
prepared by/ préparé par
Angelika Dehn

reference/référence
ENVI-SPPA-EOPG-TN-08-0018

issue/édition
1

revision/révision
0

date of issue/date d’édition
03 April 2008

status/état

Document type/type de document
Technical Note

Distribution/distribution
APPROVAL

<table>
<thead>
<tr>
<th>Title</th>
<th>titre</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCIAMACHY Bi-Monthly Report: January - February 2008</td>
<td>issue 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>author</th>
<th>auteur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angelika Dehn, DPQC-SERCO, Manfred Gottwald, SOST-DLR, Stefan Noël, SOST-IFE, Roald Schnerr, SRON</td>
<td>date 02/04/2008</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>approved by</th>
<th>approuvé by</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. Fehr ESA/ESRIN, D/EOP-GQ</td>
<td>date 03/04/2008</td>
</tr>
<tr>
<td>G. Lichtenberg, DPQC-DLR</td>
<td>date 03/04/2008</td>
</tr>
</tbody>
</table>

CHANGE LOG

<table>
<thead>
<tr>
<th>reason for change / raison du changement</th>
<th>issue</th>
<th>revision</th>
<th>date</th>
</tr>
</thead>
</table>

CHANGE RECORD

Issue: 1 Revision: 0

<table>
<thead>
<tr>
<th>reason for change / raison du changement</th>
<th>page(s)</th>
<th>paragraph(s)</th>
</tr>
</thead>
</table>
Table of Contents

1 INTRODUCTION
 1.1 Scope
 1.2 References
 1.3 Acronyms and Abbreviations

2 SUMMARY

3 INSTRUMENT CONFIGURATION AND PERFORMANCE
 3.1 In-Flight Status and Performance
 3.1.1 Planned Operations and Measurements (SOST-DLR)
 3.1.2 Instrument Measurement Status (SOST-DLR)
 3.1.3 Executed Operations and Measurements (SOST-DLR)
 3.1.4 Performance Monitoring - System (SOST-DLR)
 3.1.5 Performance Monitoring - Light Path (SOST-IFE)
 3.1.5.1 Science Channel Averages
 3.1.5.2 Spectral light path monitoring results
 3.1.5.3 PMD monitoring results

4 DATA AVAILABILITY STATISTICS
 4.1 Downlink/Acquisition Performance
 4.2 Statistics on unconsolidated data (SCI_NL__0P, SCI_NL__1P)
 4.3 Statistics on consolidated data
 4.3.1 Anomalies on level 0 consolidated data products
 4.3.2 Availability of consolidated SCI_NL__1P products
 4.4 Statistics on reprocessed data
 4.4.1 Level 1b re-processing IPF 6.03
 4.4.2 Level 2 re-processing processor version 3.01

5 LEVEL 1 PRODUCT QUALITY MONITORING
 5.1 Processor Configuration
 5.1.1 Version
 5.1.2 Anomalies
 5.2 Auxiliary Data Files
 5.2.1 Spectral Performance
 5.2.2 Radiometric Performance
 5.2.3 Other Calibration Results
 5.2.3.1 SMR analysis
 5.2.3.2 LK1 analysis
 5.2.3.2.1 Leakage Constant part
5.2.3.2.2 Leakage Variable part48
5.3 Bad and Dead Pixel Mask49
5.4 Pointing Performance...49
5.5 SciaL1c tool50

6 LEVEL 2 NRT PRODUCT QUALITY MONITORING ...51
6.1 Processor Configuration..51
 6.1.1 Version51
 6.1.2 Auxiliary Data Files51

7 LEVEL 2 OFF-LINE PRODUCT QUALITY MONITORING.................................52
 7.1 Processor Configuration..52
 7.1.1 Version52
 7.1.2 Anomalies53
 7.1.3 Auxiliary Data Files53
 7.2 Monitoring results54
 7.2.1 Nadir: NO₂ consistency checking ...54
 7.2.1.1 Nadir: VCD NO₂ map January 2008 ...55
 7.2.1.2 Nadir: VCD NO₂ map February 2008 ...56
 7.2.2 Nadir: O₃ consistency checking ..57
 7.2.2.1 Nadir: VCD O₃ map January 2008 ..58
 7.2.2.2 Nadir: VCD O₃ map February 2008 ...59
 7.2.3 Limb: Ozone profile averages ...60
 7.2.3.1 Ozone limb profiles January 2008 ..61
 7.2.3.2 Ozone limb profiles February 2008 ..62

8 VALIDATION ACTIVITIES AND RESULTS ...63
1 INTRODUCTION

The SCIAMACHY Bi-Monthly report documents the current status and recent changes to the SCIAMACHY instrument, its data processing chain, and its data products. The Bi-Monthly Report (hereafter BMR) is composed of analysis results obtained by the DPQC, combined with inputs received from the different groups working on SCIAMACHY operation, calibration, product validation and data quality. The first part of the report is dedicated to Instrument Configuration and Performance. It is composed of contributions from SOST-DLR, SOST-IFE and SRON. The remainder of the report is dedicated to level 1b and level 2 performance assessment and is generated by ESA/ESRIN DPQC with contributions from ESA/ESTEC PLSO and DLR-IMF.

The structure of the report will be in constant evolution through the ENVISAT mission, as experience with SCIAMACHY data and quality control grows.

1.1 Scope

The main objective of the BMR is to give, on a regular basis, the status of SCIAMACHY instrument performance, data acquisition, results of anomaly investigations, calibration activities and validation campaigns. The BMR is composed of the following six sections:

- Summary;
- Instrument Configuration and Performance;
- Data Availability Statistics;
- Level 1 Product Quality Monitoring;
- Level 2 Product Quality Monitoring;
- Validation Activities and Results.

