Mongolia – MERIS full resolution scene -
First snow falls around Hövsgöl Nuur Lake

prepared by/préparé par
DPQC MERIS Team and QWG
reference/référence
issue/édition 1
revision/révision 1
date of issue/date d’édition December 12th, 2006
status/état
Document type/type de document MERIS Cyclic Report
Distribution/distribution
APPRAVAL

<table>
<thead>
<tr>
<th>Title titre</th>
<th>MERIS Cyclic Report – Cycle 51st</th>
<th>issue issue</th>
<th>revision revision</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>author auteur</th>
<th>G. Obolensky</th>
<th>date date</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>approved by approuvé by</th>
<th>L. Bourg</th>
<th>date date</th>
</tr>
</thead>
</table>

CHANGE LOG

<table>
<thead>
<tr>
<th>reason for change raison du changement</th>
<th>issue/issue</th>
<th>revision/revision</th>
<th>date/date</th>
</tr>
</thead>
</table>

MERIS Level 0 products statistics updated 1 1 12/12/2006

CHANGE RECORD

Issue: 1 Revision: 1

<table>
<thead>
<tr>
<th>reason for change raison du changement</th>
<th>page(s)/page(s)</th>
<th>paragraph(s)/paragraph(s)</th>
</tr>
</thead>
</table>

MERIS Reduced Resolution Level 0 statistics updated 7 4.1
MERIS Reduced Resolution Level 0 statistics histogram updated 7 4.1
MERIS Full Resolution Level 0 statistics updated 8 4.1
MERIS Full Resolution Level 0 statistics histogram updated 8 4.1
Table Of Contents

1 INTRODUCTION ... 1
 1.1 Acronyms and abbreviations ... 1

2 SUMMARY ... 3

3 PROCESSOR VERSION AND PROCESSING CONFIGURATION .. 3
 3.1 MERIS Processor Release .. 3
 3.2 Auxiliary data files (ADF) .. 4
 3.3 Level 1/Level 2 Configuration (SciHiO2) .. 5
 3.4 Configuration Table Interface (CTI) ... 6
 3.5 Level 1/Level 2 RR or FR products ... 6

4 PDS STATUS ... 7
 4.1 MERIS Level 0 products availability ... 7
 4.2 MERIS FR acquisitions ... 9
 4.3 MER_CA__0P Products .. 13

5 INSTRUMENT/DATA UNAVAILABILITY .. 13
 5.1 Instrument Unavailability .. 13
 5.2 Data Unavailability .. 14

6 CALIBRATION AND INSTRUMENT CHARACTERIZATION ... 15
 6.1 Calibration ... 15
 6.1.1 Radiometric calibration .. 15
 6.1.2 Spectral calibration ... 15
 6.1.3 Geolocation ... 15
 6.1.4 VEU Temperature Analysis .. 16
 6.1.5 Vicarious calibration results .. 16
 6.2 Instrument Characterization .. 18
 6.2.1 Instrument degradation .. 18
 6.2.2 Diffuser ageing ... 18
 6.2.3 Smile Effect ... 18
 6.2.4 Spectral evolution from erbium measurements ... 19

7 DATA QUALITY CONTROL ... 19
 7.1 MERIS products quality status ... 19
 7.2 Anomalies and Software Problem Reporting (SPR) ... 19

8 FIRST 2003 MERIS ARCHIVE REPROCESSING ... 19
9 SECOND 2005 MERIS ARCHIVE REPROCESSING ..19
10 MERIS PROCESSOR EVOLUTION...19
11 VALIDATION ACTIVITIES AND RESULTS ..20
12 WATER VAPOUR AND BROWSE MAPS ...20
13 HOW TO GET MERIS DATA ..20
14 GENERAL INFORMATION ...20

