Table of Contents

1 INTRODUCTION ...6
 1.1 Scope .. 6
 1.2 References .. 7
 1.3 Acronyms and Abbreviations ... 8

2 SUMMARY ...10

3 INSTRUMENT CONFIGURATION AND PERFORMANCE ..12
 3.1 In-Flight Status and Performance .. 12
 3.1.1 Planned Operations and Measurements (SOST-DLR) ... 12
 3.1.2 Instrument Measurement Status (SOST-DLR) ... 13
 3.1.3 Executed Operations and Measurements (SOST-DLR) ... 13
 3.1.4 Performance Monitoring - System (SOST-DLR) ... 15
 3.1.5 Performance Monitoring - Light Path (SOST-IFE) .. 22
 3.1.5.1 Science Channel Averages ... 22
 3.1.5.2 Spectral light path monitoring results .. 25
 3.1.5.3 PMD monitoring results ... 25

4 DEGRADATION MONITORING AND CORRECTION ...27

5 DATA AVAILABILITY STATISTICS ..31
 5.1 Downlink/Acquisition Performance .. 31
 5.2 Statistics on unconsolidated data (SCI_NL_0P, SCI_NL_1P) ... 31
 5.3 Statistics on consolidated data ... 32
 5.3.1 Anomalies on Level 0 consolidated data products .. 32
 5.3.2 Availability of consolidated SCI_NL_1P products ... 33
 5.3.3 Availability of consolidated SCI OL_2P products ... 34
 5.4 Statistics on reprocessed data ... 36
 5.4.1 Level 1b re-processing .. 36
 5.4.2 Level 2 re-processing .. 37

6 LEVEL 1 PRODUCT QUALITY MONITORING ...38
 6.1 Processor Configuration ... 38
 6.1.1 Version ... 38
 6.1.2 Anomalies ... 40
 6.2 Auxiliary Data Files ... 40
 6.2.1 Auxiliary Data File quality analysis .. 41
 6.2.1.1 SMR analysis ... 41
6.2.1.2 LK1 analysis ...46
 6.2.1.2.1 Leakage Constant part ..46
 6.2.1.2.2 Leakage Variable part ..49
6.3 Bad and Dead Pixel Mask ..50
 6.3.1 Operational Processor Analysis50
 6.3.2 SRON Analysis ...50
6.4 Pointing Performance ..52
6.5 SciaL1c tool ...52

LEVEL 2 NRT PRODUCT QUALITY MONITORING53
7.1 Processor Configuration ...53
 7.1.1 Version ...53

LEVEL 2 OFF-LINE PRODUCT QUALITY MONITORING54
8.1 Processor Configuration ...54
 8.1.1 Version ...54
 8.1.2 Anomalies ...55
 8.1.3 Auxiliary Data Files ..56
8.2 Monitoring results ..56
 8.2.1 Nadir: NO2 consistency checking56
 8.2.1.1 Nadir: VCD NO2 map November 201057
 8.2.1.2 Nadir: VCD NO2 map December 201058
 8.2.2 Nadir: O3 consistency checking59
 8.2.2.1 Nadir: VCD O3 map November 201060
 8.2.2.2 Nadir: VCD O3 map December 201061
 8.2.3 Nadir: H2O consistency checking62
 8.2.3.1 Nadir: VCD H2O map November 201063
 8.2.3.2 Nadir: VCD H2O map December 201064
 8.2.4 Nadir: BrO consistency checking65
 8.2.4.1 Nadir: VCD BrO map November 201066
 8.2.4.2 Nadir: VCD BrO map December 201067
 8.2.5 Nadir: SO2 consistency checking68
 8.2.5.1 Nadir: SO2 Anthropogenic scenario - November 2010 ...69
 8.2.5.2 Nadir: SO2 Anthropogenic scenario - December 2010 ...70
 8.2.5.3 Nadir: SO2 Volcanic scenario - November 201071
 8.2.5.4 Nadir: SO2 Volcanic scenario - December 201072
 8.2.6 Nadir: OCIO consistency checking73
 8.2.6.1 Nadir: SCD OCIO maps November 201074
 8.2.6.2 Nadir: SCD OCIO maps December 201076
 8.2.7 Nadir: CO consistency checking78
 8.2.8 Limb: Ozone profile averages78
 8.2.8.1 Ozone limb profiles November 201079
 8.2.8.2 Ozone limb profiles December 201080
8.2.9 Limb: NO₂ profile averages ...81
8.2.10 Limb: BrO profile averages ...83

9 VALIDATION ACTIVITIES AND RESULTS..85
1 INTRODUCTION

The SCIAMACHY Bi-Monthly report documents the current status and recent changes to the SCIAMACHY instrument, its data processing chain, and its data products. The Bi-Monthly Report (hereafter BMR) is composed of analysis results obtained by IDEAS, combined with inputs received from the different groups working on SCIAMACHY operation, calibration, product validation and data quality. The first part of the report is dedicated to Instrument Configuration and Performance. It is composed of contributions from SOST-DLR, SOST-IFE and SRON. The remainder of the report is dedicated to Level 1b and Level 2 performance assessment and is generated by ESA/ESRIN IDEAS with contributions from ESA/ESTEC PLSO and DLR-IMF.

The structure of the report will be in constant evolution through the ENVISAT mission, as experience with SCIAMACHY data and quality control grows.

1.1 Scope

The main objective of the BMR is to give, on a regular basis, the status of SCIAMACHY instrument performance, data acquisition, results of anomaly investigations, calibration activities and validation campaigns.

The BMR is composed of the following six sections:

- Summary;
- Instrument Configuration and Performance;
- Degradation monitoring and correction;
- Data Availability Statistics;
- Level 1 Product Quality Monitoring;
- Level 2 NRT and OFL Product Quality Monitoring;
- Validation Activities and Results.
1.2 References

1.3 Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC</td>
<td>Analogue to Digital Converter</td>
</tr>
<tr>
<td>ADF</td>
<td>Auxiliary Data File</td>
</tr>
<tr>
<td>ANX</td>
<td>Ascending Node Crossing</td>
</tr>
<tr>
<td>AOCS</td>
<td>Attitude and Orbit Control System</td>
</tr>
<tr>
<td>APSM</td>
<td>Aperture Stop Mechanism</td>
</tr>
<tr>
<td>ASM</td>
<td>Azimuth Scan Mechanism</td>
</tr>
<tr>
<td>ATC</td>
<td>Active Thermal Control</td>
</tr>
<tr>
<td>BMR</td>
<td>Bi-Monthly Report</td>
</tr>
<tr>
<td>CA</td>
<td>Corrective Action</td>
</tr>
<tr>
<td>CCA</td>
<td>Communication Area</td>
</tr>
<tr>
<td>CTI</td>
<td>Configurable Transfer Item</td>
</tr>
<tr>
<td>DAC</td>
<td>Digital Analogue Converter</td>
</tr>
<tr>
<td>DLR-IMF</td>
<td>Deutsches Zentrum fuer Luft- und Raumfahrt</td>
</tr>
<tr>
<td>EOL</td>
<td>End of Life</td>
</tr>
<tr>
<td>ESM</td>
<td>Elevation Scan Mechanism</td>
</tr>
<tr>
<td>FAT</td>
<td>Factory Acceptance Test</td>
</tr>
<tr>
<td>FPN</td>
<td>Fixed Pattern Noise</td>
</tr>
<tr>
<td>HK</td>
<td>Housekeeping</td>
</tr>
<tr>
<td>HSM</td>
<td>High Speed Multiplexer</td>
</tr>
<tr>
<td>ICE</td>
<td>Instrument Control Electronics</td>
</tr>
<tr>
<td>ICU</td>
<td>Instrument Control Unit</td>
</tr>
<tr>
<td>IDEAS</td>
<td>Instrument Data quality Evaluation and Analysis Service</td>
</tr>
<tr>
<td>IECF</td>
<td>Instrument Engineering and Calibration Facilities</td>
</tr>
<tr>
<td>IOM</td>
<td>Instrument Operation Manual</td>
</tr>
<tr>
<td>LK1</td>
<td>Leakage Current Auxiliary File (SCI_LK1_AX)</td>
</tr>
<tr>
<td>LLI</td>
<td>Life Limited Item</td>
</tr>
<tr>
<td>LOS</td>
<td>Line of Sight</td>
</tr>
<tr>
<td>MCMD</td>
<td>Macro Command</td>
</tr>
<tr>
<td>MPH</td>
<td>Main Product Header</td>
</tr>
<tr>
<td>MPS</td>
<td>Mission Planning Schedule</td>
</tr>
<tr>
<td>NCWM</td>
<td>Nadir Calibration Window Mechanism</td>
</tr>
<tr>
<td>NDFM</td>
<td>Neutral Density Filter Mechanism</td>
</tr>
<tr>
<td>NIVR</td>
<td>Netherlands Agency for Aerospace Programmes</td>
</tr>
<tr>
<td>NNDEC</td>
<td>Non-nominal Decontamination</td>
</tr>
<tr>
<td>NRT</td>
<td>Near Real Time</td>
</tr>
<tr>
<td>OAR</td>
<td>Observation Anomaly Report</td>
</tr>
<tr>
<td>OBM</td>
<td>Optical Bench Module</td>
</tr>
<tr>
<td>OCM</td>
<td>Orbit Control manoeuvre</td>
</tr>
<tr>
<td>OCR</td>
<td>Operations Change Request</td>
</tr>
<tr>
<td>OFL</td>
<td>Off-line</td>
</tr>
<tr>
<td>OSDF</td>
<td>Orbit Sequence Definition File</td>
</tr>
<tr>
<td>OSV</td>
<td>Orbit State Vector</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PCF</td>
<td>Product Control Facility</td>
</tr>
<tr>
<td>PDHS</td>
<td>Payload Data Handling Station (PDS)</td>
</tr>
<tr>
<td>PDHS-E</td>
<td>Payload Data Handling Station – ESRIN</td>
</tr>
<tr>
<td>PDHS-K</td>
<td>Payload Data Handling Station – Kiruna</td>
</tr>
<tr>
<td>PDS</td>
<td>Payload Data Segment</td>
</tr>
<tr>
<td>PE1</td>
<td>Pixel to Pixel/ Etalon Auxiliary File (SCI_PE1_AX)</td>
</tr>
<tr>
<td>PLSO</td>
<td>Payload Switch OFF</td>
</tr>
<tr>
<td>PMD</td>
<td>Polarization Measurement Device</td>
</tr>
<tr>
<td>QUADAS</td>
<td>Quality Analysis of Data from Atmospheric Sounders</td>
</tr>
<tr>
<td>QWG</td>
<td>Quality Working Group</td>
</tr>
<tr>
<td>SAA</td>
<td>South Atlantic Anomaly</td>
</tr>
<tr>
<td>SCIAMACHY</td>
<td>Scanning Imaging Absorption Spectrometer for Atmospheric Chartography</td>
</tr>
<tr>
<td>SCIAVALIG</td>
<td>SCIAMACHY Validation and Interpretation Group</td>
</tr>
<tr>
<td>SCICAL</td>
<td>SCIAMACHY Calibration tool</td>
</tr>
<tr>
<td>SEU</td>
<td>Single Event Upset</td>
</tr>
<tr>
<td>SLS</td>
<td>Spectral Line Source</td>
</tr>
<tr>
<td>SM</td>
<td>Service Module</td>
</tr>
<tr>
<td>SMR</td>
<td>Sun Mean Reference</td>
</tr>
<tr>
<td>SOST</td>
<td>SCIAMACHY Operations Support Team</td>
</tr>
<tr>
<td>SP1</td>
<td>Spectral Calibration Auxiliary File (SCI_SP1_AX)</td>
</tr>
<tr>
<td>SU1</td>
<td>Sun Reference Auxiliary File (SCI_SU1_AX)</td>
</tr>
<tr>
<td>SZA</td>
<td>Sun Zenith Angle</td>
</tr>
<tr>
<td>TC</td>
<td>Thermal Control</td>
</tr>
<tr>
<td>TCFoV</td>
<td>Total Clear Field of View</td>
</tr>
<tr>
<td>TOA</td>
<td>Top of Atmosphere</td>
</tr>
<tr>
<td>TRUE</td>
<td>Tangent height Retrieval by UV-B Exploitation</td>
</tr>
<tr>
<td>VCD</td>
<td>Vertical Column Density</td>
</tr>
<tr>
<td>WLS</td>
<td>White Light Source</td>
</tr>
<tr>
<td>WUR</td>
<td>Wageningen University and Research</td>
</tr>
<tr>
<td>YSM</td>
<td>Yaw Steering Mode</td>
</tr>
</tbody>
</table>
2 SUMMARY