1.2 References

[6] ‘Summary of the Atmospheric Chemistry Instrument Validation results as presented at the ACVE-3 Workshop’, Paul Snoeij, Ankie Piter, Herbert Fischer, Yasje Meijer, Jean-Christopher Lambert, Thorsten Fehr
1.3 Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC</td>
<td>Analogue to Digital Converter</td>
</tr>
<tr>
<td>ADF</td>
<td>Auxiliary Data File</td>
</tr>
<tr>
<td>ANX</td>
<td>Ascending Node Crossing</td>
</tr>
<tr>
<td>AOCS</td>
<td>Attitude and Orbit Control System</td>
</tr>
<tr>
<td>APSM</td>
<td>Aperture Stop Mechanism</td>
</tr>
<tr>
<td>ASM</td>
<td>Azimuth Scan Mechanism</td>
</tr>
<tr>
<td>ATC</td>
<td>Active Thermal Control</td>
</tr>
<tr>
<td>BMR</td>
<td>Bi-Monthly Report</td>
</tr>
<tr>
<td>CA</td>
<td>Corrective Action</td>
</tr>
<tr>
<td>CCA</td>
<td>Communication Area</td>
</tr>
<tr>
<td>CTI</td>
<td>Configurable Transfer Item</td>
</tr>
<tr>
<td>DAC</td>
<td>Digital Analogue Converter</td>
</tr>
<tr>
<td>DLR-IMF</td>
<td>Deutsches Zentrum fuer Luft- und Raumfahrt</td>
</tr>
<tr>
<td>DPQC</td>
<td>Data Processing Quality Control</td>
</tr>
<tr>
<td>EOL</td>
<td>End of Life</td>
</tr>
<tr>
<td>ESM</td>
<td>Elevation Scan Mechanism</td>
</tr>
<tr>
<td>FPN</td>
<td>Fixed Pattern Noise</td>
</tr>
<tr>
<td>HK</td>
<td>Housekeeping</td>
</tr>
<tr>
<td>HSM</td>
<td>High Speed Multiplexer</td>
</tr>
<tr>
<td>ICE</td>
<td>Instrument Control Electronics</td>
</tr>
<tr>
<td>ICU</td>
<td>Instrument Control Unit</td>
</tr>
<tr>
<td>IECF</td>
<td>Instrument Engineering and Calibration Facilities</td>
</tr>
<tr>
<td>IOM</td>
<td>Instrument Operation Manual</td>
</tr>
<tr>
<td>LK1</td>
<td>Leakage Current Auxiliary File (SCI_LK1_AX)</td>
</tr>
<tr>
<td>LLI</td>
<td>Life Limited Item</td>
</tr>
<tr>
<td>LOS</td>
<td>Line of Sight</td>
</tr>
<tr>
<td>MCMD</td>
<td>Macro Command</td>
</tr>
<tr>
<td>MPH</td>
<td>Main Product Header</td>
</tr>
<tr>
<td>MPS</td>
<td>Mission Planning Schedule</td>
</tr>
<tr>
<td>MR</td>
<td>Monthly Report</td>
</tr>
<tr>
<td>NCWM</td>
<td>Nadir Calibration Window Mechanism</td>
</tr>
<tr>
<td>NDFM</td>
<td>Neutral Density Filter Mechanism</td>
</tr>
<tr>
<td>NIVR</td>
<td>Netherlands Agency for Aerospace Programmes</td>
</tr>
<tr>
<td>NNDEC</td>
<td>Non-nominal Decontamination</td>
</tr>
<tr>
<td>NRT</td>
<td>Near Real Time</td>
</tr>
<tr>
<td>OAR</td>
<td>Observation Anomaly Report</td>
</tr>
<tr>
<td>OBM</td>
<td>Optical Bench Module</td>
</tr>
<tr>
<td>OCR</td>
<td>Operations Change Request</td>
</tr>
<tr>
<td>OSDF</td>
<td>Orbit Sequence Definition File</td>
</tr>
<tr>
<td>OSV</td>
<td>Orbit State Vector</td>
</tr>
<tr>
<td>PCF</td>
<td>Product Control Facility</td>
</tr>
<tr>
<td>PDHS</td>
<td>Payload Data Handling Station (PDS)</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PDHS-E</td>
<td>Payload Data Handling Station – ESRIN</td>
</tr>
<tr>
<td>PDHS-K</td>
<td>Payload Data Handling Station – Kiruna</td>
</tr>
<tr>
<td>PDS</td>
<td>Payload Data Segment</td>
</tr>
<tr>
<td>PE1</td>
<td>Pixel to Pixel/ Etalon Auxiliary File (SCI_PE1_AX)</td>
</tr>
<tr>
<td>PLSO</td>
<td>Payload Switch OFF</td>
</tr>
<tr>
<td>PMD</td>
<td>Polarization Measurement Device</td>
</tr>
<tr>
<td>QUADAS</td>
<td>Quality Analysis of Data from Atmospheric Sounders</td>
</tr>
<tr>
<td>QWG</td>
<td>Quality Working Group</td>
</tr>
<tr>
<td>SAA</td>
<td>South Atlantic Anomaly</td>
</tr>
<tr>
<td>SCIAMACHY</td>
<td>Scanning Imaging Absorption Spectrometer for Atmospheric Chartography</td>
</tr>
<tr>
<td>SCICAL</td>
<td>SCIAMACHY Calibration tool</td>
</tr>
<tr>
<td>SEU</td>
<td>Single Event Upset</td>
</tr>
<tr>
<td>SLS</td>
<td>Spectral Line Source</td>
</tr>
<tr>
<td>SM</td>
<td>Service Module</td>
</tr>
<tr>
<td>SMR</td>
<td>Sun Mean Reference</td>
</tr>
<tr>
<td>SOST</td>
<td>SCIAMACHY Operations Support Team</td>
</tr>
<tr>
<td>SP1</td>
<td>Spectral Calibration Auxiliary File (SCI_SP1_AX)</td>
</tr>
<tr>
<td>SU1</td>
<td>Sun Reference Auxiliary File (SCI_SU1_AX)</td>
</tr>
<tr>
<td>SZA</td>
<td>Sun Zenith Angle</td>
</tr>
<tr>
<td>TC</td>
<td>Thermal Control</td>
</tr>
<tr>
<td>TC FoV</td>
<td>Total Clear Field of View</td>
</tr>
<tr>
<td>TOA</td>
<td>Top of Atmosphere</td>
</tr>
<tr>
<td>TRUE</td>
<td>Tangent height Retrieval by UV-B Exploitation</td>
</tr>
<tr>
<td>VCD</td>
<td>Vertical Column Density</td>
</tr>
<tr>
<td>WLS</td>
<td>White Light Source</td>
</tr>
<tr>
<td>WUR</td>
<td>Wageningen University and Research</td>
</tr>
<tr>
<td>YSM</td>
<td>Yaw Steering Mode</td>
</tr>
</tbody>
</table>
2 SUMMARY

- Full mission reprocessing (02 August 2002 – 28 September 2007) is completed
 - Level 1b IPF 6.03
 - Level 2 off-line 3.01

- During the reported period SCIAMACHY measurements were nominal with respect to planning, besides two unavailability periods during following orbits:
 - 30741 - 30753 (16 - 17 January 2008) ENVISAT HSM anomaly
 - 31118 - 31125 (11 - 12 February 2008) ENVISAT planned OCM manoeuvre

- Monthly Calibration was executed during Orbits:
 - 30814-30818 (21/22-Jan-2008)
 - 31215-31219 (18/19-Feb-2008)

- Following occultation measurements with the moon rising on nightside were executed
 - 30772-30821 (18-Jan-2008 until 22-Jan-2008)
 - 31160-31242 (14-Feb-2008 until 20-Feb-2008)

- One OCR was implemented (OCR_031, second part: Characterisation of spatial stray light in limb measurement mode)
 - 30836-30849 (23/24-Jan-2008)

- One TC adjustments was required performed in orbit
 - 30566 (04 Jan 2008)

- Light Path monitoring:
 - Channel 1&2: degradation in UV for all light paths involving ESM increases with a rate of about 1 % per month. The average throughput loss in channel 1 is currently ca. 43%.
 - Channel 3 small throughput loss (about 4%)
 - Channels 4-7 small throughput loss (sub percent level)
- Channel 8 throughput remains stable at about 67%

- PMD monitoring:
 - UV degradation visible in science channels is also visible in PMD 1 to 3
 - PMD 4 and 7 show a large decrease in throughput
 - PMD 6 results still under investigation

- Dead and Bad Pixel Mask:
 - In this BMR the monitoring of the dead and bad pixel mask analysis, performed at SRON, is included.
3 INSTRUMENT CONFIGURATION AND PERFORMANCE

3.1 In-Flight Status and Performance

Detailed operations, planning and instrument status information can be found on the website of the SCIAMACHY Operations Support (SOST) under http://atmos.caf.dlr.de/projects/scops/. These pages are maintained on a daily basis and show the history and actual progress of the SCIAMACHY mission.

3.1.1 Planned Operations and Measurements (SOST-DLR)

The reporting period covers the orbits 30517 (ANX = 01-Jan-2008, 00:00:12.346) to 31375 (ANX = 29-Feb-2008, 22:33:58.693). One OSDF specified the planning baseline.

<table>
<thead>
<tr>
<th>Orbit</th>
<th>ANX</th>
<th>OSDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>30517</td>
<td>31375</td>
<td>MPL_OSD_SHVSH_20071128_010101_00000000_34170001_20080101_000014_20080301_001432.N1</td>
</tr>
</tbody>
</table>

Table 3-1: SCIAMACHY OSDF planning file from January – February 2008

Measurements were nominal, i.e. timelines executed limb/nadir sequences with wide swath settings on the dayside of the orbit. In-flight calibration and monitoring measurements occurred on daily, weekly and monthly timescales according to the mission scenarios. Regular monthly calibration was scheduled between orbits

- 30814-30818 (21/22-Jan-2008)
- 31215-31219 (18/19-Feb-2008)

The moon was in the limb TCFoV between orbits

- 30748-30830 (17-Jan-2008 until 22-Jan-2008)
- 31160-31256 (14-Feb-2008 until 21-Feb-2008)

Occultation measurements with the moon rising on the nightside could be executed between orbits

- 30772-30821 (18-Jan-2008 until 22-Jan-2008)
- 31160-31242 (14-Feb-2008 until 20-Feb-2008)

One OCR was successfully implemented. This was the second part of OCR_031 (Characterisation of spatial stray light in limb measurement mode) which was executed between orbits 30836-30849 (23/24-Jan-2008).
3.1.2 Instrument Measurement Status (SOST-DLR)

The final flight status for states and timelines remained unchanged.