TABLE OF ILLUSTRATIONS

Table 1 – Cycle Characteristics ..3
Table 2 – MERIS processor parameters – version 5.02 ..3
Table 3 – Auxiliary Data Files in use for the cycle #51 ..5
Table 4 – MERIS Level 1 Auxiliary Data Files ...5
Table 5 – MERIS Level 1 Auxiliary Data Files ...5
Table 6 – Reduced Resolution Level 0 products availability7
Figure 1 - MER_RR__0P generated/missing by the ground segment during cycle #51 ..7
Table 7 – Full Resolution Level 0 products availability ..8
Figure 2 - MER_FR__0P generated/missing by the ground segment during cycle #51 ..8
Figure 3 - MERIS Full Resolution Level 0 acquisitions - Part #1 – 05/09/2006 – 09/09/20069
Figure 4 - MERIS Full Resolution Level 0 acquisitions - Part #2 – 10/09/2006 – 14/09/20069
Figure 5 - MERIS Full Resolution Level 0 acquisitions - Part #3 – 15/09/2006 – 19/09/2006 ..10
Figure 6 - MERIS Full Resolution Level 0 acquisitions - Part #4 – 20/09/2006 – 24/09/2006 ..10
Figure 7 - MERIS Full Resolution Level 0 acquisitions - Part #5 – 25/09/2006 – 29/09/2006 ..10
Figure 8 - MERIS Full Resolution Level 0 acquisitions - Part #6 – 30/09/2006 – 04/10/2006 ...11
Figure 9 - MERIS Full Resolution Level 0 acquisitions - Part #7 – 05/10/2006 – 09/10/200612
Table 8 – EDAC corrected Single Event Upsets ...14
Figure 10 - VEU Temperature during cycle #51 ..16
Figure 11 - METRIC calibration site map ...17
Figure 12 – Number of L1B extracted products over METRIC sites18
1 INTRODUCTION

The MERIS Cyclic Report is distributed by ESRIN- DPQC (Data Processing Quality Control) to keep the MERIS Community informed of any modification regarding the processor, updates of auxiliary products, anomalies of the instrument behaviour, data acquisition and processing, and finally the status of the calibration, validation, and quality control activities.

The Cyclic Report collects the inputs coming from different groups involved in MERIS data exploitation:

- ESRIN- Product Control Facility (PCF)
- Quality Working Group (QWG)
- MERIS/AATSR validation team (MAVT)
- Brockmann Consult (BC)
- ACRI-st
- Laboratoire d’Océanographie de Villefranche (LOV)
- Centre National d’Études Spatiales (CNES)
- Frei Universität Berlin (FUB)
- Laboratoire Interdisciplinaire en Sciences de l'Environnement (LISE)

The main objective of the Cyclic Report is to provide the users community with useful information regarding the instrument performances, the data production chain, the results of calibration activities and validation campaigns, at the end of each ENVISAT cycle, which represents 501 orbits, about 35 days.

1.1 Acronyms and abbreviations

ADF Auxiliary Data File
ADS Auxiliary Data Server
ARF Archiving Facility (PDS)
CNES Centre National d’Études Spatiales
CTI Configuration Table Interface
CR Cyclic Report
DAC Diffuser Ageing Calibration
DMOP Detailed Mission Operation Plan
DOY Day Of Year
DS Data Server
DSD Data Set Descriptor
EDAC Error Detection And Correction
FR Full Resolution
FUB Freie Universität Berlin
GS Ground Segment
IAT Interactive Analysis Tool
IDL Interactive Data Language
IECF Instrument Engineering and Calibration Facilities
IPF Instrument Processing Facilities (PDS)
<table>
<thead>
<tr>
<th>Abbr</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>INV</td>
<td>Inventory Facilities (PDS)</td>
</tr>
<tr>
<td>JRC</td>
<td>Joint Research Centre</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
<tr>
<td>LISE</td>
<td>Laboratoire Interdisciplinaire en Sciences de l'Environnement</td>
</tr>
<tr>
<td>LOV</td>
<td>Laboratoire d’Océanographie de Villefranche-sur-mer</td>
</tr>
<tr>
<td>MERIS</td>
<td>Medium Resolution Image Spectrometer</td>
</tr>
<tr>
<td>MPH</td>
<td>Main Product Header</td>
</tr>
<tr>
<td>OP</td>
<td>Operational Phase of ENVISAT</td>
</tr>
<tr>
<td>OCL</td>
<td>Offset Control Loop</td>
</tr>
<tr>
<td>PAC</td>
<td>Processing and Archiving Centre (PDS)</td>
</tr>
<tr>
<td>PDCC</td>
<td>Payload Data Control Centre (PDS)</td>
</tr>
<tr>
<td>PDHS</td>
<td>Payload Data Handling Station (PDS)</td>
</tr>
<tr>
<td>PDS</td>
<td>Payload Data Segment</td>
</tr>
<tr>
<td>PEP</td>
<td>Payload Exploitation Plan</td>
</tr>
<tr>
<td>QC</td>
<td>Quality Control</td>
</tr>
<tr>
<td>QWG</td>
<td>Quality Control Working Group</td>
</tr>
<tr>
<td>QUARC</td>
<td>Quality Analysis and Reporting Computer</td>
</tr>
<tr>
<td>RGC</td>
<td>Radiometric Gain Calibration</td>
</tr>
<tr>
<td>RR</td>
<td>Reduced Resolution</td>
</tr>
<tr>
<td>SEU</td>
<td>Single Event Upset</td>
</tr>
<tr>
<td>SPH</td>
<td>Specific Product Header</td>
</tr>
<tr>
<td>SQADS</td>
<td>Summary Quality ADS</td>
</tr>
<tr>
<td>WV1</td>
<td>Wavelength type 1 calibration</td>
</tr>
<tr>
<td>WV2</td>
<td>Wavelength type 2 calibration</td>
</tr>
</tbody>
</table>
2 SUMMARY