• Starting from 27 October 2010 SCIAMACHY is sensing the atmosphere with a modified scenario after the successful lowering of the satellite in a new orbit, 17.4 km lower than the original one and characterized by a different repeating cycle (from the previous 35 days/501 orbits to 30 days/431 orbits). Between 22 and 26 October 2010 (orbits 45189 – 45261) SCIAMACHY was in MEASUREMENT IDLE mode during the platform lowering. In the time period 27 October - 02 November some data were acquired and were made available for the ESA internal verification. Users are invited to discard such data as they were provided without proven data quality and were mainly intended for expert users' data assessment. The nominal data distribution was resumed on 02 November 2010. The quality verification of the products for the new scenario (including recalibration and validation) has been performed for each data type and has been completed. Messages on the ENVISAT instrument data quality status since the orbit lowering can be accessed at
 http://earth.esa.int/object/index.cfm?fobjectid=7375
 http://earth.esa.int/object/index.cfm?fobjectid=7223

A dedicated mini-commissioning technical note is currently being prepared, collecting all results and analysis from the mini-commissioning phase. On the basis of the monitoring activities performed after the orbit lowering, the orbit change had not revealed significant impact on the quality of the SCIAMACHY products. However, from the verification of the instrument status modified for the ENVISAT mission extension orbit, the actual limb start/stop tangent heights resulted different by several kilometres from the specified values. Fine-tuning of the limb tangent heights was investigated with dedicated measurements on 08 December 2010 (orbit 45865). Corrections for the Basic Scan profile ESM parameters were defined. A short disclaimer describing the limb tangent height situation between end of October 2010 and January 2011 will be provided to users.

• For the reporting period (orbits 45333 – 46209) SCIAMACHY measurements were nominal with respect to planning except for two anomalies:
 ➢ 45379-45396 (04/05-Nov-2010)
 ➢ 45619-45641 (20/22-Nov-2010)

In both cases the instrument was transferred to R/W WAIT triggered by CCA MCMD Check error.
During the reporting period, regular monthly calibration was scheduled between orbits:

- 45616-45620 (20-Nov-2010)
- 46047-46051 (20-Dec-2010)

During the reporting period, no occultation measurements with the moon rising on the night side were executed.

During the reporting period, one OCR (i.e. 49) for the fine tuning of the limb tangent altitudes was successfully implemented (details at page 13).

No TC adjustments were required.

Starting from the previous issue of the Bi-Monthly report (September-October 2010), two new plots have been included in the document, showing the consolidated Level 2 products available on the D-PAC FTP server, see Section 5.3.3.

Maps of the 2010 monthly averaged VCD of O$_3$ and NO$_2$ generated from SCIAMACHY operational Level 2 consolidated version 5.01 products can be viewed on the ESA Product Control Service web page available at http://earth.eo.esa.int/pcs/envisat/sciamachy/reports/monthlymaps/nadir/

SCIAMACHY instrument performances and products’ quality are checked on a daily basis, monitoring the operational data processing chains. Results are presented by means of Daily Reports published on-line.

The Level 0 NRT daily reports can be accessed at the following address: http://earth.eo.esa.int/pcs/envisat/sciamachy/reports/daily/Level_0/

The NRT and OFL Level 1b daily reports can be accessed at: http://earth.eo.esa.int/pcs/envisat/sciamachy/reports/daily/Level_1/

The Fast-Delivery and OFL Level 2 daily reports can be accessed at: http://earth.eo.esa.int/pcs/envisat/sciamachy/reports/daily/Level_2/

Starting from April 2010 the monitoring of the SCIAMACHY Level 1b Source Packets has been introduced in the daily inspections performed on the consolidated SCIAMACHY Level 1b products. Average spectra for selected mode-state-cluster (-height) combinations are inspected after calibration with the SciaL1c tool. The daily reports can be accessed at: http://earth.eo.esa.int/pcs/envisat/sciamachy/reports/daily/Level_1SP/

A web-page reporting anomalies in the SCIAMACHY data production is available at: http://earth.eo.esa.int/pcs/envisat/sciamachy/reports/anomalies/
3 INSTRUMENT CONFIGURATION AND PERFORMANCE

3.1 In-Flight Status and Performance

Detailed operations, planning and instrument status information can be found on the website of the SCIAMACHY Operations Support (SOST) under http://atmos.caf.dlr.de/projects/scops/. These pages are maintained on a daily basis and show the history and actual progress of the SCIAMACHY mission.

3.1.1 Planned Operations and Measurements (SOST-DLR)

The reporting period covers the orbits 45333 (ANX = 01-Nov-2010, 00:31:24.310) to 46209 (ANX = 31-Dec-2010, 23:56:14.418). One OSDF specified the planning baseline.

<table>
<thead>
<tr>
<th>Orbit</th>
<th>ANX</th>
<th>Start</th>
<th>Stop</th>
</tr>
</thead>
<tbody>
<tr>
<td>45333</td>
<td>4026</td>
<td>01-Nov-2010</td>
<td>00:31:24.310</td>
</tr>
<tr>
<td>45530</td>
<td>46209</td>
<td>31-Dec-2010</td>
<td>23:56:14.418</td>
</tr>
</tbody>
</table>

Table 3.1: SCIAMACHY OSDF planning file from November – December 2010.

Measurements were nominal, i.e. timelines executed limb/nadir sequences with wide swath settings on the dayside of the orbit. Each month they were interleaved with 2 blocks of 14-15 orbits each where the limb state was replaced by the limb_mesosphere_thermosphere state (see below). In-flight calibration and monitoring measurements occurred on daily, weekly and monthly timescales. Regular monthly calibration was scheduled between orbits

- 45616-45620 (20-Nov-2010)
- 46047-46051 (20-Dec-2010)

The moon was in the limb TCFoV between orbits

- 45549-45643 (16-Nov-2010 until 22-Nov-2010)
- 45975-46064 (15-Dec-2010 until 21-Dec-2010)

No occultation measurements with the moon rising on the night side could be executed.

Four blocks of limb_mesosphere_thermosphere measurements were scheduled.
Table 3.2: Scheduled limb_mesosphere_thermosphere measurements in November – December 2010.

One OCR was implemented. This was

- OCR_049 *(Tangent_height_fine_tuning)*: Test with improved Basic Scan Profile ESM entries for fixed altitudes of -3 km, 150 km, 264 km and 370 km as used in limb states (28-37, 40/41), limb_mesosphere state (27) and limb_mesosphere_thermosphere state (55).

3.1.2 Instrument Measurement Status (SOST-DLR)

The final flight status for states and timelines remained unchanged.

3.1.3 Executed Operations and Measurements (SOST-DLR)

Measurements and instrument availability

The OSDF planning file has been scheduled as requested except for two periods:

- Orbit 45379-45396 (04/05-Nov-2010): SCIAMACHY was transferred to R/W WAIT triggered by a CCA MCMD Check error.
- Orbit 45619-45641 (20-Nov-2010 to 22-Nov-2010): SCIAMACHY was transferred to R/W WAIT triggered by another CCA MCMD Check error.
Figure 3.1: Current instrument availability status including the reporting period.

Detector thermal adjustment (TC)

No TC adjustment was required. The TC settings remained at

- DAC1 = 0.53 W
- DAC2 = 0.50 W
- DAC3 = 0.00 W

APSM/NDFM health checks & PMD ADC cal

In the reporting period 1 APSM/NDFM health check and 2 PMD ADC calibrations were executed. All showed nominal results.

<table>
<thead>
<tr>
<th>APSM/NDFM</th>
<th>Orbit</th>
<th>ANX</th>
<th>Result</th>
<th>PMD ADC</th>
<th>Orbit</th>
<th>ANX</th>
</tr>
</thead>
<tbody>
<tr>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td></td>
<td>45552</td>
<td>25-Nov-2010</td>
<td>06:02:61</td>
</tr>
<tr>
<td>48054</td>
<td>21-Dec-2010</td>
<td>06:35:03</td>
<td>ok</td>
<td>48055</td>
<td>21-Dec-2010</td>
<td>08:11:11</td>
</tr>
</tbody>
</table>

Table 3.3: APSM/NDFM health check and PMD ADC calibration.
Anomalies

Two major instrument anomalies had occurred.

- In orbit 45379 (04-Nov-2010, 05:38:09 UTC) the MCMD Check Error triggered a transfer to R/W WAIT. The MPS schedule was resumed in orbit 45396 (05-Nov-2010, 11:16:38 UTC).
- In orbit 45619 (20-Nov-2010, 22:39:19 UTC) the MCMD Check Error triggered another transfer to R/W WAIT. The MPS schedule was resumed in orbit 45641 (22-Nov-2010, 12:35:24 UTC).

