annika Bork-Unkelbach, Dominique Courault, Miguel O. Román, Simon Hook, Ivan Csiszar,” Proceedings of IGARSS (IEEE International Geoscience and Remote Sensing Symposium), Melbourne, Australia, July 21-26, 2013,

33) “Vegetation as Seen by Suomi NPP,” SpaceRef, June 21, 2013, URL:

34) Ken Kremer, “Herbal Earth: Spectacular Vegetation Views of Our Home Planet and the Natural World of Living Green Life,” Universe Today, June 22, 2013, URL:

35) “Green: Vegetation on Our Planet,” NOAA, June 19, 2013, URL:

36) Steve Cole, Rani Gran, “NASA Transfers Operational Control of Environmental Satellite,” NASA Press release No 13-068, March 4, 2013, URL:

37) “NOAA assumes full operational responsibilities of environmental satellite,” NOAA News, March 4, 2013, URL:

38) Jack Xiong, Changyong Cao, Frank DeLuccia, Bruce Guenther, Jim Butler, “S-NPP VIIRS On-orbit Calibration and Performance,” 12th Annual JACIE (Joint Agency Commercial Imagery Evaluation) Workshop , St. Louis, MO, USA, April 16-18, 2013, URL:

39) Steve Cole, John Leslie, Rani Gran, Aries Keck, “NASA-NOAA Satellite Reveals New Views of Earth at Night,” NASA, Dec. 05, 2012, URL:

40) Aries Keck, Laura Betz, Christina Coleman, Ellen Gray, “Suomi NPP: Approaching the One-Year Anniversary of its Launch,” The Earth Observer, September - October 2012, Volume 24, Issue 5, pp. 16-23

41) “Sandy after Landfall,” NASA Earth Observatory, Oct. 30, 2012, URL:

42) “NASA Adds Up Hurricane Sandy's Rainfall from Space,” NASA, Nov. 1, 2012, URL:

43) “Suomi NPP Satellite Captures Hurricane Sandy's Mid-Atlantic Blackout,” Space Daily, Nov. 2, 2012, URL:

44) Donald Hillger, Thomas Kopp, Thomas Lee, Daniel Lindsey, Curtis Seaman, Steven Miller, Jeremy Solbrig, Stanley Kidder, Scott Bachmeier, Tommy Jasmin, Tom Rink, “First-light imagery from Suomi NPP VIIRS,” BAMS, Vol. 94, Issue 7, July 2013, pp: 1019–1029, URL:

45) Christina A. Coleman, “Images in an Instant: Suomi NPP Begins Direct Broadcast,” NASA Press Release, July 6, 2012, URL:

46) Dwayne Brown, Cynthia O'Carroll, John Leslie, “Multi-Agency Satellite BeginsClimate and Weather Studies,” NASA, NOAA, March 7, 2012, URL:

47) “Multi-Agency Satellite Begins Climate and Weather Studies,” Space Daily, March 14, 2012, URL:

48) “Infrared Sounder on NASA's Suomi NPP Starts its Mission,” NASA, Feb. 8, 2012, URL:

49) “Ozone Suite on Suomi NPP Continues More Than 30 Years of Ozone Data,” NASA,Release No 12-018, Feb. 23, 2012, URL:

50) “'First Light' Taken by NASA's Newest CERES Instrument,” NASA, Feb. 1, 2012, URL:

51) URL:


53) “First Global Image from VIIRS,” NASA, acquired Nov. 24, 2011, URL:

54) “VIIRS First Light,” NASA, Nov. 23, 2011, URL:

55) “NASA's NPP Satellite Acquires First ATMS Measurements,” Nov. 10, 2011, URL:

56) “JPSS Instruments at a Glance,” NOAA, URL:

57) C. Muth, W. A. Webb, W. Atwood, P. Lee, “Advanced Technology Microwave Sounder on the National Polar-Orbiting Operational Environmental Satellite System,” Proceedings of IGARSS 2005, Seoul, Korea, July 25-29, 2005

58) C. Muth, P. S. Lee, J. C. Shiue, W. A. Webb, “Advanced Technology Microwave Sounder on NPOESS and NPP,” Proceedings of IGARSS 2004, Anchorage, AK, USA, Sept. 20-24, 2004