Cycle #51 starts on the 04th of September 2006 and stops on the 09th of October 2006.

- One auxiliary file (Radiometric Calibration data) was disseminated during the reporting period due to MERIS On board Offset Control Loop (OCL) ON mode reactivated.
- Three routine Radiometric Gain type, one Diffuser Ageing type and one Wavelength type 1 calibrations were planned in the reporting period – some have been successfully executed.
- Three Instrument unavailabilities have occurred during the reporting period.
- One data unavailability has occurred during the reporting period.

Details about the start and stop of the cycle can be found in the table below.

<table>
<thead>
<tr>
<th>Cycle number</th>
<th>Start time</th>
<th>Stop time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start orbit</td>
<td>23602</td>
<td>Stop orbit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24102</td>
</tr>
</tbody>
</table>

Table 1 – Cycle Characteristics

3 PROCESSOR VERSION AND PROCESSING CONFIGURATION

3.1 MERIS Processor Release

No changes in the IPF have been performed during cycle #51. The current MERIS processor configuration is described in the table below:

<table>
<thead>
<tr>
<th>IPF Version</th>
<th>Validity</th>
<th>Reference Documents</th>
</tr>
</thead>
</table>
| 5.02 | 8th May 2006 08:00 UTC Orbit # 21890 | 1. ENVISAT Product Specification [Iss_5_Rev_A]
| | | 2. MERIS Input/Output Data Definition [Iss_7_Rev_3a]
| | | 3. MERIS Level 1b Detailed Processing Model [Iss_7_Rev_0a]
| | | 4. MERIS Level 2b Detailed Processing Model [Iss_7_Rev_2a] |

Table 2 – MERIS processor parameters – version 5.02
3.2 Auxiliary data files (ADF)

During the last QWG (Esrin, 11-12 september 2006) participants decided to put MERIS back into OCL ON mode (Offset Control Loop - on-board correction of the Dark charge all along each orbit). This return to the previous MERIS observation mode – disabled in December 2004 to reduce the horizontal striping in the water Level 2 products – is a consequence of the increase of strong camera interfaces occurrences in the Level 2 water products since the OCL-OFF mode implementation, as pointed out in a MERIS DPQC analysis report. Prior to the MERIS QWG meeting, MERIS DPQC team performed a statistic analysis on pre/post OCL-OFF mode implementation date to assess the impact of that change on data quality that showed an important increase of strong discontinuities at camera interfaces for the OCL OFF products. The MERIS DPQC team has prepared the new Auxiliary Data File to be disseminated for the OCL-ON implementation, and provided an analysis on first orbits acquired in the new observation mode: Everything was in-line with the nominal status.