Table 3.4: Instrument anomalies between November and December 2010.

<table>
<thead>
<tr>
<th>Orbit</th>
<th>Date</th>
<th>Event Type</th>
<th>ID Content Transition</th>
<th>Mode</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>45379</td>
<td>04-Nov-2010</td>
<td>AUTOMATED SWITCH</td>
<td>recovery from R/W WAIT</td>
<td>Raw</td>
<td>SCIAMACHY CCA check error</td>
</tr>
<tr>
<td>45396</td>
<td>05-Nov-2010</td>
<td>AUTOMATED SWITCH</td>
<td>recovery from R/W WAIT</td>
<td>Raw</td>
<td>SCIAMACHY CCA check error</td>
</tr>
</tbody>
</table>

Data Quality

The transfer to instrument modes lower than MEASUREMENT affected the stability of the ATC/TC system for a short while as listed in Table 3.5.

Table 3.5: Periods with reduced data quality between November and December 2010.

<table>
<thead>
<tr>
<th>Orbit</th>
<th>Start</th>
<th>Stop</th>
<th>Event</th>
<th>Affected System</th>
</tr>
</thead>
<tbody>
<tr>
<td>45396</td>
<td>45408</td>
<td>05-Nov-2010, 11:16:38</td>
<td>recovery from R/W WAIT</td>
<td>ATC/TC</td>
</tr>
<tr>
<td>45641</td>
<td>45650</td>
<td>22-Nov-2010, 12:35:24</td>
<td>recovery from R/W WAIT</td>
<td>ATC/TC</td>
</tr>
</tbody>
</table>

3.1.4 Performance Monitoring - System (SOST-DLR)

Detector and OBM temperatures are monitored according to the requirements of the IOM [1]. It requests to ensure that the average temperature per orbit remains within the specified limits.

Detector temperatures

For each detector the average temperatures per orbit are determined from HK telemetry parameters. Figure 3.2 displays the temperatures of all 8 detectors. Colour coding is as on the operational monitoring website, i.e. data from orbits with HK telemetry coverage > 90% are shown in red, for < 90% in green. Minimum/maximum values per orbit are indicated as vertical bars. The temperature limits of each detector are shown as horizontal lines.

The elevated detector temperatures as observed after the KBS anomaly with subsequent switch-on and continuous operations of KBS3 persisted and must be expected a feature of future SCIAMACHY TC operations. Channels 1-3 and 6-8 were still well in limits. The temperatures of detector 4 and particularly detector 5 remained above their upper limits.
for most of the reporting period. Detector 4 returned to the specified range in the second half of December 2010 while detector 5 reached the upper limit again just at the end of the year. Both temperature excursions had been tolerated.

OBM temperatures

The average OBM temperature per orbit is determined from specific HK telemetry parameters. In addition power readings for the ATC heaters are monitored. Temperatures and ATC heater powers are given in Figures 3.3 and 3.4. Colour coding is as in Figure 3.2.

As in the case of the detector temperatures (see above) the impact of higher heat dissipation by KBS3, i.e. reduced ATC heater powers, persisted and has to be considered a fact in future ATC operations.

PMD ADC status

The status of the PMD ADC is monitored according to the requirements of the IOM [1]. It requests to ensure that no glitches occur caused by an SEU.

No PMD ADC glitches have been detected. As in the cases of detector and OBM temperatures (see above) the PMD temperature remained at a slightly elevated level.
Figure 3.2: Detector temperatures.
Figure 3.3: OBM temperatures (top: derived OBM, middle: limb sensor, bottom: nadir sensor).

Figure 3.4: ATC heater power (top: ATC limb, middle: ATC nadir, bottom: ATC Rad A).
LLI status

Life Limited Items are monitored based on analysis of the

- OSDF: This yields a predicted LLI usage.
- Report format: This counts the actual LLI switches or used LLI cycles. No WLS/SLS burning times can be derived thereof.

In addition, the in-flight usage of the cryogenic heat pipe is recorded. This subsystem has a limited number of cycles. Each decontamination increases the accumulated number of cycles by 1.

At the end of the reporting period the fractional usage of the LLI relative to the allowed in-flight budget was (based on OSDF prediction)

- NDFM: 0.59
- APSM: 0.54
- NCWM (sub-solar port): 0.89
- WLS (switches): 0.18
- WLS (burning time): 0.33
- SLS (switches): 0.08
- SLS (burning time): 0.02

For the NDFM and APSM the safety margin factor of 2 is no longer applied in the calculation of the fractional usage since it had been found acceptable to stay below the figures of the life-tests. How the relative LLI usage has accumulated since launch is illustrated in Figure 3.5. ‘EOL’ assumes a total mission lifetime until end of 2013.

![LLI usage graph]

Figure 3.5: Relative usage of LLIs. ‘EOL’ is derived for a mission lifetime until 2013. For the NDFM and APSM no margin factors have been applied to derive the EOL relative usage.
Note that the NCWM usage exceeding 100% by the end of 2013 will be adjusted in the second phase of the mission extension such that the 100% limit is maintained.

The number of cryogenic heatpipe cycles did not increase (no decontamination). The budget used remained at 40% of the allowed in-flight budget.

Time reference

The times quoted in all planning files refer to the reference orbit. Since the actual orbit differs from the reference orbit (e.g. orbit drift), the times given w.r.t. the reference orbit also do not reflect exactly the actual absolute times of events along the orbit (e.g. ANX, sunrise, sub-solar, moonrise, eclipse). The requirements for orbit maintenance may result in time differences of usually ± 10 sec. In some cases this value may even reach ± 1 min, however.

SOST monitors how the reference time deviates from the actual time. This is done by using the predicted time which comes very close to the actual = restituted time. If the predicted times are delayed with respect to the reference orbit, then the difference $\text{predicted} - \text{reference time}$ is >0 sec; in the other case it is <0 sec.

Figure 3.6 displays the time difference $\text{predicted} - \text{reference}$. Orbit manoeuvres cause distinct discontinuities. Due to the orbit lowering manoeuvre end of October the time difference becomes as low as -342 sec (orbit 45222) and returns to nominal values once the modified orbit is established.

![Figure 3.6: Time difference between predicted and reference time.](image)
3.1.5 Performance Monitoring - Light Path (SOST-IFE)

This section summarises the performance monitoring results for the two months time interval covered by this report. A more detailed description of the performance monitoring activities is given in the SCIAMACHY Bi-Monthly Report May-June 2008.

3.1.5.1 Science Channel Averages

One part of the SOST long-term monitoring activities is the trend analysis of measurements with the internal White Light Source (WLS) and of observations of the unobscured Sun above the atmosphere. In order to monitor the different SCIAMACHY light paths, solar measurements are taken in various viewing geometries: In limb/occultation geometry (via ASM and ESM mirrors), in nadir geometry (via the ESM mirror through the sub solar port), and via the so-called calibration light path involving the ASM mirror and the ESM diffuser. SCIAMACHY long-term monitoring comprises a regular analysis of these measurements. The plots displayed in Figure 3.7 show results of these monitoring activities for the time interval November to December 2010. Note that the reported channel averages are medians. The currently used scan angle correction is based on Version 6 radiometric key data.

The light path monitoring results presented in this section may be regarded as a first step towards spectrally resolved monitoring factors (m-factors) which is produced based on fully calibrated data. Daily updated light path monitoring results can be found on the SOST or IUP web site (http://www.iup.uni-bremen.de/sciamachy/LTM/LTM.html).

The following specific features can be identified from the light path monitoring results during the time interval of this report:

- Overall the instrument behaved as expected.
- Between 27 October and 2 November ENVISAT was operated in YSM instead of SYSM (as part of the orbit change manoeuvre), which had an impact on pointing. As a result, also the throughput monitoring data during this period are more variable and may also contain slight offsets.
- Overall, the orbit change seems to have no major impact on throughput.
- The data gaps on 5/6 and 26/27 November are caused by short instrument switch-offs.
- The degradation rate in the UV (channels 1 & 2) is currently less than 1% per month, slightly smaller than before.
- The minimum average throughput in channel 1 lies currently still at around 28% (for the limb light path). The throughput of the calibration light path is currently at about 77% in channel 1 and 79% in channel 2, similar as in the previous reporting period.
- The overall degradation of channel 3 is still very small (2 – 10%, depending on light path) compared to channels 1 and 2. A small decrease in throughput of about
0.1% is observed in the WLS and limb light paths within the two months of this report.

- Channels 4 and 5 remained almost stable between November and December 2010.
- Channels 6 to 8 shows a decrease in throughput of about 0.5% per month or less.
- The throughput of channel 8 is currently at about 70%.
Figure 3.7: Light path monitoring results November to December 2010 (medians).
3.1.5.2 Spectral light path monitoring results

Starting from the Bi-Monthly report January-February 2010, spectral light path monitoring results have been replaced by corresponding m-factor results (based on fully calibrated Level 1 data) shown in Section 4. Nevertheless, the Level 0 based spectral monitoring data are still available via the SOST-IFE web site (see http://www.iup.uni-bremen.de/sciamachy/LTM/LTM_spectral/LTM_spectral.html).

3.1.5.3 PMD monitoring results

The SCIAMACHY PMDs are monitored in a similar way as the science channels, but of course no channel averaging is performed. However, the results presented here are based on the same measurements as the science channel results (but using the PMD low gain signal), and they have been normalized to the same reference times as the spectral results. Figure 3.8 shows the PMD throughput variation for the whole time period between 2 August 2002 and end of December 2010. Note that a constant dark signal for each of the PMDs has been assumed. To verify this assumption, Figure 3.8 also shows the variation of the PMD dark signal over time, which is usually quite low.

Considering the broadband character of the PMDs, the observed PMD throughput changes are (except for PMD 4 and 7) very similar to those of the science channels.
Figure 3.8: PMD monitoring results August 2002 to December 2010.
4 DEGRADATION MONITORING AND CORRECTION

Since Level 2 product version 5.01, a correction for the radiometric degradation of SCIAMACHY is included in the operational processing. This degradation correction is performed by so-called m-factors. An m-factor is defined as the ratio between a measured spectrum of a constant light source (typically the sun) at a certain time to a spectrum obtained for the same optical path at a reference time. M-factors therefore provide an end-to-end degradation correction for each individual light path.

In general, m–factors have an impact on the polarization correction and on the absolute radiometric calibration. The m–factors for the science detectors are multiplicative factors to the absolute radiometric calibration of SCIAMACHY. The m–factors for the PMDs influence in a non-linear way the polarization correction of SCIAMACHY. Currently, only the science channel m-factors are used in operational data processing.