3.1.3 Executed Operations and Measurements (SOST-DLR)

Measurements and instrument availability

The OSDF planning file has been scheduled as requested except for the periods:

- Orbit 30741-30753 (16/17-Jan-2008): Due to a High Speed Multiplexer (HSM) anomaly corrupt data have been generated and the recovery included a transfer to MEASUREMENT IDLE.
- Orbit 31118-31125 (11/12-Feb-2008): Due to planned orbit control manoeuvre (OCM) a transfer to MEASUREMENT IDLE occurred.

Detector thermal adjustment

One TC adjustment was required to increase the temperatures of detectors 4 and 5. This occurred in orbit 30566 (04-Jan-2008). The new TC settings are

- $\text{DAC1} = 0.53 \text{ W}$
- $\text{DAC2} = 0.50 \text{ W}$
- $\text{DAC3} = 0.03 \text{ W}$

APSM/NDFM health checks & PMD ADC cal

In the reporting period 1 APSM/NDFM health check and 2 PMD ADC calibrations were executed. All showed nominal results.
Anomalies

One major platform anomaly related to the HSM had occurred. This generated corrupted measurement data for a while and in the recovery SCIAMACHY had to be commanded to MEASUREMENT IDLE mode. In total measurement data from 12 orbits from 30741 to 30753 (16-Jan-2008, 16:11:00 UTC to 17-Jan-2008, 13:14:40 UTC) could not be generated as planned.

<table>
<thead>
<tr>
<th>Orbit</th>
<th>Date</th>
<th>Entry - UTC</th>
<th>Level</th>
<th>Entry Type</th>
<th>ID Content/Transition</th>
<th>Mode</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>30741</td>
<td>16-JAN-2008</td>
<td>2008.016.16.11.00.000</td>
<td>E</td>
<td>ENVISAT</td>
<td>---</td>
<td>MEASUREMENT IDLE</td>
<td>HSM anomaly</td>
</tr>
</tbody>
</table>

Table 3-3: Instrument & platform anomalies between January and February 2008

3.1.4 Performance Monitoring - System (SOST-DLR)

Detector and OBM temperatures are monitored according to the requirements of the IOM [1]. It requests to ensure that the average temperature per orbit remains within the specified limits.

Detector temperatures

For each detector the average temperatures per orbit are determined from HK telemetry parameters. Fig. 3-2 displays the temperatures of all 8 detectors. Colour coding is as on the operational monitoring website, i.e. data from orbits with HK telemetry coverage > 90% are shown in red, for < 90% in green. Minimum/maximum values per orbit are indicated as vertical bars. The temperature limits of each detector are shown as horizontal lines.

Early January the temperatures of detectors 4 and 5 reached their lower limits and a TC adjustment was required.

It has to be noted that the detector temperature curves since 2002 clearly indicate a degrading TC system with constantly rising temperatures (0.2-0.3 K/year for detectors 1-6 and 1 K/year for detectors 7 & 8). This is however a predicted behaviour.
OBM temperatures

The average OBM temperature per orbit is determined from specific HK telemetry parameters. In addition power readings for the ATC heaters are monitored. Temperatures and ATC heater powers are given in Fig. 3-3 and 3-4. Colour coding is as in Fig. 3-2.

OBM temperatures and ATC heater powers remained within limits.

Due to the degradation of the ATC system the ATC nadir heater power came close to its lower limit of 1.63 W. Therefore the power readouts were carefully monitored throughout the period November-January where the seasonal minimum of power settings occurs (see fig. 3-5). No ATC adjustment was required.

PMD ADC status

The status of the PMD ADC is monitored according to the requirements of the IOM [1]. It requests to ensure that no glitches occur caused by an SEU.

No PMD ADC glitches have been detected.
Fig. 3-2: Detector temperatures
Fig. 3-3: OBM temperatures (top: derived OBM, middle: limb sensor, bottom: nadir sensor)

Fig. 3-4: ATC heater power (top: ATC limb, middle: ATC nadir, bottom: ATC Rad A)
Fig. 3-5: ATC nadir heater in the months November – January since 2003. The blue dots are the recent telemetry readings for 2007/2008. No average power value violated the lower limit.
LLI status

Life Limited Items are monitored based on analysis of the

- **OSDF:** This yields a predicted LLI usage.
- **Report format:** This counts the actual LLI switches or used LLI cycles. No WLS/SLS burning times can be derived thereof.

In addition, the in-flight usage of the cryogenic heat pipe is recorded. This subsystem has a limited number of cycles. Each decontamination increases the accumulated number of cycles by 1.

At the end of the reporting period the fractional usage of the LLI relative to the allowed in-flight budget was (based on OSDF prediction)

- **NDFM:** 0.40
- **APSM:** 0.37
- **NCWM (sub-solar port):** 0.74
- **WLS (switches):** 0.14
- **WLS (burning time):** 0.26
- **SLS (switches):** 0.05
- **SLS (burning time):** 0.01

For the NDFM and APSM the safety margin factor of 2 was no longer applied in the calculation of the fractional usage since it was found acceptable to stay below the figures of the lifetests. How the relative LLI usage has accumulated since launch can be seen in fig. 3-6. 'EOL' assumes a total mission lifetime until end of 2010.
The number of cryogenic heatpipe cycles did not increase (no decontamination). The budget used remained at 38% of the allowed in-flight budget.

Time reference

The times quoted in all planning files refer to the reference orbit. Since the actual orbit differs from the reference orbit (e.g. orbit drift), the times given w.r.t. the reference orbit also do not reflect exactly the actual absolute times of events along the orbit (e.g. ANX, sunrise, sub-solar, moonrise, eclipse). The requirements for orbit maintenance may result in time differences of usually < ±10 sec. In some cases this value may even reach ±1 min, however.

SOST monitors how the reference time deviates from the actual time. This is done by using the predicted time which comes very close to the actual = restituted time. If the predicted times are delayed w.r.t. the reference orbit, then the difference predicted – reference time is > 0 sec; in the other case it is < 0 sec.

Fig. 3-7 displays the time difference predicted – reference. Orbit manouevres cause distinct discontinuities.
3.1.5 Performance Monitoring - Light Path (SOST-IFE)

3.1.5.1 Science Channel Averages

One part of the SOST long-term monitoring activities is the trend analysis of measurements with the internal White Light Source (WLS) and of observations of the unobscured Sun above the atmosphere. In order to monitor the different SCIAMACHY light paths solar measurements are taken in various viewing geometries: In limb/occultation geometry (via ASM and ESM mirrors), in nadir geometry (via the ESM mirror through the subsolar port), and via the so-called calibration light path involving the ASM mirror and the ESM diffuser. SCIAMACHY long-term monitoring comprises a regular analysis of these measurements. The plots displayed in Fig. 3.8 show results of these monitoring activities for the time interval January to February 2008. Note that the reported arithmetical channel averages are medians.

The displayed data have been produced in the following way:
All measured spectra have been divided by the corresponding measurement at a reference time; then for each channel a median of the ratio is computed, yielding an effective instrument throughput for the different light paths.
The reference spectra for all light paths are derived from measurements on 16 January 2003 (the time of the first monthly calibration performed with final flight settings). The resulting medians are then scaled to be 1 just after the first decontamination under
(quasi-) nominal measurement conditions in August 2002. Therefore, the reference date for all data is in fact 2 August 2002.