59) R. E. Murphy, R. Taylor, et al., “The NPOESS Preparatory Project: Mission Concept and Status,” IGARSS 2001, Sydney, Australia, July 9-13, 2001

60) Kent Anderson, Luvida Asai, James Fuentes, Nikisa George, “NPP ATMS Instrument On-orbit Performance,” Proceedings of the 2012 EUMETSAT Meteorological Satellite Conference, Sopot, Poland, Sept. 3-7, 2012, URL:

61) Tanya Scalione, Hilmer Swenson, Frank DeLuccia, Carl Schueler , Ed Clement, Lane Darnton, “Design Evolution of the NPOESS VIIRS Instrument Since CDR,” Proceedings of IGARSS, Toulouse, France, July 21-25, 2003

62) T. Scalione, F. De Luccia, J. Cymerman, E. Johnson, J. K. McCarthy, D. Olejniczak, “VIIRS Initial Performance Verification Subassembly, Early Integration and Ambient Phase I Testing of EDU,” Proceedings of IGARSS 2005, Seoul, Korea, July 25-29, 2005

63) C. P. Welsch, H. Swenson, S. A. Cota, F. DeLuccia, J. M. Haas, C. Schueler, R. M. Durham, J. E. Clement, P. E. Ardanuy, “VIIRS (Visible Infrared Imager Radiometer Suite): A Next-Generation Operational Environmental Sensor for NPOESS, IGARSS/IEEE 2001, Sydney, Australia, July 9-13, 2001

64) Carl Schueler , J. Ed Clement, Lane Darnton, Frank De Luccia, Tanya Scalione, Hilmer Swenson, “VIIRS Sensor Performance,” Proceedings of IGARSS 2003, Toulouse, France, July 21-25, 2003

65) Tanya Scalione, Frank De Luccia, John Cymerman, Eric Johnson, James K. McCarthy, Debra Olejniczak, “VIIRS Initial Performance Verification, Subassembly, Early Integration and Ambient Phase I Testing of EDU,” URL:

66) “Visible Infrared Imaging Radiometer Suite (VIIRS),” NASA, URL:

67) “Visible/Infrared Imager Radiometer Suite (VIIRS),” Raytheon, URL:

68) B. Guenther, “A Calibration Algorithm Design and Analysis for VIIRS Thermal Emissive Bands Based on the EOS MODIS Approach,” Proceedings of IGARSS 2003, Toulouse, France, July 21-25, 2003

69) X. Xiong, R. Murphy, “The Impact of Solar Diffuser Screen on the Radiometric Calibration of Remote Sensing Systems,” Proceedings of IGARSS 2003, Toulouse, France, July 21-25, 2003

70) R. Murphy, D. Olejniczak,J. Clement, ”VIIRS: The Next Generation Visible-Infrared Imaging Radiometer,” Proceedings of the 31st International Symposium on Remote Sensing of Environment (ISRSE) at NIERSC (Nansen International Environmental and Remote Sensing Center), Saint Petersburg, Russia, June 20-24, 2005

71) X. Xiong, H. Oudrari, K. Chiang, J. McIntire, J. Fulbright, N. Lei, J. Sun, B. Efremova, Z. Wang, J. Butler, “VIIRS on-orbit calibration activities and performance,” Proceedings of IGARSS (IEEE International Geoscience and Remote Sensing Symposium), Melbourne, Australia, July 21-26, 2013

72) Xiaoxiong Xiong, Kwo-Fu Chiang, Jeffrey McIntire, Mathew Schwaller, James Butler, “Post-launch Calibration Support for VIIRS Onboard NASANPP Spacecraft,” Proceedings of IGARSS (International Geoscience and Remote Sensing Symposium), Vancouver, Canada, July 24-29, 2011

73) P. Ardanuyla, C. Schueler, S. Miller, K. Jensen, W. Emery, “Use of CAIV Techniques to Build Advanced VIIRS Approaches for NPOESS Key EDRs,” Proceedings of SPIE, Vol 4814, SPIE Annual Meeting 2002: Remote Sensing and Space Technology, July 7-11, 2002, Seattle, WA