M-factors are regularly calculated by SOST-IFE and provided to ESA. More details on m-factors and also the m-factors themselves can be found on the IUP Bremen web site under http://www.iup.uni-bremen.de/sciamachy/mfactors.

Figures 4.1 to 4.3 show plots of the science channel degradation (=1/m-factor) observed for each of the SCIAMACHY light paths (nadir, limb, calibration). The current plots cover the time range 2 August 2002 (reference time) to end of December 2010. For each science channel, the plots consist of three main areas: The central part is the contour plot of the degradation. On top of it is the median of the degradation over the detector pixels plotted, showing the overall behaviour of the channel. Right of the main area, the degradation of the last plotted day is shown. The grey bars in the plot are times of instrument unavailabilities (no data at all or the instrument was not in nominal state).

The current status of the degradation can be summarised as follows:

- The throughput is below 40% over almost the whole limb light path in channel 1 (i.e. below about 310 nm). In the nadir light path the throughput is lower than 40% below about 270 nm.
- The minimum throughput around 350 nm in channel 2 is currently about 50%.
- The minimum throughput in channel 3 is currently about 80% (not considering the overlaps).
- The throughput of channels 4 and 5 is rather stable over the whole spectral range (except for the overlaps).
- Channel 6 shows a small throughput decrease at the lower wavelength edge, which is an indication for ice growth.
- The throughput of channels 7 and 8 remains stable (except for dead/bad pixels).
Figure 4.1: Degradation derived from m-factors August 2002 to December 2010 (nadir light path).
Figure 4.2: Degradation derived from m-factors August 2002 to December 2010 (limb light path).
Figure 4.3: Degradation derived from m-factors August 2002 to December 2010 (calibration light path).
5 DATA AVAILABILITY STATISTICS

5.1 Downlink/Acquisition Performance

For the reporting period, problems are known for the Level 0 products listed in Table 5.1.

<table>
<thead>
<tr>
<th>Day</th>
<th>Filename</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>02-11-2010</td>
<td>SCI_NL__0PNPDK20101110 165630 000059583096 00084 45357 2875.N1</td>
<td>Duplicate</td>
</tr>
<tr>
<td>11-11-2010</td>
<td>SCI_NL__0PNPDE20101111 005600 000057113096 00203 45476 1884.N1</td>
<td></td>
</tr>
<tr>
<td>13-11-2010</td>
<td>SCI_NL__0PNPDE20101113 011754 000000003096 00232 45505 1898.N1</td>
<td>sciamachy_source_packets</td>
</tr>
<tr>
<td>19-11-2010</td>
<td>SCI_NL__0PNPDE20101119 010334 000046943096 00318 45591 1939.N1</td>
<td>Duplicate</td>
</tr>
<tr>
<td>25-11-2010</td>
<td>SCI_NL__0PNPDE20101205 011306 000000003097 00117 45821 2073.N1</td>
<td>Duplicate</td>
</tr>
<tr>
<td></td>
<td>SCI_NL__0PNPDE20101205 025838 000038923097 00118 45822 2079.N1</td>
<td>Duplicate</td>
</tr>
<tr>
<td>05-12-2010</td>
<td>SCI_NL__0PNPDE20101205 040330 000000303097 00119 45823 2080.N1</td>
<td>Duplicate</td>
</tr>
<tr>
<td></td>
<td>SCI_NL__0PNPDE20101205 046641 000000413097 00119 45823 2085.N1</td>
<td>Duplicate</td>
</tr>
<tr>
<td></td>
<td>SCI_NL__0PNPDE20101205 053830 000000003097 00120 45824 2089.N1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SCI_NL__0PNPDE20101205 053830 000000003097 00120 45824 2090.N1</td>
<td>Duplicate</td>
</tr>
<tr>
<td>11-12-2010</td>
<td>SCI_NL__0PNPDE20101211 094901 000000003097 00209 45913 3198.N1</td>
<td>sciamachy_source_packets</td>
</tr>
<tr>
<td></td>
<td>SCI_NL__0PNPDE20101211 094901 000000003097 00209 45913 3200.N1</td>
<td>Duplicate</td>
</tr>
<tr>
<td></td>
<td>SCI_NL__0PNPDE20101211 094901 000000003097 00209 45913 3202.N1</td>
<td>Duplicate</td>
</tr>
<tr>
<td></td>
<td>SCI_NL__0PNPDE20101211 094901 000000003097 00209 45913 3205.N1</td>
<td>Duplicate</td>
</tr>
<tr>
<td></td>
<td>SCI_NL__0PNPDE20101211 095323 000000003097 00203 45907 5198.N1</td>
<td>Duplicate</td>
</tr>
<tr>
<td></td>
<td>SCI_NL__0PNPDE20101211 094901 000000003097 00209 45913 3208.N1</td>
<td>Duplicate</td>
</tr>
<tr>
<td>14-12-2010</td>
<td>SCI_NL__0PNPDE20101214 161720 000022733097 00256 45960 3239.N1</td>
<td>Duplicate</td>
</tr>
<tr>
<td></td>
<td>SCI_NL__0PNPDE20101214 165436 000000003097 00256 45960 3240.N1</td>
<td>Duplicate</td>
</tr>
<tr>
<td></td>
<td>SCI_NL__0PNPDE20101214 165545 000000003097 00256 45960 3243.N1</td>
<td>Duplicate</td>
</tr>
<tr>
<td></td>
<td>SCI_NL__0PNPDE20101214 165545 000000003097 00256 45960 3244.N1</td>
<td>Duplicate</td>
</tr>
<tr>
<td></td>
<td>SCI_NL__0PNPDE20101214 165545 000000003097 00256 45960 3246.N1</td>
<td>Duplicate</td>
</tr>
<tr>
<td></td>
<td>SCI_NL__0PNPDE20101214 165639 000000003097 00256 45960 3249.N1</td>
<td>Duplicate</td>
</tr>
<tr>
<td></td>
<td>SCI_NL__0PNPDE20101214 165639 000000003097 00256 45960 3250.N1</td>
<td>Duplicate</td>
</tr>
<tr>
<td></td>
<td>SCI_NL__0PNPDE20101214 165639 000000003097 00256 45960 3251.N1</td>
<td>Duplicate</td>
</tr>
<tr>
<td>19-12-2010</td>
<td>SCI_NL__0PNPDE20101219 010027 000050623097 00318 46022 2188.N1</td>
<td></td>
</tr>
<tr>
<td>24-12-2010</td>
<td>SCI_NL__0PNPDE20101224 200646 000043943097 00402 46106 2223.N1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SCI_NL__0PNPDE20101224 211851 000060793097 00402 46106 2224.N1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SCI_NL__0PNPDE20101224 230010 000060003097 00403 46107 2225.N1</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.1: Level 0 products containing format errors or duplicated.

5.2 Statistics on unconsolidated data (SCI_NL__0P, SCI_NL__1P)

This paragraph reports the availability of NRT data on a monthly basis. The statistics in Figure 5.1 are based on Level 0 and Level 1 data inventoried in the ground segment. Unavailability periods due to instrument anomalies or satellite switch-offs are excluded. The gaps considered are only interfile gaps. Statistics of Level 1 NRT data production are calculated with respect to Level 0 product availability.
5.3 **Statistics on consolidated data**

In this Chapter an overview about operational off-line data (consolidated data) is provided.

5.3.1 **Anomalies on Level 0 consolidated data products**

In the past it had been reported by SOST-DLR that the SCIAMACHY consolidated Level 0 data contain errors and are not complete. The following specific problems have been identified and are reported in detail in the technical notes [3], [4], [5], [6]:

- For one orbit there can be more than one consolidated Level 0 product. These products may be identical or different in content (disregarding the product type file counter).
- Some orbits are not covered by consolidated Level 0 products although SCIAMACHY was operational.
- Some orbits are covered by consolidated Level 0 products but the product duration does not comply with the actually planned and executed instrument operations in that particular orbit.
- Some consolidated Level 0 products exceed the Reed Solomon correction threshold and are flagged accordingly. The occurrence of Reed Solomon errors is non-uniform.
• Until late October/early November 2003 consolidated Level 0 data are hampered by an incorrect orbit number.

More details on consolidated Level 0 anomalies can be found on the SOST web page, which contains a catalogue of available Level 0 consolidated data and description of errors (http://atmos.caf.dlr.de/projects/scops/data_availability/availability.html).

The consolidation activity, reprocessing erroneous Level 0 data, has been completed up to year 2008. For year 2009 the recovery will be soon performed. The overall goal is to achieve a Level 0 consolidated data ‘master set’ that allows data reprocessing of improved data quality.

5.3.2 Availability of consolidated SCI_NL__1P products

SCIAMACHY Level 1b consolidated data are generated at D-PAC using the consolidated Level 0 products as input for processing. The available Level 1b off-line products on the D-PAC ftp-server are regularly checked for completeness and an overview for the months of November and December 2010 is summarised here, considering flight segment and ground segment anomalies. Note that also interfile gaps are considered, but no data gaps inside the products.

Please, note that with the activation of the SCIAMACHY Level 1b processor version 7.03 (starting orbit 41287 on acquisition day 22/01/2010), the D-PAC data server hosting the off-line consolidated Level 1b products was reorganized.

The SCIAMACHY historic Level 1b data set from August 2002 to January 2010, processed with the previous processor version 6 and processing flag "R" (SCI_NL__1PR) was migrated to a dedicated user account at D-PAC (scia1old on eoa-dp.eo.esa.int) and was put off-line on November 2010.

The operational SCIAMACHY Level 1b data production (IPF versions 7.03 and 7.04), with processing flag "U" (SCI_NL__1PU) is nominally accessible as before (scia1usr account) from the D-PAC FTP server (ftp-ops-dp.eo.esa.int). The scia1usr account also hosts reprocessed Level 1b products generated with IPF version 7.03 for the full mission (from 02 August 2002 to 22 January 2010).

Science users are recommended to use the data set processed with the newest processor version 7.

Access details can be obtained from the Earth Observation Helpdesk.
The overall status of the SCIAMACHY consolidated Level 1b data set for the full-mission as resulting from the reprocessing campaign and from the operational processing can be viewed at
http://earth.eo.esa.int/pcs/envisat/sciamachy/full_mission_dataset/statusDPACL1OL.html

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Planned orbit range</th>
<th>Number of products unavailable due to anomalies</th>
<th>Number of unique products available at D-PAC</th>
<th>Expected number of products (considering anomalies)</th>
<th>Availability in percentage during month</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 2010</td>
<td>45333-45763</td>
<td>37</td>
<td>386</td>
<td>394</td>
<td>92.26%</td>
</tr>
<tr>
<td>December 2010</td>
<td>45764-46209</td>
<td>0</td>
<td>444</td>
<td>446</td>
<td>98.51%</td>
</tr>
</tbody>
</table>

Table 5.2: Statistics on consolidated Level 1b products.