Subsolar measurements before 30 November 2002 (about orbit 3922) did not consider the known yaw misalignment of SCIAMACHY on ENVISAT and thus may not be used for monitoring purposes. Therefore there are no subsolar data shown before December 2002. Since no valid subsolar measurements are available for August 2002 the subsolar throughput data have been scaled to 2 August 2002 by using the same factor as for the limb light path.

Note that measurements performed during times of reduced instrument performance (e.g. switch-offs or decontamination periods) have been omitted.

The results presented in Fig. 3.8 are based on the analysis of Level 0 data, which have been corrected for dead/bad pixels, dark current (fixed value from August 2002), scan angle dependencies, quantum efficiency changes, and the seasonally varying distance to the Sun. Additional calibration steps have not been performed, like for example a straylight correction. Therefore, variations smaller than about 1% require careful interpretation. Especially, small variations of the throughput signal may be caused by remaining seasonal effects due to the limited calibration of the data.

Until October 2006 the nadir/subsolar light path was monitored based mainly on fast sweep measurements. However, subsolar pointing measurements are considered to have a better quality for monitoring purposes (especially for PMD monitoring) and thus have become the new baseline.

Since 1 October 2006 subsolar measurements in fast sweep scan mode are only executed once per month (before that time: daily) whereas subsolar measurements in pointing mode are executed twice per week (before: once per month).

The channel average plots in Fig. 3.8 show both data sets for the subsolar light path. Note that the reference time for the subsolar pointing data is 16 January 2003 (instead of 10 January 2003 for subsolar fast sweep).

The light path monitoring results presented in this section may be regarded as a first step towards spectrally resolved monitoring factors (m-factors) which will be produced based on fully calibrated data.

Daily updated light path monitoring results can be found on the SOST or IUP web site (http://www.iup.uni-bremen.de/sciamachy/LTM/LTM.html).

The following specific features can be identified from the light path monitoring results during the time interval of this report:

- Overall, the instrument throughput changes were close to expectation.
- For all light paths involving the ESM mirror the degradation in the UV (channels 1 and 2) increases with a rate of about 1% per month. The maximum average throughput loss in channel 1 lies currently around 43% (for the limb light path; the WLS throughput is considered to be not representative here because a degradation of the lamp may not be excluded). The throughput of the calibration light path is currently at about 88% in channel 1.
- The overall degradation of channel 3 is very small (about 4%) compared to channels 1 and 2. A very small decrease in throughput of much less than 0.5% is observed for the limb and WLS light paths within the two months of this report.
- Channels 4 and 5 remain stable on a sub-percent level.
- Channels 6 shows a very small throughput decrease of about 0.1% in two months.
- The throughput in channel 7 slightly increases by about 0.5%/month.
- similar as observed during the last reporting period.
- The Channel 8 transmission is stable and lies for all light paths at around 67%.
Fig. 3.8: Light path monitoring results January to February 2008 (medians).
3.1.5.2 Spectral light path monitoring results

Fig. 3.9 – 3.12 show results of spectral throughput monitoring performed by SOST-IFE for the different light paths (nadir, limb, calibration, and WLS). These results have been derived from Level 0 data analysed in a similar way as for the channel averaged throughput data (but of course without spectral averaging). Because the variation in spectral direction is very small within two months, Fig. 3.9 – 3.12 show the complete time series from 2 August 2002 to the end of February 2008.

Notes:

- The data (12:00 UTC reference time) have been interpolated over dead/bad pixels (using the on-ground list).
- Data from times of reduced instrument performance (like decontaminations or instrument switch-offs) have not been considered. These times are masked out by grey vertical bars.
- All data have been transformed to a daily grid, involving averaging and interpolation.
- Ratios have been performed on a pixel axis without any spectral interpolations. The wavelength axis is just for illustration and gives only approximate values, assuming a linear relation between pixel number and wavelength.
- Depending on the availability of measurement data, features close to large data gaps (especially before and after a decontamination) may be caused by interpolation.
- WLS data have not been corrected for a potential degradation of the lamp. Only the intensity jump after the extended WLS usage in June 2003 has been removed.
- As mentioned before, the timing of subsolar measurements before 30 November 2002 did not consider the known yaw misalignment of SCIAMACHY on ENVISAT. The timing has been corrected in the final flight settings. To take this change into account, all subsolar measurements have been referred to orbit 4519 (10 January 2003). Therefore, subsolar results before 30 November 2002 are not reliable.
- Subsolar pointing data are not considered here yet because of their low measurement frequency before October 2006. Activities to generate a joined consistent subsolar fast sweep/pointing data set are ongoing.
- Subsolar data affected by blocking of the subsolar port (May/June 2007) have been excluded.

The underlying data for the spectral monitoring are available via the SOST-IFE web site (see http://www.iup.uni-bremen.de/sciamachy/LTM/LTM_spectral/LTM_spectral.html). As for the plotted results, these data are regularly updated one to two times per month.

The following main features can be identified in the spectral monitoring plots:

- As expected, the UV degradation generally decreases with increasing wavelength.
- The SCIAMACHY degradation strongly depends on wavelength and is largest at the channel edges. The prominent degradation peak around 350 nm in channel 2
coincides with a region of high polarisation sensitivity, although this is probably not directly related.

- The minimum throughput is below 50% for the limb and WLS (nadir) light paths at the short wavelength edge of channel 1 (i.e. below about 255-265 nm).
- Also solar activity variation can be seen in the plots, e.g. the intensity change of the solar Mg II Fraunhofer line at about 280 nm.
- The degradation in channel 3 which was already indicated by the channel integrated results is much better visible in the spectrally resolved plots, where the propagation of this effect in time to higher wavelengths can be clearly identified.
- The difference in degradation between the diffuser light path and the other light paths is also visible in the plots; however, the spectral regions where degradation is strongest coincide quite well.
- The spectral plots also show that the relative stability for channels 4 and 5 observed in the integrated data is not present over the whole spectral range; also these channels show variations, but these are restricted to the overlap regions close to the channel edges.
- The channel 6 degradation is concentrated at the lower wavelength edge, but is still below 10%.
- For channels 7 and 8 the spectral behaviour of the throughput loss is consistent with (broadband) ice absorption features. The effect of the decontaminations is of course also clearly visible in these channels.
- Especially channel 8 shows a large pixel dependence of the throughput variation caused by the different sensitivity of the pixels. This variation is much higher for light paths where the small aperture is involved (i.e. nadir (subsolar) and limb), indicating that the small aperture causes additional effects which need to be considered when applying these results to Earthshine data.
- In general, the WLS data are much smoother than the solar data.
Fig. 3.9: Spectral light path monitoring results August 2002 to February 2008 (nadir light path)
Fig. 3.10: Spectral light path monitoring results August 2002 to February 2008 (limb light path)
Fig. 3.11: Spectral light path monitoring results August 2002 to February 2008 (calibration light path)
Fig. 3.12: Spectral light path monitoring results August 2002 to February 2008 (WLS light path)
3.1.5.3 PMD monitoring results

The SCIAMACHY PMDs are monitored in a similar way as the science channels, but of course no channel averaging is performed. However, the results presented here are based on the same measurements as the science channel results (but using the PMD low gain signal), and they have been normalized to the same reference times as the spectral results. Thus, the reference time for the subsolar data is January 2003, whereas it is August 2002 for the other data sets.

For the nadir light path it is not possible to use subsolar fast sweep measurements for PMD monitoring, because these show too large scatter. This is probably caused by a combination of the very time-sensitive measurement type and scan mode and the fact that the PMDs measure a sampled signal, not an integrated one. Therefore, subsolar pointing measurements are used for monitoring of the PMD nadir light path, because the pointing signal is much more stable. Until October 2006 subsolar pointing measurements were only performed once per month, therefore the temporal sampling is much less than for the other light paths. Since 1 October 2006 the number of subsolar pointing measurements has been increased (on the cost of subsolar fast sweep data).

