Minimize IRNSS

IRNSS (Indian Regional Navigational Satellite System)

IRNSS is an autonomous regional satellite navigation system being developed by ISRO (Indian Space Research Organization). The government of India approved the project in May 2006, with the intention of the system to be completed and implemented in the timeframe 2012.

The objective of the project is to implement an independent and indigenous regional spaceborne navigation system for national applications. The IRNSS design requirements call for a position accuracy of < 20 m throughout India and within the region of coverage extending about 1500 km beyond. The system is expected to provide accurate real-time position, velocity and time observables for users on a variety of platforms with a 24 hour x 7 day service availability under all weather conditions. 1) 2) 3) 4) 5)

The IRNSS is being developed parallel to the GAGAN (GPS Aided GEO Augmented Satellite Navigation) program, the ISRO SBAS (Satellite Based Augmentation System) version of an overlay system for GNSS signal corrections. 6) 7) 8)

The proposed IRNSS system will consist of a constellation of seven satellites and a supporting ground segment. Three of the satellites in the constellation will be placed in a geostationary orbit and the remaining four in a geosynchronous inclined orbit of 29º relative to the equatorial plane. Such an arrangement would mean all seven satellites would have continuous radio visibility with Indian control stations.

ISRO has filed for 24 MHz bandwidth of spectrum in the L5-band (1164 – 1189 MHz) for IRNSS and for the second signal in S-band (2483.5 – 2500 MHz).

The IRNSS constellation architecture consists of the following elements:

Space segment: The IRNSS satellites carry a navigation payload in a redundant configuration. A separate C-band transponder for precise CDMA ranging is included in the payload configuration. The important functions of the IRNSS payload are: Transmission of the navigational timing information in the L5 bands; transmission of navigation, timing information in S-band; generation of navigation data on-board, CDMA ranging transponder for precise ranging.

The navigation payload will have the following subsystems: NSGU (Navigation Signal Generation Unit), Atomic clock unit, comprising of Rubidium atomic clocks, clock management and control unit, frequency generation unit, modulation unit, high power amplifier unit, power combining unit and navigation antenna.

The IRNSS spacecraft are dedicated for navigation services and they are configured to be of a class that can be launched by the Indian launcher PSLV. The design incorporates most of the proven subsystems available indigenously tailoring it specifically for the navigation.

Ground segment: The ground segment is responsible for the maintenance and operation of the IRNSS constellation. It contains a whole complement of the elements required for a basic constellation and is mainly comprised of:

- Master Control Center for spacecraft control and navigation, IRNSS tracking and integrity monitoring stations, CDMA ranging stations, uplinking and telemetry stations, communication links and network timing center.

User segment: Specially designed receivers and antennas are needed to receive the IRNSS signals. The receivers are also planned for receiving multi-constellation signals inclusive of GPS, GLONASS, Galileo and IRNSS. It is planned to broadcast the time difference between the IRNSS time and the time of the other constellations to enable the users to take advantage of the signals available to them.



Space segment:

The space segment consists of seven satellites: 9) 10) 11) 12)

• 3 satellites in geostationary orbit at 32.5°, 83° and 131.5° East.

• 4 satellites in geosynchronous orbit placed at inclination of 29° with longitude crossing at 55° and 111.75° East

• Two spare satellites are also planned

• The satellites are specially configured for the navigation. Same configuration for GEO and GSO which is desirable for the production of the satellites.

• Plans call for the IRNSS satellites to be launched by the Indian launcher PSLV

• The first satellite will be launched in the summer of 2013. The subsequent launches are planned once in six months. The full constellation will be operational by 2016.


Figure 1: The IRNSS constellation with the daily lemniscate projection of the 4 GSO spacecraft onto Earth (image credit: ISRO)


The IRNSS satellites are configured around the spacecraft bus I-1K, which is similar to ISRO’s meteorological satellite, Kalpana-1, with a dry mass of ~600 kg and a launch mass of 1,425 kg. The solar panels are generating a power of 1600 W (with a payload power requirement of 900 W.

The spacecraft are 3-axis stabilized. Attitude control of the satellite is provided with yaw steering, a capability to optimize the use of the solar panels and to support the thermal control of the satellite.