5.3.3 Availability of consolidated SCI_OL__2P products

SCIAMACHY Level 2 consolidated data are generated at D-PAC using the consolidated Level 1b products as input for processing. The available Level 2 off-line products on the D-PAC ftp-server are regularly checked for completeness and an overview for the months of November and December 2010 is reported in Figures 5.2 and 5.3; for the reporting months, 378 and 439 Level 2 products are available respectively.

Orbits missing in the plots indicate

- Level 2 products not generated at D-PAC as a consequence of processing failures or missing inputs (either consolidated Level 0 and Level 1b files);

- Orbits sensed during monthly calibrations for which Nadir or Limb measurements were not planned. For the reporting months orbits 45617, 46048, and 46049 ftp://scialusr@ftp-ops-dp.eo.esa.int/2010/12/20/ were not processed up to Level 2 products;

- Instrument unavailabilities (highlighted in red).
Figure 5.2: SCIAMACHY Level 2 off-line data production at D-PAC for November 2010.

Figure 5.3: SCIAMACHY Level 2 off-line data production at D-PAC for December 2010.
5.4 Statistics on reprocessed data

5.4.1 Level 1b re-processing

The full-mission reprocessing of the SCIAMACHY Level 1 data set with processor version 7.03 covering the time range from 02 August 2002 (orbit 2203) to the activation of the off-line forward processing (22 January 2010 - orbit 41287) has been completed.

The re-processed IPF 7.03 Level 1b data set with processing flag U is available on the operational D-PAC FTP server (scia1usr account on ftp-ops-dp.eo.esa.int). Access details can be obtained contacting the Earth Observation Helpdesk.

The overall status of the SCIAMACHY consolidated Level 1b data set for the full-mission hosted at D-PAC as resulting from the reprocessing campaign and from the operational processing can be accessed at

http://earth.eo.esa.int/pcs/envisat/sciamachy/full_mission_dataset/statusDPACL1OL.html

Currently, 41367 unique Level 1b consolidated products are available at D-PAC, while 717 Level 1b products result to be missing for missing or corrupted Level 0 inputs. The following table summarizes for every year the number of orbits planned, orbits lost for instrument unavailability, and the number of Level 1b products missing for processing failures or incorrect transfer of input files.

<table>
<thead>
<tr>
<th>Year</th>
<th>Planned</th>
<th>Instrument unavailability</th>
<th>Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>2176</td>
<td>229</td>
<td>134</td>
</tr>
<tr>
<td>2003</td>
<td>5224</td>
<td>447</td>
<td>80</td>
</tr>
<tr>
<td>2004</td>
<td>5238</td>
<td>144</td>
<td>126</td>
</tr>
<tr>
<td>2005</td>
<td>5226</td>
<td>65</td>
<td>132</td>
</tr>
<tr>
<td>2006</td>
<td>5225</td>
<td>377</td>
<td>57</td>
</tr>
<tr>
<td>2007</td>
<td>5223</td>
<td>181</td>
<td>50</td>
</tr>
<tr>
<td>2008</td>
<td>5240</td>
<td>77</td>
<td>21</td>
</tr>
<tr>
<td>2009</td>
<td>5224</td>
<td>165</td>
<td>52</td>
</tr>
<tr>
<td>2010</td>
<td>5229</td>
<td>237</td>
<td>65</td>
</tr>
<tr>
<td>Total</td>
<td>44006</td>
<td>1922</td>
<td>717</td>
</tr>
</tbody>
</table>

Table 5.4: Statistics on consolidated Level 1b products for the full-mission.
5.4.2 Level 2 re-processing

The full-mission reprocessing of SCIAMACHY consolidated Level 2 data with the new processor version 5.01 was commenced at D-PAC end July 2010. Level 2 version 5.01 data have been processed sequentially and made available progressively on the usual FTP account at DPAC (sciaol2usr on the ftp-ops-dp.eo.esa.int server). The reprocessing activity involves SCIAMACHY data products for the time range from 02 August 2002 (orbit 2203) to 22 January 2010 (orbit 41287). At the beginning of September 2010, the SCIAMACHY Level 2 reprocessing was discontinued on the basis of results from the preliminary validation activities. While most of the new and updated geophysical parameters show very good to acceptable quality, Carbon Monoxide (CO) did fail the validation: the CO column densities contained in SCIAMACHY Level 2 version 5.01 products are of unreliable quality. Users shall not use the CO information in its current implementation. Solutions for the improvement of the CO product are currently being investigated. Currently the Level 2 reprocessed data set (SCI_OL__2PU) is available for the time range from August 2002 to August 2004.

Operational SCIAMACHY Level 2 data products (version 5.01) from the off-line forward processing are nominally accessible as before starting from sensing orbit 41287.

Please, note that in preparation of the re-processing activity, all the Level 2 files with processing stage flag R (SCI_OL__2PR from August 2002 to January 2010) generated with the previous processor version 3.01 were migrated to the account sciaol2old of the D-PAC FTP server (ftp-ops-dp.eo.esa.int). This data set will remain available to the users up to completion of the full-mission reprocessing with version 5.01.

Access details can be obtained contacting the Earth Observation Helpdesk.
6 LEVEL 1 PRODUCT QUALITY MONITORING

6.1 Processor Configuration

6.1.1 Version

The IPF currently in use at Kiruna and ESRIN PDHS for the operational processing of near-real-time SCIAMACHY Level 1b data is version 7.04 since 15 June 2010. The same IPF is adopted at D-PAC for the forward processing of Level 1b off-line data and was activated since acquisition data from 17 June 2010, orbit 43375.

IPF 7.04 was developed in the frame of the ENVISAT 2010+ mission extension project which implemented the lowering of the satellite’s orbit to extend the mission until end 2013. SCIAMACHY orbit change manoeuvres were successfully executed in October 2010. Details can be found on the ESA news available at http://earth.esa.int/object/index.cfm?fobjectid=6999
http://earth.esa.int/object/index.cfm?fobjectid=7024
http://earth.esa.int/object/index.cfm?fobjectid=7223

IPF 7.04 did not introduce evolution aspects in the algorithm compared to prior IPF 7.03, but just updated the CFI library to version 5.8.1 (http://eop-cfi.esa.int/CFI/Registration.html). No format change has been introduced in the new Level 1b product version 7.04.

Starting from the operational Level 1b data version 7.03, a new type of limb state is available; Mesospheric Limb Measurements (state ID 55) are performed scanning altitudes between 60 and 150 km. The measurements are performed instead of "normal" limb states for 30 orbits every month split on two separate days. The operational Level 2 processor does not process these scientific Mesospheric Limb Measurements.

The radiometric degradation of SCIAMACHY can be compensated using m-factors, calculated from the new NRT Level 1b data. M-factors are not part of the Level 1b product and are not used at present in the Level 0-1b processing itself. They are applied in the Level 2 data processing. The m–factors are provided by an external database accessible at http://www.iup.uni-bremen.de/sciamachy/mfactors/.

The corresponding Product Specification is Volume 15 issue 3L version 1.1 [2]. This document is available at http://earth.eo.esa.int/pub/ESA_DOC/ENVISAT/Vol15_Sciamachy_3L_1.1.pdf
The Product Quality Disclaimer at http://envisat.esa.int/dataproducts/availability/disclaimers/SCI_NL__1P_Disclaimers.pdf was updated corresponding to the IPF version 7.03 and describes known artefacts as well as major improvements with respect to the previous IPF versions.

Table 6.1 gives a brief overview of changes implemented in the SCIAMACHY Level 0 to Level 1b processing baseline compared to prior processor versions.

<table>
<thead>
<tr>
<th>IPF Version</th>
<th>Description</th>
<th>Proc Centre</th>
<th>Date</th>
<th>Start Orbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.04</td>
<td>In view of the ENVISAT 2010+ mission extension requiring the lowering of the satellite’s orbit, the new IPF 7.04 was developed without introducing changes in the algorithm but updating the CFI library to version 5.8.1.</td>
<td>D-PAC</td>
<td>17-JUN-2010</td>
<td>43375</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PDHS-E</td>
<td>15-JUN-2010</td>
<td>43355</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PDHS-K</td>
<td>15-JUN-2010</td>
<td>43347</td>
</tr>
</tbody>
</table>
| 7.03 | Following changes are implemented with IPF 7.03:
 • Degradation correction using m-factors implemented in SciaL1c.
 • Improved spectral stray light correction using a matrix approach in channel 2.
 • Mesospheric Limb Measurements included in the Limb MDS.
 • Correction of the Scanner encoding values. | D-PAC | 22-JAN-2010 | 41287 |
| | | PDHS-E | 04-FEB-2010 | 41479 |
| | | PDHS-K | 04-FEB-2010 | 41472 |
| 6.05 | No evolution in the algorithm has been introduced with IPF 6.05 but the processor was ported from AIX to LINUX operating system. | D-PAC | 05-OCT-2009 | 39634 |
| | | PDHS-E | 29-SEP-2009 | 39633 |
| | | PDHS-K | 29-SEP-2009 | 39639 |
| 6.03 | The following changes are implemented with IPF 6.03
 • New pointing correction (new SCI_LI1_AX)
 • Updated of the ESA CFI (5.6) software
 • Correction of a non compliancy report, impacting the Leakage GADS in the consolidated data processing chain (channels 6-8) | D-PAC | 04-JUL-2007 | 27937 |
| | | PDHS-E | 19-JUL-2007 | 28153 |
| | | PDHS-K | 19-JUL-2007 | 28145 |

Table 6.1: Processor version and main changes.
6.1.2 Anomalies

79 SCIAMACHY consolidated Level 1b products for years 2003-2010 resulting from the reprocessing campaign with IPF 7.03 and from the operational processing were found duplicated in the D-PAC data archive and removed from the FTP server. List of the deleted products is available at http://earth.eo.esa.int/pcs/envisat/sciamachy/reports/anomalies/A_08_a_list.txt

6.2 Auxiliary Data Files

For operation of the SCIAMACHY Level 1 processor, a set of auxiliary files as input is required. One subset of these auxiliary files usually changes only in correspondence with a new IPF version, namely the Initialisation file (SCI_LI1_AX) and the Key Data file (SCI_KD1_AX).