Fig. 3.13 shows the PMD throughput variation for the whole time period between 2 August 2002 and 29 February 2008. Note that a constant dark signal for each of the PMDs has been assumed. To verify this assumption, Fig. 3.13 also shows the variation of the PMD dark signal over time, which is usually quite low.

Note that PMD 7 results are most likely dominated by straylight and not reliable. They are only shown for completeness. Furthermore, WLS data are only available for PMD 1 to 3 because of saturation in the other PMD channels.

Considering the broadband character of the PMDs, the observed PMD throughput changes are (except for PMD 4 and 7) very similar to those of the science channels with the following features:

- The UV degradation apparent in the science channels is also visible in PMD 1 to 3.
- PMD 4 and 7 (which cover the same wavelength interval) show a considerably large decrease in throughput which is still unexplained (but may be related to the specific detector material).
- There are remaining seasonal variations in the data which could up to now not be corrected out. The amplitude of these seasonal variations increases with the wavelength range covered by the PMD. This issue is still unresolved.
- The PMD 6 dark signal shows a strange variation over time which is still under investigation.

A more detailed investigation of the open issues listed above requires a better calibration of the monitoring data which is currently (in the context of m-factor generation) under development, but will probably take some time.
Fig. 3.13: PMD monitoring results August 2002 to February 2008
4 DATA AVAILABILITY STATISTICS

4.1 Downlink/Acquisition Performance

Problems are known for the products listed in Tab. 4.1:

<table>
<thead>
<tr>
<th>Product</th>
<th>Day</th>
<th>Filename</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCI_NL__0P</td>
<td>04-JAN-2008</td>
<td>SCI_NL__0PNPDK20080104_085634_000059802064_00451_30565_7036.N1</td>
<td>sciamachy_source_packets ERROR: incorrect file size</td>
</tr>
<tr>
<td>SCI_NL__0P</td>
<td>05-JAN-2008</td>
<td>SCI_NL__0PNPDK20080105_114414_000059802064_00467_30581_7046.N1</td>
<td>sciamachy_source_packets ERROR: incorrect file size</td>
</tr>
<tr>
<td>SCI_NL__0P</td>
<td>07-JAN-2008</td>
<td>SCI_NL__0PNPDK20080107_140014_000058982064_00497_30611_7066.N1</td>
<td>sciamachy_source_packets ERROR: incorrect file size</td>
</tr>
<tr>
<td>SCI_NL__0P</td>
<td>25-JAN-2008</td>
<td>SCI_NL__0PNPDK20080125_143422_000058422065_00254_30869_7220.N1</td>
<td>sciamachy_source_packets ERROR: incorrect file size</td>
</tr>
</tbody>
</table>

Table 4-1 Products containing format errors

These occurrences of data corruptions are currently under investigation.

4.2 Statistics on unconsolidated data (SCI_NL__0P, SCI_NL__1P)

This paragraph reports the availability of NRT data on a monthly basis. The statistics are based on level 0 data and level 1 data inventoried in the ground segment. Unavailability periods due to instrument anomalies or Satellite switch-offs are excluded. The gaps considered are only interfile gaps.

![Monthly statistics on SCIAMACHY NRT data](image)

Fig. 4-1: Statistics on available unconsolidated level 0 and level 1b products
4.3 **Statistics on consolidated data**

In this chapter an overview about operational off-line data (consolidated data) is provided.

4.3.1 **Anomalies on level 0 consolidated data products**

In the past it had been reported by SOST-DLR that the SCIAMACHY consolidated level 0 data contain errors and are not complete. Following specific problems have been identified and are reported in detail in the technical notes [3], [4] for years 2003 and 2004 as well as for products of 2005 [5]:

- For one orbit there can be more than one consolidated level 0 product. These products may be identical or different in content (disregarding the product type file counter).
- Some orbits are not covered by consolidated level 0 products although SCIAMACHY was operational.
- Some orbits are covered by consolidated level 0 products but the product duration does not comply with the actually planned and executed instrument operations in that particular orbit.
- Some consolidated level 0 products exceed the Reed Solomon correction threshold and are flagged accordingly. The occurrence of Reed Solomon errors is non-uniform.
- Until late October / early November 2003 consolidated level 0 data are hampered by an incorrect orbit number.

More details on consolidated level 0 anomalies can be found on the SOST web page, which contains a catalogue of available level 0 consolidated data and description of errors. http://atmos.caf.dlr.de/projects/scops/data_availability/availability.html

A recovery plan was initiated in order to reprocess erroneous data 2002 - 2006. This activity has been completed. For the year 2007 the recovery is currently being performed.

The overall goal is to achieve a level 0 consolidated data ‘master set’ that allows data reprocessing of improved data quality.

4.3.2 **Availability of consolidated SCI__NL__1P products**

SCIAMACHY level 1b consolidated data are generated at D-PAC using the consolidated level 0 products as input for processing. The available level 1b off-line products on the D-PAC ftp-server are checked for completeness and an overview for the months January to February 2008 is summarised here, considering flight segment and ground segment
anomalies. Note that also interfile gaps are considered but no data gaps inside the products.
Please note, that after a network maintenance in November 2007 at D-PAC, the FTP address accessing the data server was permanently changed to 195.37.183.37.

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Planned orbit range</th>
<th>Number of orbits unavailable due to anomalies</th>
<th>Number of unique orbits available at D-PAC</th>
<th>Expected number of orbits (considering anomalies)</th>
<th>Availability in percentage during month</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/2008</td>
<td>30517 - 30960</td>
<td>12</td>
<td>421</td>
<td>432</td>
<td>97.4%</td>
</tr>
<tr>
<td>02/2008</td>
<td>30961 - 31375</td>
<td>7</td>
<td>407</td>
<td>408</td>
<td>98.9%</td>
</tr>
</tbody>
</table>

Table 4-2 Consolidated level 1b statistics

4.4 **Statistics on reprocessed data**

4.4.1 **Level 1b re-processing IPF 6.03**

The second reprocessing cycle has started on 24 September 2007 using the level 1b IPF version 6.03 at D-PAC.
A new reprocessing flag was introduced in the filename and MPH, which is the letter “R” replacing the Processing Stage flag “P” for off-line level 1b products that was valid for IPF 5.04 and IPF 6.02 products.

The first round of reprocessing for level 1b data of the period 02 August 2002 – September 2007 had been completed in December 2007 and data is available at the D-PAC server (FTP address 195.37.183.37, ftp-ops-dp.eo.esa.int). Consolidation of the data set is ongoing with respect to completeness and duplicates.
For a part of the data (ca. 30 orbits) the corresponding Restituted Attitude files (AUX_FRA) had not been available in the first round of reprocessing. After availability of the AUX_FRA was clarified, data gaps were filled.
Processing errors of another small subset of products (ca. 160) is currently under investigation.

The results from the first reprocessing round showed that, besides a few exceptions, the mean monthly availability lies at about 94%.

Detailed statistics will be provided in the next BMR considering the reprocessing round filling the data gaps as described above.

In a second step the data contents will be monitored. Preparations for this major monitoring activity are ongoing.
4.4.2 Level 2 re-processing processor version 3.01

Level 2 off-line re-processing has been performed at D-PAC with processor version 3.01. As for the level 1b, the level 2 off-line reprocessed data set contains the new processing flag “R” in the filename and MPH. The level 2 off-line products have been successfully validated by the SCIAVALIG team and results have been presented during a first validation workshop in January 2008 and a second meeting at the end of March. Data are now available to the users at the D-PAC server (FTP address 195.37.183.37, ftp-ops-dp.eo.esa.int).

The first round of reprocessing for level 2 data for the period 02 August 2002 – September 2007 had been completed in January 2008. As well as for the level 1b, consolidation of the data set is on-going with respect to completeness and duplicates. In a second step the data contents will be monitored.

Besides a few exceptions the mean monthly availability lies at about 91%.