Launch mass

1425 kg, dry mass of 614 kg

Spacecraft size (launch configuration)

1.58 m x 1.5 m x 1.5 m

EPS (Electrical Power Subsystem)

Two solar panels generating 1660 W, one lithium-ion battery of 90 Ah capacity

ADCS (Attitude Determination and Control Subsystem)

Zero momentum system, orientation input from sun & star sensors and gyroscopes; reaction wheels, magnetic torquers and 22 Newton thrusters as actuators

Mission life

10 years


440 N LAM (Liquid Apogee Motor) with twelve 22 N thrusters

Table 1: Parameters of the IRNSS-1 spacecraft


Figure 2: Preliminary view of a deployed IRNSS spacecraft (image credit: ISRO)


Figure 3: Photo of IRNSS-1A undergoing tests in the clean room (image credit: ISRO)


Figure 4: Photo of IRNSS-1A after its integration with the PSLC-C22 (image credit: ISRO)


Launch: The IRNSS-1A spacecraft was launched on July 1, 2013 on the PSLV-C22 vehicle from SDSC (Satish Dhawan Space Center) SHAR on the east coast of India. Use of the PSLV 'XL' configuration. After a flight of 20 minutes and 17 seconds, the IRNSS-1A satellite was injected to the intended GTO (Geostationary Transfer Orbit) of 282.46 km x 20,625.37 km. 13) 14)

After injection, the solar panels of IRNSS-1A were deployed automatically. ISRO's Master Control Facility (at Hassan, Karnataka) assumed the control of the satellite.

Orbit: The three GEO spacecraft are in the equatorial plane at an altitude of 35,786 km located at 32.5º, 83º and 131.5º E. The four GSO (Geosynchronous Orbit) spacecraft, with an inclination of 29º, are located in two planes with daily longitudinal equator crossings at 55º E and at 111.75º E. 15)

The coverage provided by the constellation encompasses a longitude from 30º to 130º and a latitude region of 30º S to 50º N..


Figure 5: Alternate projection of IRNSS constellation with the GSO spacecraft at their latitudinal extremities (image credit: ISRO)


Mission status:

• Feb. 2014: The IRNSS-1A spacecraft is operating nominally. The SIS (Signal In Space) was qualified. 16)

• The IRNSS-1A spacecraft was positioned into its geosynchronous orbit (55ºE, inclination of 29º). Five orbit raising maneuvers were conducted from GTO to GSO.



Payload complement:

Navigation payload:

Each satellite has two payloads : the Navigation payload and the CDMA ranging payload in addition with a retroreflector array. The payload generates navigation signals at L5 and S-band. The design of the payload makes the IRNSS system interoperable and compatible with GPS and Galileo. 17)

• A highly accurate Rubidium atomic clock is part of the navigation payload.

• The ranging payload of IRNSS-1A consists of a C-band transponder which facilitates accurate determination of the spacecraft range.

• IRNSS-1A carries also corner cube retroreflectors for laser ranging.


Figure 6: Photo of the IRNSS-1A payload (image credit: ISRO)



Ground segment:

The IRNSS ground segment includes the major systems for controlling the satellite constellation and will consist of the IRNSS Spacecraft Control Facility (IRSCF), IRNSS Navigation Control Facility, IRNSS Range and Integrity Monitoring Stations , ranging stations, a timing center, IRNSS TTC and uplink stations, and the IRNSS Data Communication Network.

IRNSS Ground Segment Elements:

• IRSCF (IRNSS Satellite Control Facility)

- IRTTC (IRNSS TTC and Land Uplink Stations)

- IRSCC (IRNSS Satellite Control Center)

• IRIMS (IRNSS Range and Integrity Monitoring Stations)

• IRNCF (IRNSS Navigation Control Facility)

• IRDCN (IRNSS Data Communication Network)

Seventeen IRIMS sites will be distributed across the country for orbit determination and ionospheric modeling. Four ranging stations, separated by wide and long baselines, will provide two-way CDMA (Code Division Multiple Access) ranging. The IRNSS timing center will consist of highly stable clocks. The navigation center will receive all this data through communication links, then process and transmit the information to the satellites. 18)


Figure 7: The IRNSS ground system architecture (image credit: ISRO)


Figure 8: Schematic view of the ground segment elements (image credit: ISRO)

The ISRO Navigation Centre (INC), established at Indian Deep Space Network (IDSN) complex at Byalalu, about 40 km from Bangalore, was inaugurated onMay 28, 2013. 19)

IRNSS will have a network of 21 ranging stations geographically distributed primarily across India. They provide data for the orbit determination of IRNSS satellites and monitoring of the navigation signals. The data from the ranging/monitoring stations is sent to the data processing facility at INC where it is processed to generate the navigation messages. The navigation messages are then transmitted from INC to the IRNSS satellites through the spacecraft control facility at Hassan/Bhopal. The state of the art data processing and storage facilities at INC enable swift processing of data and support its systematic storage.