Table 6.2 lists the actual Key Data File and Initialisation File used with IPF 7.03.

<table>
<thead>
<tr>
<th>Table 6.1: Key Data and Initialisation configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCI_KD1_AXNIEC20091126_123849_20020301_000000_20991231_235959</td>
</tr>
<tr>
<td>SCI_LI1_AXNIEC20091126_125714_20020701_000000_20991231_235959</td>
</tr>
</tbody>
</table>

Another subset of auxiliary files is the in-flight calibration data files, which are generated when calibration measurements are included in the set of Level 0 data to be processed.

Four types of in-flight calibration auxiliary files exist:
- Leakage Current Calibration (SCI_LK1_AX - updated on orbital basis)
- Solar Reference Spectrum (SCI_SU1_AX - updated on daily basis)
- Spectral Calibration Parameters (SCI_SP1_AX - updated on a weekly basis)
- Pixel-to-Pixel Gain and Etalon Parameters (SCI_PE1_AX - updated on orbital basis).

Figure 6.1 shows statistics of the SU1, LK1, PE1 and SP1 auxiliary data files (ADFs) generated operationally with SciCal 2.2 for November and December 2010. Statistics are based on the SciCal ADFs production/distribution to PDGS and are calculated with respect to the number of auxiliary files expected. It has to be noted that unavailability periods are excluded from statistics as well as duplicated products identified on the basis of the start/stop validity time in the filename.

LK1 statistics are calculated dividing the number of LK1 auxiliary files (generated on orbital basis) by the number of available (to SciCal) Level 0 products. These statistics do not exclude dark measurements that cannot be used for ADF generation due to SAA and orbit phase constraints leading to an over-estimation of missing files.

SU1, SP1 and PE1 statistics are calculated with respect to the number of ADFs expected for the reporting months.
6.2.1 Auxiliary Data File quality analysis

6.2.1.1 SMR analysis

SciCal generates daily SU1 Auxiliary Files. Solar spectra obtained from ESM and ASM calibration measurements are provided in two ways:

- fully calibrated
- not radiometrically calibrated.

The different types of spectra can be recognized by the so called identifier in the solar reference global annotation data set record.

Note the following recommendation:

- Use a not radiometrically calibrated ASM diffuser spectrum (A0) for DOAS type applications.
- All retrieval methods requiring absolute calibrated radiance and irradiance are obliged to use the calibrated ESM diffuser spectrum (D0) (see also disclaimer).

Figures from 6.2 to 6.5 show the ratios of SMR spectra derived from calibrated SMR/ESM (D0) during the months November - December 2010. The ratios were determined by dividing the spectra of a set of days during each month to a spectrum at the beginning of each month. Ratios are not corrected for variation of distance Earth/Sun.

In detail the spectra used for the ratios of each month are the following:

![Figure 6.1: Statistics on SU1, LK1, PE1 and SP1 productions.](image-url)
The overall changes lie usually at about 1-2 % during one month for all channels, which is at least partially caused by the decreasing distance between Sun and Earth. In channel 1, around pixel 550 (at 282 nm), some strong features can be noticed, as well as in channel 2 near pixel 840 (near 393 nm). These strong features coincide with the Mg II and Ca Fraunhofer lines respectively. These lines are partially formed in the solar Chromosphere and are known to change with solar variability. The weaker spectral features in channel 2 (e.g. near pixels 550, 650,750), on the other hand, correlate with strong Fraunhofer lines, which are not chromospheric. These features probably arise from small wavelength shifts (order of 1/100 of a pixel). Generally a spectral feature could have significant impact on the product quality, especially when the affected spectral parts are used for DOAS retrieval.

The large features in the end of channel 6 (channel 6+) and channels 7 and 8 are due to bad pixels. Note that the bad pixel mask used is still from the on-ground calibration. A regular update of the bad pixel mask is implemented starting with IPF 6.02. However a bad pixel correction will not be applied to the SMR spectra, but only to PMD out-of-band factors, in order to enable the user to apply a different mask from the one provided by the ADF.

Figures 6.6 and 6.7 show SMR ratios as long term trends; plots are obtained dividing the ESM spectra from day 30 November 2010 and 31 December 2010, respectively with spectra from 30 November 2003 and 31 December 2003. The first spectrum available exists for 18 July 2002. However to consider Sun/Earth distance, the ratio was performed with spectra from same calendar days. All SCI_SU1_AX files used were generated with SciCal 2.2.

What can be concluded is that for channels 1-2 an average degradation in 6 years of about 10-15% is observed, channels 3 degrades by about 2% and channels 4-5 degrade by less than 1%, channel 6 by about 4-5%. The signal in channel 7 has increased with respect to the SMR of year 2003. This is due to the impact of the icing of the IR detectors. This is consistent with the Light Path monitoring at SOST-IFE and available at http://www.iup.uni-bremen.de/sciamachy/LTM/LTM_spectral/LTM_spectral.html.
Figure 6.2: SMR ratios per detector channel 1-4 (changes during November 2010).

Ratio of SMRs as a function of pixel, November 2010

Figure 6.3: SMR ratios per detector channel 5-8 (changes during November 2010).

Ratio of SMRs as a function of pixel, November 2010
Figure 6.4: SMR ratios per detector channel 1-4 (changes during December 2010).

Figure 6.5: SMR ratios per detector channel 5-8 (changes during December 2010).
Figure 6.6: SMR ratios per detector channel on Long Term Trend 30/11/2010 divided by 30/11/2003.

Figure 6.7: SMR ratios per detector channel on Long Term Trend 31/12/2010 divided by 31/12/2003.
6.2.1.2 LK1 analysis

6.2.1.2.1 Leakage Constant part

On an orbital basis a leakage current calibration is performed, whenever measurement data do not lie in the South Atlantic Anomaly region.

In Figures from 6.8 to 6.11 the leakage constant part FPN (fixed pattern noise) of the LK1 ADFs is analysed by determining the ratios of the FPN of each month with a time distance of one orbit, one day, one week, two weeks, three weeks and a month. For channels 1-5 and the first part of channel 6, during up to three weeks nearly no changes can be noticed. Sudden jumps however between the different dark current ratios can be seen for channels 1, 2, 4 and 5 between 4 weeks. They are very small but above the noise level.

The IR channels show a lot of noise.

Note that since the processor version IPF 6.03, the time dependent part of the leakage current is considered as well (see 6.2.1.2.2).
Figure 6.8: Dark current ratios (constant part) channels 1-4 during November 2010. Reference spectrum used: Orbit 45337, 01 November 2010.

Figure 6.9: Dark current ratios (constant part) channels 5-8 during November 2010. Reference spectrum used: Orbit 45337, 01 November 2010.
Figure 6.10: Dark current ratios (constant part) channels 1-4 during December 2010. Reference spectrum used: Orbit 45768, 01 December 2010.

Figure 6.11: Dark current ratios (constant part) channels 5-8 during December 2010. Reference spectrum used: Orbit 45768, 01 December 2010.
6.2.1.2.2 Leakage Variable part

Starting with IPF 6.03, the orbital dependency of channel 6 to 8 leakage current is considered. SCIAMACHY detector channels 6 - 8 have a time dependent leakage dark signal that consists of two components, the leakage current of the detector pixel and second a component due to thermal background that varies along the orbit. The implementation of the orbital variation of the leakage current is expected to improve retrieval especially in detector channel 8 for infrared products.

Figure 6.12 shows the evolution of the leakage variable part of the SCI_LK1_AX ADF during the time span from 01 November 2010 to 31 December 2010. The leakage variation for pixel 222 in channel 7 corresponding to orbit phase 6 is shown. Updates of the leakage variable values are expected after the processing of the monthly calibration orbits, usually once per month. During the reporting period, monthly calibration sequences were scheduled between orbits:

- 45616-45620 (20-Nov-2010)
- 46047-46051 (20-Dec-2010)

For these dates the change of the Leakage Variable value can be clearly seen in Figure 6.12, demonstrating that calibrations were performed successfully.

Figure 6.12: Leakage variable part from 01 November 2010 to 31 December 2010, for channel 7, orbit phase 6, pixel 221.
6.3 **Bad and Dead Pixel Mask**

The SWIR channels 6-8 suffer from a rising number of bad pixels that are not (or only to a small degree) usable for retrieval. The reason is a lattice constant mismatch between the substrate material and the light detecting material of the detectors. The bad pixels are detected using dark, WLS and sun measurements. The number of bad pixels rises with the life time of the instrument due to proton impact. The mask is calculated on an orbital basis.

6.3.1 **Operational Processor Analysis**

Starting from the Level 1b IPF 7.03 baseline, SCIAMACHY bad and dead detector pixel masks are generated on an orbital basis. The PPG/Etalon correction parameters required for the SCIAMACHY Level 0 to 1b processing are calculated by SciCal and enclosed in the SCI_PE1_AX auxiliary data files. The set of parameters generated is then written into the Level 1b Pixel-to-Pixel Gain (PPG) ETALON GADS indicating the position of pixels which may not be used for further processing. In the next BMR, results for the operational Bad and Dead Pixel Mask will be presented. The mask currently provided in the Level 1b products is not identical to the mask generated at SRON. It is planned to align the two masks in future processor versions.

6.3.2 **SRON Analysis**

SRON performs routinely analysis on the SCIAMACHY Bad and Dead Pixel Mask identifying bad pixels of the detector arrays with the SCIAMACHY Detector Monitoring Facility (SDMF) using 11 flagging criteria. These criteria are based on the dark signal model, transmission, gain and noise of a pixel. Bad pixel masks are calculated on an orbital basis and combined into a “smoothmask” with masks from about 50 orbits. In Figure 6.13 we show the number/fraction of pixels that is flagged as bad for channels 6, 6+, 7 and 8. Note that channel 6 consists of two parts employing different detector materials. Channel 6+ starts at pixel 794. The rate at which the number of pixels that is flagged is increasing is similar for the IR channels 6+, 7 and 8. The fraction of flagged pixels in channel 6 is much lower and almost constant over the mission, because of the different detector materials used in this part of the channel.
Figure 6.13: Number/Fraction of pixels that is flagged as bad by the SDMF smoothmask for channels 6 (blue), 6+ (red), 7 (green) and 8 (cyan). Orbits during SODAP or decontaminations have been removed. Note the temporary decrease in the number of bad pixels after the last decontamination, for channel 8 about 6%, a few percent more than after the previous decontaminations.
6.4 **Pointing Performance**

No updates to present in the reporting period.

6.5 **SciaL1c tool**

The SciaL1c tool is an application provided to the users of SCIAMACHY Level 1b products. This application allows selecting specific calibrations to apply to Level 1b data, which are in case of SCIAMACHY defined as not fully calibrated Level 0 channel information in combination with calculated calibration data. The generated Level 1c products are suitable for the user's particular applications.