Detailed statistics will be provided in the next BMR.
5 LEVEL 1 PRODUCT QUALITY MONITORING

5.1 Processor Configuration

5.1.1 Version

The operational IPF version used for processing of near real-time SCIAMACHY level 1b data is 6.03 at Kiruna and ESRIN. The same IPF is used for level 1b off-line processing at D-PAC for forward processing and the second SCIAMACHY full mission reprocessing cycle.

The corresponding product specification is Volume 15 issue 3/k [2]. It is available at http://earth.esa.int/pub/ESA_DOC/ENVISAT/Vol15_Sciamachy_3k.pdf

The updated (November 2007) disclaimer at http://envisat.esa.int/dataproducts/availability/disclaimers/SCI_NL_1P_Disclaimers.pdf describes known artefacts as well as major improvements with respect to the previous IPF version.

Currently the new baseline 7.00 is in preparation (a verification meeting took place at IFE Bremen 26 March 2008). Table 5.1 gives a brief overview of changes implemented with processor versions IPF 6.03, 6.02, 6.01 and 5.04/5.01.

<table>
<thead>
<tr>
<th>IPF Version</th>
<th>Description</th>
<th>Proc Centre</th>
<th>Date</th>
<th>Start Orbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.03</td>
<td>Following changes are implemented with IPF 6.03</td>
<td>D-PAC</td>
<td>04-JUL-2007</td>
<td>27937</td>
</tr>
<tr>
<td></td>
<td>• New pointing correction (new SCI_LI1_AX)</td>
<td>PDHS-E</td>
<td>19-JUL-2007</td>
<td>28153</td>
</tr>
<tr>
<td></td>
<td>• Updated of the ESA CFI (5.6) software</td>
<td>PDHS-K</td>
<td>19-JUL-2007</td>
<td>28145</td>
</tr>
<tr>
<td></td>
<td>• Correction of a non compliancy report, impacting the Leakage GADS in the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>consolidated data processing chain (channels 6-8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.02</td>
<td>No algorithm specification changes were implemented, but following non</td>
<td>D-PAC</td>
<td>05-MAY-2006</td>
<td>21843</td>
</tr>
<tr>
<td></td>
<td>compliances of version 6.01 have been corrected, to get</td>
<td>PDHS-E</td>
<td>07-JUN-2006</td>
<td>22327</td>
</tr>
<tr>
<td></td>
<td>• Polarisation correction factors different from 0</td>
<td>PDHS-K</td>
<td>07-JUN-2006</td>
<td>22318</td>
</tr>
<tr>
<td></td>
<td>• Correct order of SMR spectra in</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sun Reference ADS

- Solar mean reference spectra in New Sun Reference Data set with positive sign (was negative in IPF 6.01)

| 6.01 | Improved parameterization of the Memory effect for channels 1 to 5
| | New correction for the Non-Linearity effect in the infrared channels
| | Usage of improved key data for the radiometric calibration of all channels
| | Each solar spectrum is provided in a calibrated and un-calibrated manner for all channels
| | Orbital dependency of channel 6 to 8 leakage calculated; currently applied only to channel 8
| | Improvement of the pointing accuracy through the usage of the ENVISAT Restituted Attitude auxiliary files for the off-line processing
| | Decontamination flag added to the SPH

D-PAC

No operations activated

PDHS-E
PDHS-K

22-MAY-2006 22098
22-MAY-2006 22090

PDHS-E PDHS-K LRAC

24-MAR-2004

Tab. 5-1: Processor Version and main changes

5.1.2 Anomalies

No anomalies were detected in the level 1b products during this reporting period.

5.2 Auxiliary Data Files

For operation of the SCIAMACHY level 1 processor, a set of auxiliary files as input is required.

One subset of these auxiliary files usually changes only in correspondence with a new IPF version, namely the Initialisation file (SCI_LI1_AX), the Key Data File (SCI_KD1_AX).

In addition there is the m-factor file (SCI_MF1_AX), which shall describe the degradation of the instrument during its stay in orbit. Note that the m-factor file has not been changed so far.
Another subset of auxiliary files is the In-flight calibration data files, which are generated when calibration measurements are included in the set of level 0 data to be processed. Four types of In-flight calibration auxiliary files exist:

- Leakage Current Calibration (SCI_LK1_AX - updated on orbital basis)
- Solar Reference Spectrum (SCI_SU1_AX - updated on daily basis)
- Spectral Calibration Parameters (SCI_SP1_AX - updated on a weekly basis)
- Pixel-to-Pixel Gain and Etalon Parameters (SCI_PE1_AX - updated on a weekly basis)

Table 5-2 lists the actual Key Data File and Initialisation File used with IPF 6.02 and IPF 6.03. The SCI_LI1_AX was updated with IPF 6.03 in order to improve the instrument pointing correction.

Table 5-2 Key data and Initialisation configuration

<table>
<thead>
<tr>
<th>Key Data File Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCI_LI1_AXVIEC20060523_182643_20020701_000000_20991231_235959 (until 18/07/2007)</td>
</tr>
<tr>
<td>SCI_LI1_AXVIEC20070628_134108_20020701_000000_20991231_235959 (from 18/07/2007)</td>
</tr>
<tr>
<td>SCI_KD1_AXVIEC20060523_182626_20020301_000000_20991231_235959</td>
</tr>
</tbody>
</table>

Fig. 5.1 shows statistics of the SU1 and LK1 ADFs generated operationally with SCICAL. It has to be noted that unavailability periods are excluded from statistics. Generation of SU1 ADFs for January 2008 was 100% and for February 2008 it was 96.5%. The SU1 ADF for 28 February was not generated due to a system anomaly.

The LK1 ADF statistic is calculated by dividing the number of all LK1 ADFs by number of all available (to SCICAL) level 0 products. The statistics on available LK1 ADFs during January 2008 (91.5.4%) and February 2008 (79.6%) are on a nominal level. However, due to a frequently occurring system anomalies during February period SU1 and LK1 ADFs were not disseminated as expected on a daily basis but several interruptions occurred of 1-4 days, causing a small delay in the ADF dissemination. These delays have no impact on the off-line data processing. The system anomalies were affecting the data server used for ADF dissemination and level 0 data product repository. The not reliable data server has been replaced during a migration with a new platform in March 2008. The system is expected to be significantly improved in its stability.

The statistic does not exclude dark measurements that cannot be used for ADF generation due to SAA and orbit phase constraints leading to an over-estimation of missing files.
5.2.1 Spectral Performance

Future reports will contain analyses of spectral performance.

5.2.2 Radiometric Performance

Future reports will contain analyses of spectral performance.

5.2.3 Other Calibration Results

5.2.3.1 SMR analysis

SCICAL generates daily SU1 Auxiliary Files. Solar spectra obtained from ESM and ASM calibration measurements are provided in two ways:

- fully calibrated
- not radiometrically calibrated.

The different types of spectra can be recognized by the so called identifier in the solar reference global annotation data set record.

Note the following recommendation:

- Use a not radiometrically calibrated ASM diffuser spectrum (A0) for DOAS type applications.
- All retrieval methods requiring absolute calibrated radiance and irradiance are obliged to use the calibrated ESM diffuser spectrum (D0) (see also disclaimer).
Fig. 5-2 to Fig. 5-5 show the ratios of SMR spectra derived from calibrated SMR/ESM (D0) during the months January - February 2008. The ratios were determined by dividing the spectra of the beginning of each month to a set of days during each month. Ratios are not corrected for variation of distance earth/sun.