74) Frank De Luccia, Bruce Guenther, Chris Moeller, Xiaoxiong Xiong, Robert Wolfe, “NPP VIIRS Pre-launch Performance and SDR Validation,” Proceedings of IGARSS (International Geoscience and Remote Sensing Symposium), Vancouver, Canada, July 24-29, 2011

75) Mitchell D. Goldberg, “SUOMI National Polar-orbiting Partnership Status and Instrument Performance,” Proceedings of the 11th Annual JACIE (Joint Agency Commercial Imagery Evaluation ) Workshop, Fairfax, Va, USA, April 17-19, 2012, URL:

76) T. E. Lee, S. D. Miller, F. J. Turk, C. Schueler, R. Julian, S. Deyo, P. Dills, S. Wang, “The NPOESS VIIRS Day/Night Visible Sensor,” BAMS (Bulletin of the American Meteorological Society), Vol. 87, No 2, Feb. 2006, pp. 191-198

77) Kameron Rausch, Frank De Luccia, David Moyer, Jason Cardema, Ning Lei, Jon Fulbright, Chengbo Sun, Vincent Chiang, “Suomi NPP VIIRS Reflective Solar Band Radiometric Calibration,” Proceedings of IGARSS (International Geoscience and Remote Sensing Symposium), Munich, Germany, July 22-27, 2012

78) Slawomir Blonski, Changyong Cao, Sirish Uprety, Xi Shao, “Using Antarctic Dome C Site and simultaneous nadir overpass observations for monitoring radiometric performance of NPP VIIRS instrument,” Proceedings of IGARSS (International Geoscience and Remote Sensing Symposium), Munich, Germany, July 22-27, 2012

79) Quanhua Liu, Changyong Cao, Fuzhong Weng, “Suomi NPP VIIRS emissive band radiance calibration and Analysis,” Proceedings of IGARSS (International Geoscience and Remote Sensing Symposium), Munich, Germany, July 22-27, 2012

80) F. L. Williams, R. Johnston, “Spatial and Spectral Characterization of the Cross-track Infrared Sounder (CrIS): Test Development,” Proceedings of SPIE, July 7-11, 2002, Seattle, WA, Vol. 4818

81) S. Masterjohn , A. I. D'Souza, L .C. Dawson, P. Dolan, P. S. Wijewarnasuriya, J. Ehlert, “Cross-Track Infrared Sounder FPAA Performance,” Proceedings of SPIE, July 7-11, 2002, Seattle, WA, Vol. 4820

82) H. J. Bloom, “The Cross-Track Infrared Sounder (CrIS): A Sensor for Operational Meteorological Remote Sensing,” Fourier Spectroscopy, Feb. 5-8, 2001, OSA 2001 Technical Digest, pp. 76-78

83) R. Poulin, S. Lantagne, Y. Dutil, S. Levesque, F. Châteauneuf, “CrIS Raw Data Records (Level 0) To Sensor Data Records (Level 1b) Processing,” Proceedings of SPIE, July 7-11, 2002, Seattle, WA, Vol. 4818

84) H. Bloom, “The Cross-track Infrared Sounder (CRIS): a sensor for operational meteorological remote sensing,” Proceedings of. IGARSS 2001, Sydney, Australia, July 9-13, 2001

85) Murty Divakarla, Chris Barnet, Mitch Goldberg, Degui Gu, Xu Liu, Xiaozhen Xiong, Susan Kizer, Guang Guo, Mike Wilson, Eric Maddy, Nick Nalli, Antonia Gambacorta, Tom King, Xia Ma, W. Blackwell, “Evaluation of CrIMSS operational products using in-situ measurements, model analysis, and retrieval products from heritage algorithms,” Proceedings of IGARSS (International Geoscience and Remote Sensing Symposium), Munich, Germany, July 22-27, 2012

86) L. E. Flynn, J. Hornstein, E. Hilsenrath, “The Ozone Mapping and Profiler Suite (OMPS) The Next Generation of US Ozone Monitoring Instruments,” Proceedings of IGARSS 2004, Anchorage, AK, USA, Sept. 20-24, 2004

87) Ken Jucks, “NASA and NOAA space missions for Ozone Research,” URL:

88) D. Newell, J. C. Larsen, H. E. Snell, “OMPS - The Next Generation US Operational Ozone Monitor,” MAXI Review, Oct. 29-31, 2002