User segment:

The user segment consists of IRNSS receivers operating in:

• Single frequency ( L5 at 1176.45 MHz or S-band at 2492.028 MHz)

• Dual frequency (L5 and S-band)

The single frequency and dual frequency receivers shall receive both SPS (Special Positioning System), which is provided to all users, and RS (Restricted/Authorized Service) signals, which is an encrypted service provided only to authorized users.

The IRNSS user receiver calculates its position using the timing information embedded in the navigation signal, transmitted from the IRNSS satellites. The timing information being broadcast in the navigation signal is derived from the atomic clock onboard the IRNSS satellite. 20)

The IRNWT (IRNSS Network Time) is determined from a clock ensemble composed of the cesium and hydrogen maser atomic clocks at the INC (Indian Navigation Centre) ground stations. As with UTC, IRNWT is also a weighted mean average time, but with two substantial differences. IRNWT will be made available in real time and is a continuous time without leap seconds. The IRNSS satellites carry a rubidium atomic frequency standard onboard. At INC through navigation software, these onboard clocks are monitored and controlled. The deviation between each of the satellite and IRNWT is modeled with a quadratic function of time, and the parameters of this model are calculated and transmitted as a part of the IRNSS broadcast navigation messages.

The parameters are often called as clock bias (A0) or the clock offset (in seconds), drift (A1) or the relative frequency instability (in seconds/second) and aging (A2), also referred to as relative frequency shift (in seconds/second2). Apart from these corrections, any IRNSS users should consider the necessary relativistic time adjustment. With these adjustment parameters, which are usually calculated once per day, are then transmitted to the satellites, thus the satellite clock errors are expected to be well within 5-10ns which fulfills the requirement.

The estimated accuracy is < 20 m over the Indian ocean region, and < 10 m over main land India.


Figure 9: Illustration of the IRNSS coverage which includes an area of ~1500 km around the Indian land mass (image credit: ISRO)


IRNSS signals:

The IRNSS constellation is expected to provide a position accuracy (2σ) of better than 20 m over India and a region extending outside the Indian land mass to about 1,500 km. The system will provide two types of services: (Ref. 4)

1) SPS (Standard Positioning Service)

2) RS (Restricted/Authorized Service)

Both of these services will be provided at two frequencies, one in the L5 band and the other in S-band.

SPS will use bi-phase shift keying BPSK (1) modulation, whereas the RS service will employ binary offset carrier (BOC (5, 2)) modulation. An additional BOC pilot signal is being provided for the RS Service in order to help provide better acquisition and performance. As each L5-band and S-band contains three signals, the IRNSS design adds an interplex signal in order to maintain the constant envelope characteristic of the composite signal.

The transmission is done using the L-band and S-band helix array antenna to provide global coverage in right-hand circularly polarized (RHCP) signals. Thus, user receivers can operate in single-and/or dual-frequency mode.

Timing group delay:

The time of radiation of the navigation signals on each carrier frequency and among frequencies is not synchronized due to the different digital and analog signal paths that each signal must travel from the IRNSS satellite signal generator to the transmit antenna. This hardware group delay is defined as a time difference between the transmitted RF signal (measured at the phase center of a transmitting antenna) and the signal at the output of the onboard frequency source.

Three different parameters comprise this group delay: a fixed/bias group delay, a differential group delay and a group delay uncertainty in bias and differential value.

The fixed delay or hardware group delay is a bias term included in the clock correction parameters transmitted in the navigation data and is, therefore, accounted for by the user computations of system time in the appropriate GPS interface specifications. More specifically, this delay represents the amount of time it takes the signal to start from the common clock, travel through each code generator, modulator, up-converter, transmitter, and finally emerge from the satellite antenna.

The hardware group delay uncertainty reflects the variability in the path delay due to changeable conditions in the operational environment and other factors. The effective uncertainty of the group delay will be in the range of few nanoseconds (on the order of 1-3 ns).