In detail the spectra used for the ratios of each month are the following:

- **January 2008**
 - Reference SMR - 01 January 2008
 - SMR used for ratios: 02, 03, 04, 05, 06, 07, 08, 09, 10, 14, 21, 31 January 2008

- **February 2008**
 - Reference SMR - 01 February 2008
 - SMR used for ratios: 02, 03, 04, 05, 06, 07, 08, 09, 10, 14, 21, 29 February 2008

The overall changes lie at about 1-2% during one month for all channels, which is at least partially caused by the decreasing distance between sun and earth. In channel 1 around pixel 550 (at 282 nm) some strong features can be noticed, as well as in channel 2 near pixel 840 (near 393 nm). These strong features coincide with the Mg II and Ca Fraunhofer lines respectively. These lines are partially formed in the solar chromosphere and are known to change with solar variability.

The weaker spectral features in channel 2 (e.g. near pixels 550, 650, 750), on the other hand, correlate with strong Fraunhofer lines, which are not chromospheric. These features probably arise from small wavelength shifts (order of 1/100 of a pixel).

Generally a spectral feature could have significant impact on the product quality, especially when the affected spectral parts are used for DOAS retrieval.

The large features in the end of channel 6 (channel 6+) and channels 7 and 8 are due to bad pixels.

Note that the bad pixel mask used is still from the on ground calibration.

A regular update of the bad pixel mask is implemented starting with IPF 6.02. However a bad pixel correction will not be applied to the SMR spectra, but only to PMD out-of-band factors, in order to enable the user to apply a different mask from the one provided by the ADF.

Fig. 5-6 and Fig. 5-7 show SMR ratios on a long term trend dividing the ESM spectra from days 31 January 2003 and 31 January 2008, respectively 27 February 2003 and 27 February 2008.

The first spectrum available exists for 18-Jul-2002. However to consider sun/earth distance, the ratio was performed with spectra from same calendar days. All SCI_SU1_AX files used were generated with SCICAL.

What can be concluded is that for channels 1-2 an average degradation in 5 years of about 7-10% is observed, channels 3 degrades by about 2% and channels 4-5 degrade by less than 1%, channel 6 by about 4-5%. The signal in channel 7 has increased with respect to the SMR of year 2002. This is due to the impact of the icing of the IR detectors.

This is consistent with the Light Path monitoring at SOST-IFE.
Fig. 5-2: SMR ratios per detector channel 1-4 (changes during January 2008)

Fig. 5-3: SMR ratios per detector channel 5-8 (changes during January 2008)
Fig. 5-4: SMR ratios per detector channel 1-4 (changes during February 2008)

Fig. 5-5: SMR ratios per detector channel 5-8 (changes during February 2008)
Fig. 5-6: SMR ratios per detector channel on Long Term Trend

Fig. 5-7: SMR ratios per detector channel on Long Term Trend
5.2.3.2 LK1 analysis

5.2.3.2.1 Leakage Constant part

On an orbital basis a leakage current calibration is performed, if measurement data do not lie in the South Atlantic Anomaly region.

In Fig. 5-8 to Fig. 5-11 the leakage constant part FPN (fixed pattern noise) of the LK1 ADFs are analysed by determining the ratios of the FPN of each month with a time distance of one orbit, one day, one week, two weeks, three weeks and a month.

For channels 1-5 and the first part of channel 6, during up to three weeks nearly no changes can be noticed. Sudden jumps however between the different dark current ratios can be seen for channels 1, 2, 4 and 5 between 4 weeks. They are very small but above the noise level.

The IR channels show a lot of noise. Note that since the processor version IPF 6.02, the time dependent part of the leakage current is considered (see 5.2.3.2.2).
Fig. 5-8: dark current ratios (constant part) channel 1-4 during January 2008, Reference Spectrum used: Orbit 30521, 01-January-2008

Fig. 5-9: dark current ratios (constant part) channel 5-8 during January 2008, Reference Spectrum used: Orbit 30521, 01-January-2008
Fig. 5-10: dark current ratios (constant part) channel 1-4 during February 2008, Reference Spectrum used: Orbit 30965, 01-February-2008

Fig. 5-11: dark current ratios (constant part) channel 5-8 during February 2008, Reference Spectrum used: Orbit 30965, 01-February-2008
5.2.3.2.2 Leakage Variable part

Since IPF 6.02 the orbital dependency of channel 6 to 8 leakage current is considered. SCIAMACHY detector channels 6 – 8 have a time dependent leakage dark signal that consists of two components, the leakage current of the detector pixel and second a component due to thermal background that varies along the orbit. The implementation of the orbital variation of the leakage current is expected to improve retrieval especially in detector channel 8 for infrared products.

Figure 5-12 shows the evolution of the leakage variable part of the SCI_LK1_ADF during the time span 01 January 2008 to 29 February 2008. The leakage variation for a selected pixel (222) in channel 7 corresponding to orbit phase 5 is shown. Updates of the leakage variable are expected after the processing of the monthly calibration orbits, i.e. once per month. During this period Monthly Calibration sequences were scheduled for:

- 21 January 2008
- 18 February 2008

For both dates the change of the Leakage Variable value can be clearly seen, demonstrating that the calibration was performed successfully.

After a failure in the ADF generation (ADF data set 01 June 2007 – 01 November 2007) of monthly leakage calibration measurements, these ADFs had been recalibrated (see BMR November – December 2007). The corresponding level 1b were reprocessed and original level 1b products from the operational processing chain have been removed from the D-PAC server.

Figure 5-12: Leakage VARIABLE, SCI_LK1_AX, 01 January – 29 February 2008, channel 7, Orbit phase=6 pixel 222
5.3 **Bad and Dead Pixel Mask**

With this BMR we introduce the analysis on the SCIAMACHY Bad and Dead Pixel Mask, which is routinely performed at SRON.

Within this analysis bad pixels of the detector arrays are identified by the SCIAMACHY Detector Monitoring Facility (SDMF) using 11 flagging criteria. These criteria are based on the dark signal model, transmission, gain and noise of a pixel. Bad pixel masks are calculated on an orbital basis and combined into a "smoothmask" that combines the masks of about 50 orbits. In Fig. 5.13 we show the number/fraction of pixels that is flagged as bad for channels 6, 6+, 7 and 8. Note that channel 6 consists of two parts employing different detector materials. Channel 6+ starts at pixel 794. The rate at which the number of pixels that is flagged is increasing is similar for the IR channels 6+, 7 and 8. The fraction of flagged pixels in channel 6 is much lower and almost constant over the mission, because of the different detector materials used in this part of the channel. The mask currently provided in the level 1b product must be regarded experimental. It uses a different algorithm and is not identical to the mask provided by SRON. It is planned to align the two masks in future processor versions.

![Figure 5-13: Number/Fraction of pixels that is flagged as bad by the SDMF smoothmask for channels 6 (blue), 6+ (red), 7 (green) and 8 (dark yellow). Orbits during SODAP or decontaminations have been removed.](image)

5.4 **Pointing Performance**

No upgrade with respect to the pointing performance during this reporting period. See BMR September-October 2007 for the last status.
5.5 **SciaL1c tool**

The SciaL1c tool is an application provided to the users of SCIAMACHY Level 1b products. This application allows selecting specific calibrations to apply to Level 1b data, which are in case of SCIAMACHY defined as not fully calibrated Level 0 channel information in combination with calculated calibration data. The generated Level 1c products are suitable for the user’s particular applications.

The SciaL1C Calibration and Extraction Software was upgraded to be compatible with IPF 6.02 data. It is downward compatible, i.e. it can also be used with data from older IPF versions.

SciaL1c can be downloaded at:

http://envisat.esa.int/scial1c

LINUX, Sun Solaris, LINUX on DEC-Alpha and HP-UX on IA64 versions are available.
6 LEVEL 2 NRT PRODUCT QUALITY MONITORING

6.1 Processor Configuration

6.1.1 Version

Since 08 May 2006 the near real time processing of SCIAMACHY level 2 data has been suspended, evolution is currently restricted to the level 2 Off-line processor (see chapter 7).
The last IPF version used was 5.04. The corresponding product specification is /2/. The disclaimer at http://envisat.esa.int/dataproducts/availability/disclaimers/SCI_NL__2P_Disclaimers.pdf describes known artefacts.