The SciaL1c Calibration and Extraction Software was upgraded to be compatible with IPF 6.03 data. It is downward compatible, i.e. it can also be used with data from older IPF versions. SciaL1c can be downloaded at: http://envisat.esa.int/scial1c/

LINUX, Sun Solaris, LINUX on DEC-Alpha and HP-UX on IA64 versions are available.

The latest updated version 2.1 of the SciaL1c tool was provided to the users end of November 2008.

Please, note that an anomaly in the handling of the m-factor file during the calibration of SCIAMACHY Level 1b data was observed. The m-factor file (SCI_MF1_AX) is not correctly reported into the child product restituted from the SciaL1c processing. In particular, the MF1 ADF filename does not fully appear in the DSD descriptor. The quality of the product is not impacted; the anomaly will be fixed in the next delivery of SciaL1c.
7 LEVEL 2 NRT PRODUCT QUALITY MONITORING

7.1 Processor Configuration

7.1.1 Version

Since 08 May 2006, the near-real-time processing of SCIAMACHY Level 2 data has been suspended, evolution is restricted to the Level 2 off-line processor (see Section 8). The last IPF version used was 5.04. The corresponding product specification is [2]. The Product Quality Disclaimer at http://envisat.esa.int/dataproducts/availability/disclaimers/SCI_NL__2P_Disclaimers.pdf describes known artefacts.

An overview on the implementation dates of the IPF at the different PDS processing centres and the main modifications implemented can be found in previous BMR (June-May 2007).

An overview of Auxiliary Files being used as input for SCI_NL__2P products can be found in BMR May-June 2007.

With the activation of the SCIAMACHY Level 2 processor Version 5.01, the Fast Delivery processing of Level 2 products has operationally started at D-PAC. Level 1b near real time products and predicted instead of consolidated Auxiliary Data Files are used as input for the Level 2 off-line processor. With this new service ESA provides to the users within 24 hours from data acquisition the full SCIAMACHY Level 2 products. Data monitoring of the SCIAMACHY Level 2 Fast Delivery processing chain is routinely performed and the corresponding Daily Reports are published on ESA’s PCS web-pages at the link: http://earth.eo.esa.int/pcs/envisat/sciamachy/reports/daily/Level_2/

The main difference between SCIAMACHY off-line and Fast Delivery products is that the Restituted Attitude file cannot be used for processing. It also adopts Level 1b NRT data, which can differ in the used calibration measurements from the consolidated data. However, the difference between off-line processor products and fast delivery products is small in most cases.
8 LEVEL 2 OFF-LINE
PRODUCT QUALITY MONITORING

8.1 Processor Configuration

8.1.1 Version

The current Level 2 processor for the off-line processing chain at D-PAC is version 5.01 since 09 February 2010 in alignment with the activation of the Level 1b IPF 7.03.

The new processor version introduces the following changes:

- M-Factors implemented in Level 1b-2 processing step
- Changes in the NO$_2$ retrieval settings
- New AAI algorithm
- Improvements in Limb retrieval
- Nadir SO$_2$ total columns for anthropogenic and “volcanic” scenarios
- Nadir BrO total columns
- Nadir H$_2$O total columns
- Nadir CO columns
- Nadir OCIO slant columns
- Limb BrO profile
- Limb Cloud product

Note that the new version includes an update in the Level 2 data format.

The Product Specification corresponding to the Level 2 off-line processor 5.01 is Volume 15, issue 3L, version 1.1/[2] and can be found at
http://earth.eo.esa.int/pub/ESA_DOC/ENVISAT/Vol15_Sciamachy_3L_1.1.pdf

The Product Quality Disclaimer at
http://envisat.esa.int/dataproducts/availability/disclaimers/SCI_OL__2P_Disclaimers.pdf
has been updated in relation to the new processor version 5.01 and describes known artefacts.

SCI OL_2P products contain geo-located vertical column amounts of trace gases retrieved from Nadir measurements, as well as stratospheric Limb profiles of O$_3$, NO$_2$ and BrO. Additionally fractional cloud coverage, cloud-top height, and cloud optical thickness are derived and provided as product to the user. The major upgrades with respect to prior processor versions are summarised in Table 8.1.
<table>
<thead>
<tr>
<th>Processor Version</th>
<th>Description</th>
<th>Proc Centre</th>
<th>Date</th>
<th>Start Orbit</th>
</tr>
</thead>
</table>
| 5.01 | Main processor changes:
| | • Nadir MDS now contain additional trace gas columns: SO2, BrO, H2O, OClO and CO.
| | • Limb MDS now contain the trace gas profiles of BrO.
| | • Limb Cloud MDS Contains height resolved indicators for cloud presence and type (water clouds, PSCs and NLCs). | D-PAC | 23-JAN-2010 | 41295 |
| 3.01 | Main processor changes:
| | • Updated SACURA cloud algorithm
| | • Offset applied in NO2 slant column processing was removed
| | • Number of retrieved profiles per state was set from one to four (4)
| | • Cloud and Aerosol MDS are filled with the next valid value instead of being set to zero
| | • Molecular Ring correction applied on NADIR O3 slant column density
| | Non-compliance corrections:
| | • Inter change of Pressure and Temperature values in LIMB MDS
| | • Erroneous Cloud and Aerosol Quality Flags
| | • AAI erroneously set to zero in Cloud and Aerosol MDS
| | • Scaling of too large NO2 error estimate | D-PAC | 23-SEP-2007 | 29092 |

Table 8.1: Level 2 off-line Processor configuration.

8.1.2 Anomalies

42 SCIAMACHY consolidated Level 2 products for year 2010 were found duplicated in the D-PAC data archive and were removed from the FTP server. List of the deleted products is available at

http://earth.eo.esa.int/pcs/envisat/sciamachy/reports/anomalies/A_09_a_list.txt
8.1.3 Auxiliary Data Files

Input for Level 2 off-line processing is the so-called Initialization File. For processor version 5.01 a new Initialization file became active which is

```
SCI_IN__AXNPDE20090615_120000_20090615_000000_20991231_235959
```

This ADF is usually changed only in case of a processor upgrade.

8.2 Monitoring results

8.2.1 Nadir: NO2 consistency checking

The world map plots of Nadir NO2 vertical column density (VCD) values averaged over one month are generated from the SCI OL__2P Nadir products. Figures 8.1 and 8.3 show the monthly world map plots for November and December 2010.

Figures 8.2 and 8.4 show errors for the VCD monthly average plots. The errors are given in absolute values (molec/cm^2). Generally the equator region has NO2 values with higher errors.

An overall reduction of the error associated to NO2 mean VCDs has been obtained with the new processor version 5.01.

High concentration of NO2 is expected over industrial regions, such as over North America, especially the East coast, over central Europe, China and South Africa, which is reflected in the world maps.
8.2.1.1 Nadir: VCD NO$_2$ map November 2010

![NO$_2$ VCD map](image1)

Figure 8.1: NO$_2$ VCD (molec/cm2) world map for 01 - 30 November 2010 – monthly average.

![NO$_2$ VCD error map](image2)

Figure 8.2: NO$_2$ VCD error (molec/cm2) for 01 - 30 November 2010 - monthly average.
8.2.1.2 Nadir: VCD NO₂ map December 2010

Figure 8.3: NO₂ VCD (molec/cm²) world map for 01 – 31 December 2010 – monthly average.

Figure 8.4: NO₂ VCD error (molec/cm²) for 01 – 31 December 2010- monthly average.
8.2.2 *Nadir: O₃ consistency checking*

Analogous to the NO₂ world maps, O₃ vertical column density (VCD) values averaged over one month are generated from the SCI OL 2P Nadir products and plotted on a world map. Figures 8.5 and 8.7 show the ozone distribution converted to Dobson units for November and December 2010.

The VCD error as monthly average plots is shown in Figures 8.6 and 8.8 as relative fraction.
8.2.2.1 Nadir: VCD O_3 map November 2010

Figure 8.5: O_3 VCD (DU) world map for 01 - 30 November 2010 – monthly average.

Figure 8.6: O_3 VCD error for 01 - 30 November 2010 - monthly average.
8.2.2.2 Nadir: VCD O3 map December 2010

Figure 8.7: O₃ VCD (DU) world map for 01 - 31 December 2010 – monthly average.

Figure 8.8: O₃ VCD error for 01- 31 December 2010 - monthly average.
8.2.3 **Nadir: H$_2$O consistency checking**

The world map plots of Nadir H$_2$O vertical column density (VCD) values in g/cm2 averaged over one month are generated from the SCI OL 2P Nadir products version 5.01. Figures 8.9 and 8.11 show the monthly plots for November and December 2010. Figures 8.10 and 8.12 show the VCD error for the monthly average plot. Errors are absolute values (g/cm2).

In the plots, data over high mountain areas (Himalayas and the Andes range) are masked out by the processor’s internal quality checks. No correction for surface elevation is performed.

Please note that these plots are preliminary results after the implementation of the new processor version and are still under review.
8.2.3.1 Nadir: VCD H₂O map November 2010

Figure 8.9: H₂O VCD (g/cm²) world map for 01 - 30 November 2010 – monthly average.

Figure 8.10: H₂O VCD (g/cm²) error for 01 - 30 November 2010 - monthly average.
8.2.3.2 Nadir: VCD H_2O map December 2010

Figure 8.11: H_2O VCD (g/cm2) world map for 01 – 31 December 2010 – monthly average.

Figure 8.12: H_2O VCD (g/cm2) error for 01 – 31 December 2010 – monthly average.
8.2.4 Nadir: BrO consistency checking

The world map plots of Nadir BrO vertical column density (VCD) values averaged over one month are generated from the SCI_OL_2P Nadir products version 5.01. Figures 8.13 and 8.15 show the monthly world map plots for November and December 2010.

Figures 8.14 and 8.16 show the VCD errors for the monthly average plots. Errors are given in absolute values (molec/cm²).

Large emissions of inorganic bromine are expected in the Tropospheric Polar Regions at the end of the winter (bromine explosion event) and in the troposphere and possibly in the stratosphere as a consequence of active volcanoes. Low values are present in correspondence with the SAA.

Please note that these plots are preliminary results after the implementation of the new processor version and are still under review.

For year 2002 the BrO column densities are substantially too low with a lot of negative values. We recommend users not to use the 2002 BrO data in the current implementation.
8.2.4.1 Nadir: VCD BrO map November 2010

Figure 8.13: BrO VCD (molec/cm²) world map for 01 – 31 November 2010 – monthly average.