Each IRNSS navigation signal has two hardware paths — main and redundant. The hardware will be different for each path in terms of data generator, modulator, up converter, travelling-wave tube amplifier (TWTA), cable, and integration components.

In case of failure, the signal will be diverted from the main subsystem to the redundant subsystem. he delay of main and redundant subsystem will be different and thus cause a difference in the mean path delay based on the selected path for the navigation signal.

Differential group delay is the difference in delays between two navigation signals. It consists of random plus bias components. The mean differential is defined as the bias component and will be either positive or negative. For a given navigation payload redundancy configuration, the absolute value of the mean differential delay shall not exceed a few nanoseconds, i.e., on the order of 15 to 30 ns.


1) G Madhavan Nair, “Satellites for Navigation,” Press Information Bureau of the Government of India, Aug. 8, 2006, URL:

2) D. Gowrisankar, S. V. Kibe, “India’s Satellite Navigation Programme,” APRSAF-15 (15th Session of Asia-Pacific Regional Space Agency Forum) Hanoi, Vietnam, Dec. 9-12, 2008, URL:

3) Surendra Pal, A. S. Ganeshan, K. N. S. Rao, L. Mruthyunjaya, “Indian Regional Navigation Satellite System,” Proceedings of the 58th IAC (International Astronautical Congress), International Space Expo, Hyderabad, India, Sept. 24-28, 2007, IAC-07-B2.1.01

4) Parimal Majithiya, Kriti Khatri, J. K. Hota, “Indian Regional Navigation Satellite System,” Inside GNSS, January/February 2011, pp. 40-46, URL:

5) “Indian Regional Navigation Satellite System (IRNSS),” ISRO Newsletter, January-June, 2012, URL:

6) P. K. Jain, “Indian Satellite Navigation Program: An Update,” 45th Session of S&T Subcommittee of UN-COPUOS (United Nations Committee on Peaceful Outer Space), Vienna, Austria, Feb. 11-12, 2008, URL:

7) A. Bhaskaranarayana, “Indian IRNSS and GAGAN,” 37 th COSPAR Scientific Assembly, Montreal, Canada, July 13-20, 2008., URL:

8) A. Singh, S. K. Saraswati, India heads for a regional navigation satellite system,”Coordinates, Vol. II, Issue 11, Nov. 2006, pp. 6-8, URL:

9) S. Shivakumar and Indian delegation, “IRNSS Satellite Navigation Program,” Proceedings of the 49th Session of UNCOPUOS-STSC (UN Committee on the Peaceful Uses of Outer Space-Scientific and Technical Subcommittee), Vienna, Austria, Feb. 6-17, 2012, URL:

10) Anand Dwivedi, “Indian Regional Navigation Satellite System- An Overview,” United Nations International Meeting on the Applications of Global Navigation Satellite Systems, Vienna, Austria, December 12-16, 2011, URL:

11) “GAGAN and IRNSS Satellite Navigation Program,” Proceedings of the 50th Session of Scientific & Technical Subcommittee of UNCOPUOS, Vienna, Austria, Feb. 11-22, 2012, URL:


13) “PSLV-C22 Successfully Launches IRNSS-1A, India's First Navigation Satellite,” ISRO Press Release, July 02,2013, URL:

14) “India to launch first navigational satellite in June,” The Indian Express, March 16, 2013, URL:

15) Brochure of PSLV-C22, ISRO , URL:

16) V. K. Dadhwal, “Recent Indian Space Missions :Update Feb 2014,” Proceedings of the 51st Session of Scientific & Technical Subcommittee of UNCOPUOS, Vienna, Austria, Feb. 11-22, 2014, URL:

17) “IRNSS-1A,” SAC (Space Applications Center), URL:

18) Arup Dasgupta, “Indian Regional Navigational Satellite System,” URL:

19) “ISRO Navigation Centre Inaugurated,” ISRO Press Release, May 28, 2013, URL:

20) R. Buba, T. Rethika, S. C. Rathnakara, “Onboard Atomic Clock Frequency Offset for Indian Regional Navigation Satellite System,” International Journal of Applied Physics and Mathematics, Vol. 2, No. 4, July 2012, URL: http://

The information compiled and edited in this article was provided by Herbert J. Kramer from his documentation of: ”Observation of the Earth and Its Environment: Survey of Missions and Sensors” (Springer Verlag) as well as many other sources after the publication of the 4th edition in 2002. - Comments and corrections to this article are always welcome for further updates.