89) M. Dittman, E. Ramberg, M. Chrisp, J. V. Rodriguez, et al., “Nadir Ultraviolet Imaging Spectrometer for the NPOESS Ozone Mapping and Profiler Suite (OMPS),” SPIE Annual Meeting 2002: Remote Sensing and Space Technology, July 7-11, 2002, Seattle, WA, Vol. 4814

90) M. G. Dittman, J. Leitch, M. Chrisp, J. V. Rodriguez, et al., “Limb Broad-Band Imaging Spectrometer for the NPOESS Ozone Mapping and Profiler Suite (OMPS),” SPIE Annual Meeting 2002: Remote Sensing and Space Technology, July 7-11, 2002, Seattle, WA, Vol. 4814

91) J. Hornstein, E. Shettle, R. Bevilacqua, E. Colón, J. Lumpe, S. Mango, “Altitude Registration of OMPS Ozone Profiles via Comparison of Bulk Density Profiles,” Proceedings of IGARSS 2004, Anchorage, AK, USA, Sept. 20-24, 2004

92) Ball Aerospace Completes OMPS Integration For NPP,” March 16, 2009, URL:

93) CERES Science Requirements Specification for NPP,” June 2009, URL:

94) Kory J. Priestley, G. Louis Smith, Bruce A. Wielicki, Norman G. Loeb, “CERES FM-5 on the NPP spacecraft: continuing the Earth radiation budget climate data record,” Proceedings of SPIE, Vol. 7474, 74740D, Aug. 2009; Berlin, Germany, doi:10.1117/12.830385

95) Kory J. Priestley, G. Louis Smith , Susan Thomas, Denise Cooper , Robert B. Lee III, Dale Walikainen, Phillip Hess, Z. Peter Szewczyk, Robert Wilson, “NPP Clouds and the Earth's Radiant Energy System (CERES), predicted sensor performance calibration and preliminary data product performance,” Proceedings of IGARSS 2009 (IEEE International Geoscience & Remote Sensing Symposium), Cape Town, South Africa, July 12-17, 2009


97) Susan Thomas, Kory J. Priestley, Mohan Shankar, Nathaniel P. Smith, Mark G. Timcoe, “Pre-launch Characterization of the Clouds and the Earth's Radiant Energy System (CERES) Flight Model 5 (FM5) Instrument on NPP,” Proceedings of IGARSS (International Geoscience and Remote Sensing Symposium), Vancouver, Canada, July 24-29, 2011

98) G. Louis Smith, Kory J. Priestley, Norman G. Loeb, “Clouds and Earth Radiant Energy System (CERES): from Measurement to Data Products,” Proceedings of the 2012 IEEE Aerospace Conference, Big Sky, Montana, USA, March 3-10, 2012

99) R. S. Wilson, R. B. Lee, et al., “On-orbit solar calibrations using the Aqua Clouds and Earth's Radiant Energy System (CERES) in-flight calibration system,” Proceedings of SPIE, Vol. 5151, 2003, pp. 288-299

100) “Northrop Grumman CERES Sensor Delivered to NPOESS Preparatory Project Ahead of Schedule,” Nov. 10, 2008, URL:

101) CERES instrument team, “CERES Instrument and Calibration Status,” Earth Radiation Budget Workshop 2010, Paris, France, Sept. 13-16, 2010, URL:

102) “NPOESS Preparatory Project (NPP), Science Data Segment (SDS), Ocean PEATE Status and Plans,” Jan. 27, 2010, URL:

103) Clara Wilson, Menghua Wang, Paul DiGiacomo, “Update on NOAA Ocean Color Activities: VIIRS et al.,” International Ocean Color Science (IOCS) Meeting, Darmstadt, Germany, May 6-8, 2013, URL:

104) Wei Shi, “Distribution of NPP/VIIRS Ocean Color Data,” International Ocean Color Science (IOCS) Meeting, Darmstadt, Germany, May 6-8, 2013, URL:

The information compiled and edited in this article was provided by Herbert J. Kramer from his documentation of: ”Observation of the Earth and Its Environment: Survey of Missions and Sensors” (Springer Verlag) as well as many other sources after the publication of the 4th edition in 2002. - Comments and corrections to this article are always welcome for further updates.