Figure 8.14: BrO VCD error (molec/cm²) for 01 – 31 November 2010- monthly average.
8.2.4.2 Nadir: VCD BrO map December 2010

Figure 8.15: BrO VCD (molec/cm2) world map for 01 – 31 December 2010 – monthly average.

Figure 8.16: BrO VCD error (molec/cm2) for 01 – 31 December 2010 – monthly average.
8.2.5 Nadir: SO₂ consistency checking

The world map plots of Nadir SO₂ vertical column density (VCD) values in molec/cm² averaged over one month are generated from the SCI_OL__2P Nadir products version 5.01. Each Level 2 product now contains one MDS for an anthropogenic scenario (SO₂ present in the boundary layer) and one MDS for the volcanic scenario (SO₂ layer between 10 and 11 km).

Since SO₂ distribution varies to a large degree between an anthropogenic scenario (pollution dominated) and a volcanic scenario, the AMF cannot be determined for both with a single climatology. Two types of AMF for the calculation of the “anthropogenic” SO₂ vertical columns and the “volcanic” ones are derived assuming a constant profile shape for two typical scenarios:

- a profile with 1 DU of SO₂ from surface to 1 km height simulating an Anthropogenic Pollution scenario;
- a profile with 10 DU of SO₂ between a 10 and 11 km simulating a volcanic eruption.

Accordingly, two types of SO₂ vertical columns - anthropogenic and volcanic - are computed and written into two different MDSs of the Level 2 products.

Both retrievals use the same background subtracted slant column as input, calculated from a reference sector over the Pacific Ocean as a pollution free correction.

Figures 8.17, 8.19, 8.21 and 8.23 show the monthly world map plots for anthropogenic and volcanic vertical columns for November and December 2010. Figures 8.18, 8.20, 8.22 and 8.24 show the VCD errors for the monthly average plots. Errors are given in absolute value (molec/cm²).

Please note that these plots are preliminary results after the implementation of the new processor version and are still under review. The operational SO₂ product picks-up the main relevant features, but VCDs are strongly affected by negative values, presumably resulting from problems with the reference sector subtraction. Due to the poor results, it is recommended not to use the current version of the anthropogenic columns for quantitative studies. Usage of the volcanic columns as indicator of volcanic eruptions seems to be feasible.
8.2.5.1 Nadir: SO_2 Anthropogenic scenario - November 2010

Figure 8.17: SO$_2$ VCD (molec/cm2) world map for 01–30 November 2010 – monthly average.

Figure 8.18: SO$_2$ VCD error (molec/cm2) for 01–30 November 2010- monthly average.
8.2.5.2 Nadir: \(\text{SO}_2 \) Anthropogenic scenario - December 2010

Figure 8.19: \(\text{SO}_2 \) VCD (molec/cm\(^2\)) world map for 01 – 31 December 2010 – monthly average.

Figure 8.20: \(\text{SO}_2 \) VCD error (molec/cm\(^2\)) for 01 – 31 December 2010 – monthly average.
8.2.5.3 Nadir: SO_2 Volcanic scenario - November 2010

Figure 8.21: SO_2 VCD (molec/cm2) world map for 01 – 30 November 2010 – monthly average.

Figure 8.22: SO_2 VCD error (molec/cm2) for 01 – 30 November 2010 – monthly average.
8.2.5.4 Nadir: SO$_2$ Volcanic scenario - December 2010

Figure 8.23: SO$_2$ VCD (molec/cm2) world map for 01 – 31 December 2010 – monthly average.

Figure 8.24: SO$_2$ VCD error (molec/cm2) for 01 – 31 December 2010 – monthly average.
8.2.6 Nadir: OCIO consistency checking

The polar maps of Nadir OCIO slant column density (SCD) values averaged over one month are generated from the SCI_OL__2P Nadir products version 5.01. Figure 8.25 and 8.27 shows the monthly SCD values for December 2010 over the Northern and the Southern Hemisphere respectively. Figures 8.26 and 8.28 show the corresponding SCD absolute errors for the monthly average plots.

Computation of VCD is difficult for the rapid photochemistry of OCIO. The vertical column given in the product does not contain any correction for photochemical effects and should thus not be used as given.

Significant amounts of OCIO are expected only in the activated polar vortex.

Please note that these plots are preliminary results after the implementation of the new processor version and are still under review.
8.2.6.1 Nadir: SCD OClO maps November 2010

Figure 8.25: OClO SCD (molec/cm²) for 01 – 30 November 2010 – monthly average over the Northern Hemisphere.

Figure 8.26: OClO SCD error (molec/cm²) for 01 – 30 November 2010- monthly average over the Northern Hemisphere.
Figure 8.27: OClO SCD (molec/cm2) for 01 – 30 November 2010 – monthly average over the Southern Hemisphere.

Figure 8.28: OClO SCD error (molec/cm2) for 01 – 30 November 2010- monthly average over the Southern Hemisphere.
8.2.6.2 Nadir: SCD OCIO maps December 2010

Figure 8.29: OCIO SCD (molec/cm²) for 01 – 31 December 2010 – monthly average over the Northern Hemisphere.

Figure 8.30: OCIO SCD error (molec/cm²) for 01 – 31 December 2010 – monthly average over the Northern Hemisphere.
Figure 8.31: OCIO SCD (molec/cm²) for 01 – 31 December 2010 – monthly average over the Southern Hemisphere.

Figure 8.32: OCIO SCD error (molec/cm²) for 01 – 31 December 2010- monthly average over the Southern Hemisphere.
8.2.7 **Nadir: CO consistency checking**

Due to erroneous retrieval settings in the operational software, the CO column densities from Level 2 version 5.01 products are not reported in the bi-monthly report. Users are recommended not to use the CO data set.

8.2.8 **Limb: Ozone profile averages**

This paragraph reports on the monitoring of SCIAMACHY limb profiles on a monthly basis, showing the results for Ozone limb profiles binned for two tangent height regions.

Starting with processor version 5.01, a new limb retrieval grid of 27 tangent altitudes has been adopted instead of the 19 values grid used by processor 3.01. As a consequence, the limb profile average plots in this section use different altitude bins with different thickness according to the new product’s configuration for limb measurements.

In particular, for the O₃ limb VMR profile extracted from Level 2 products version 5.01, the average plots are reported for the following two tangent height bins:

- 22.75 – 24.5 km
- 36.75 – 38.5 km.

The data of the first half of each month (calendar days 1 - 15) and the second half (calendar days 16 - 31) are averaged for selected tangent heights into geo-location bins of 10 degrees longitude and 5 degrees latitude. The binning algorithm uses a single longitude and latitude value for the entire profile, being the value for the middle of the integration time as reported in the Geo-location Limb Dataset. The corresponding error is averaged as well.

The world maps of the averaged Ozone values show comparably low errors over the SAA region, which is not as expected. Investigation showed that the low SAA errors result from irregular conditions of the limb retrieval in that region.

Figures from 8.33 to 8.36 show the results for the months of November and December 2010 and for the two different tangent height regions.
8.2.8.1 Ozone limb profiles November 2010

Figure 8.33: Limb Ozone profiles, binned over 22.75 – 24.5 km, November 2010.

Figure 8.34: Limb Ozone profiles, binned over 36.75 – 38.5 km, November 2010.
8.2.8.2 Ozone limb profiles December 2010

Figure 8.35: Limb Ozone profiles binned over 22.75 – 24.5 km, December 2010.

Figure 8.36: Limb Ozone profiles binned over 36.75 – 38.5 km, December 2010.
8.2.9 \textit{Limb: NO}_2 \textit{profile averages}

Analogous as for the limb Ozone profiles monthly averages for NO\textsubscript{2} limb averages were generated. For the new Level 2 products version 5.01, the tangent height region chosen is:

- 24.5-26.25 km.

As for the ozone averages the data of the first half of each month (calendar days 1 - 15) and the second half (calendar days 16 - 31) are averaged for selected tangent heights into geo-location bins of 10 degrees longitude and 5 degrees latitude. The binning algorithm used is the same as the described in 8.2.8. The corresponding error is averaged as well. Figures 8.37 and 8.38 show the results for the months of November and December 2010 respectively.
Figure 8.37 Limb NO$_2$ profiles binned over 24.5 – 26.25 km, November 2010.

Figure 8.38: Limb NO$_2$ profiles binned over 24.5 – 26.25 km, December 2010.
8.2.10 Limb: BrO profile averages

Analogous as for the limb Ozone and NO₂ profiles, monthly averages of BrO limb profiles were generated. The tangent height region chosen is:

- 24.5-26.25 km.

As for the ozone averages, data of the first half of each month (calendar days 1 - 15) and the second half (calendar days 16 - 31) are averaged for selected tangent heights into geo-location bins of 10 degrees longitude and 5 degrees latitude. The binning algorithm used is the same as the described in Section 8.2.8. The corresponding error is averaged as well.

Figures 8.39 and 8.40 show the results for the months of November and December 2010 respectively.

The origin of the empty regions in Figures 8.39 and 8.40 is currently being investigated.
Figure 8.39: Limb BrO profiles binned over 24.5 – 26.25 km, November 2010.

Figure 8.40: Limb BrO profiles binned over 24.5 – 26.25 km, December 2010.
9 VALIDATION ACTIVITIES AND RESULTS

Validation activities of products from re-processing with Level 1b IPF 7.03 and Level 2 off-line processor 5.01 are on-going. A first validation meeting organised by SCIAVAIG took place on 06/07 September 2010. While most of the new and updated geophysical parameters retrieved show very good quality, the retrieval of CO and SO2 has resulted unreliable in their current implementation. As a consequence the Level 2 reprocessing has been interrupted.

The Product Quality Disclaimers, describing data quality and known issues, will be soon updated with the results from the validation activity. It is recommended users to not use the SO2 and CO data sets, also with BrO data for year 2002, due to low quality.

Validation was done on the basis of the SCIAMACHY validation data set and the forward processed data. The data set covers around 1900 selected orbits identified by the core validation teams for the complete mission until 2010.

The quality of the SCI_OL__2PU data re-processed with off-line processor version 5.01 has been checked and can be viewed via the Level 2 daily reports that are available at http://earth.eo.esa.int/pcs/envisat/sciamachy/reports/daily/Level_2/

Validation of products from the previous re-processing campaign (Level 1 IPF 6.03 and Level 2 off-line processor 3.01) was performed by the SCIAMACHY Validation and Interpretation Group (SCIAVAIG). Results are published at http://www.sciamachy.org/validation/documentation/technotes/SCIAVAIG/Summary_operational_product_quality_20080326.pdf