An overview on the implementation dates of the IPF at the different PDS processing centres and the main modifications implemented can be found in previous BMR (June-May 2007).

6.1.2 Auxiliary Data Files

An overview of Auxiliary Files being used as input for SCI_NL__2P products can be found in previous BMR (June-May 2007).
7 LEVEL 2 OFF-LINE PRODUCT QUALITY MONITORING

7.1 Processor Configuration

7.1.1 Version

The Level 2 Off-line processing version is 3.01.
The product specification corresponding to the level 2 off-line processor 3.01 is Volume 15, issue 3/k [2] and can be found at http://earth.esa.int/pub/ESA_DOC/ENVISAT/Vol15_Sciamachy_3k.pdf

SCI OL__2P products contain geo-located vertical column amounts of O3 and NO2 Nadir measurements, as well as stratospheric Limb profiles of O3 and NO2. Additionally the fractional cloud coverage, the cloud-top height, and the cloud optical thickness are derived and provided as product to the user. The major upgrades are summarised in table 7.1.

Currently the new baseline 4.00 is in preparation (a verification meeting took place at IFE Bremen 26 March 2008).

<table>
<thead>
<tr>
<th>Processor Version</th>
<th>Description</th>
<th>Proc Centre</th>
<th>Date</th>
<th>Start Orbit</th>
</tr>
</thead>
</table>
| 3.01 | Main processor changes:
• Updated SACURA cloud algorithm
• Offset applied in NO2 slant column processing was removed
• Number of retrieved profiles per state was set from one to four (4)
• Cloud and Aerosol MDS are filled with the next valid value instead of being set to zero
• Molecular Ring correction applied on NADIR O3 slant column density
Non-compliance corrections:
• Inter change of Pressure and Temperature values in LIMB MDS
• Erroneous Cloud and Aerosol | D-PAC | 23-SEP-2007 | 29092 |
Table 7-1: Level 2 off-line Processor Configuration

<table>
<thead>
<tr>
<th>Quality Flags</th>
<th>D-PAC</th>
<th>03-MAY-2006</th>
<th>21824</th>
</tr>
</thead>
<tbody>
<tr>
<td>• AAI erroneously set to zero in Cloud and Aerosol MDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Scaling of too large NO$_2$ error estimate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Nadir UV/Visible algorithm for ozone and NO$_2$ is based on the GDP (GOME Data Processor) Version 4.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Nadir UV/Visible algorithm for cloud-top height and cloud optical thickness based on the SACURA algorithm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Limb UV/Visible products: Stratospheric Ozone and NO$_2$ profiles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Improved pointing performance through the use of the ENVISAT Restituted Attitude information in the consolidated Level 1b product</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.1.2 Anomalies

With the operation of the new off-line processor version 3.01 an erroneous processing configuration was activated for the operational processing chain, containing a too short time-out setting. This led to an incomplete Limb MDS processing; only a reduced number of tangent latitude values were processed. Nadir MDS were nominal and not effected by this anomaly. The data set concerned is between 23 September 2007 and 27 October 2007. Data after this period are processed nominally again as the configuration was corrected. The data of the time span, containing a reduced number of LIMB MDS, will be reprocessed.

7.1.3 Auxiliary Data Files

Input for level 2 Off-line processing is the so-called Initialization File. For processor version 3.01 a new Initialization file became active which is SCI_IN__AXNPDE20070629_092400_20070720_000000_20991231_235959

This ADF is usually changed only in case of a processor upgrade.
7.2 Monitoring results

7.2.1 Nadir: NO$_2$ consistency checking

The world map plots of nadir NO$_2$ vertical column density (VCD) values averaged over one month are generated from the SCI_OL__2P nadir products. Fig 7.1 and 7.3 show the monthly world map plots for January and February 2008. Figures 7.2 and 7.4 show the VCD errors for the monthly average plots. The errors are given in relative fraction. Generally the equator region has NO$_2$ values with higher errors. Over the region of Scandinavia particularly high VCD errors are found, this corresponds also to the daily monitoring and the occurrence of high errors in this region and time period during year 2007. The reason for this is under investigation, but seems to be a seasonal effect.

High concentration of NO$_2$ is expected over industrial regions, as over North America, especially the East coast, over central Europe, China and South Africa, which is reflected in the world maps.
7.2.1.1 Nadir: VCD NO2 map January 2008

Figure 7-1: NO2 VCD world map 01 - 31 January 2008 – monthly average

Figure 7-2: NO2 VCD error 01-31 January 2008
7.2.1.2 Nadir: VCD NO2 map February 2008

Figure 7-3: NO2 VCD world map 01 - 29 February 2008 – monthly average

Figure 7-4: NO2 VCD error 01 – 29 February 2008
7.2.2 **Nadir: O3 consistency checking**

Analogous to the NO₂ world maps, O₃ vertical column density (VCD) values averaged over one month are generated from the SCI OL 2P nadir products and plotted on a world map. Fig 7.5 and 7.7 show the ozone distribution converted in Dobson units for January and February 2008. Corresponding to the seasonal evolution the Ozone Hole over the Antarctica is not visible during these two months. The VCD errors as monthly average plots are shown in Figures 7.6 and 7.8. The errors are given in relative fraction. Systematically higher error values at the North Pole area are visible.
7.2.2.1 Nadir: VCD O3 map January 2008

Figure 7-5: O3 VCD world map 01-31 January 2008 – monthly average

Figure 7-6: O3 VCD error 01-31 January 2008
7.2.2.2 Nadir: VCD O_3 map February 2008

Figure 7-7: O_3 VCD world map 01-29 February 2008 – monthly average

Figure 7-8: VCD error 01-29 February 2008
7.2.3 **Limb: Ozone profile averages**

In order to quality check SCIAMACHY limb profiles on a monthly basis, a new paragraph is introduced, showing the results for Ozone limb profiles binned for two tangent height regions bins:

- 21.0 – 24.5 km (17th bin, bin index=16).
- 35.0 – 38.5 km (13th bin, bin index=12).

The data of the first half of each month (calendar days 1 - 15) and the second half (calendar days 16 - 31) are averaged for selected tangent heights into geolocation bins of 10 degrees longitude and 5 degrees latitude. The binning algorithm uses a single longitude and latitude value for the entire profile, being the value for the middle of the integration time as reported in the Geolocation Limb Dataset. The corresponding error is averaged as well.

The world maps of the averaged Ozone values show comparably low errors over the SAA region, which is not as expected. Investigation showed that the low SAA errors result from irregular conditions of the LIMB retrieval in that region. This issue will be included into the level 2 off-line disclaimer.

During the analysis of the monthly evolution of ozone limb data, it was found that data of 13th February 2008 seem to contain profiles for 20 different altitudes instead of 19. This coincides with an ENVISAT SDM (Service Demodulator) anomaly 13 February, 09:33 – 19:28. During that time the service module was switched to YSM.

Generally the number of profiles is not fixed: The Limb processor checks for each profile, if the line of sight of the measurements used for a given profile is in the shadow region. If this is the case for one measurement, the profile is not calculated. Since we have more than one measurement per azimuth, the number of profiles per orbit could change over the year.

The occurrence of 13th February is currently under detailed investigation and results will be reported in the next BMR.
7.2.3.1 Ozone limb profiles January 2008

Figure 7-9 Limb Ozone profiles, binned over 21.0 – 24.5 km

Figure 7-10 Limb Ozone profiles, binned over 35.0 – 38.5 km
7.2.3.2 Ozone limb profiles February 2008

Figure 7-11: Limb Ozone profiles binned over 21.0 – 24.5 km

Figure 7-12: Limb Ozone profiles, binned over 35.0 – 38.5 km
8 VALIDATION ACTIVITIES AND RESULTS

Validation activities of products from re-processing, level 1 IPF 6.03 and level 2 off-line processor 3.01 have been performed. A preliminary validation meeting took place 22 January 2008 at SRON and a second meeting at 26th March 2008 in Bremen.