<table>
<thead>
<tr>
<th>Product description</th>
<th>Product name</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1 aux files</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrument Characterization Data</td>
<td>MER_INS</td>
<td>No changes</td>
</tr>
<tr>
<td>Processing Level 1 Control Parameters data</td>
<td>MER_CP1</td>
<td>No changes</td>
</tr>
<tr>
<td>Radiometric Calibration data</td>
<td>MER_RAC</td>
<td>Changed for OCL-ON mode</td>
</tr>
<tr>
<td>Digital Roughness Model</td>
<td>MER_DRM</td>
<td>No changes</td>
</tr>
<tr>
<td>Digital Elevation Model</td>
<td>AUX_DEM</td>
<td>No changes</td>
</tr>
<tr>
<td>Land Surface Map</td>
<td>AUX_LSM</td>
<td>No changes</td>
</tr>
<tr>
<td>Attitude data file</td>
<td>AUX_ATT</td>
<td>No changes</td>
</tr>
<tr>
<td>Level 2 aux files</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerosol Climatology data</td>
<td>MER_AER</td>
<td>No changes</td>
</tr>
<tr>
<td>Atmosphere Parameter data</td>
<td>MER_ATP</td>
<td>No changes</td>
</tr>
<tr>
<td>Cloud Measurement Parameters data</td>
<td>MER_CMP</td>
<td>No changes</td>
</tr>
<tr>
<td>Processing Level-2 Control Parameters data</td>
<td>MER_CP2</td>
<td>No changes</td>
</tr>
<tr>
<td>Land Aerosols Parameters data</td>
<td>MER_LAP</td>
<td>No changes</td>
</tr>
<tr>
<td>Land Vegetation Index parameters data</td>
<td>MER_LVI</td>
<td>No changes</td>
</tr>
<tr>
<td>Ocean Aerosols Parameters data</td>
<td>MER_OAP</td>
<td>No changes</td>
</tr>
<tr>
<td>Ocean I parameters data</td>
<td>MER_OC1</td>
<td>No changes</td>
</tr>
</tbody>
</table>
Ocean II parameters data | MER_OC2 | No changes
Water Vapour Parameters | MER_WVP | No changes

Table 3 – Auxiliary Data Files in use for the cycle #51

Note: The other files not included into the list change every time (ECMWF).

3.3 Level 1/Level 2 Configuration (SciHiO2)

The current operational ADF files, used in the processing from Level 0 data to Level 1b or Level 2 products, are listed in the following tables.

- Level 1 ADF configuration:

<table>
<thead>
<tr>
<th>Product name</th>
<th>Start Validity</th>
</tr>
</thead>
<tbody>
<tr>
<td>MER_INS_AXVIEC20050708_134312_20050101_000000_20150101_000000</td>
<td>01/01/2005</td>
</tr>
<tr>
<td>MER_CP1_AXVIEC20050607_065745_20020321_193100_20120321_193100</td>
<td>29/04/2002</td>
</tr>
<tr>
<td>MER_RAC_AXVIEC20061009_084736_20061009_220000_20161009_220000</td>
<td>09/10/2006</td>
</tr>
<tr>
<td>MER_DRM_AXVIEC20020122_083343_20020101_000000_20200101_000000</td>
<td>01/01/2002</td>
</tr>
<tr>
<td>AUX_DEM_AXVIEC20031201_000000_20031201_000000_20200101_000000</td>
<td>01/12/2003</td>
</tr>
<tr>
<td>AUX_LSM_AXVIEC20020123_141228_20020101_000000_20200101_000000</td>
<td>01/01/2002</td>
</tr>
<tr>
<td>AUX_ATT_AXVIEC20020924_131534_20020703_120000_20781231_235959</td>
<td>03/07/2002</td>
</tr>
</tbody>
</table>

Table 4 – MERIS Level 1 Auxiliary Data Files

- Level 2 ADF configuration:

<table>
<thead>
<tr>
<th>Product name</th>
<th>Start Validity</th>
</tr>
</thead>
<tbody>
<tr>
<td>MER_AER_AXVIEC20040407_174356_20020321_193100_20120321_193100</td>
<td>21/03/2002</td>
</tr>
<tr>
<td>MER_ATP_AXVIEC20050628_123340_20021224_121445_20121224_121445</td>
<td>24/12/2002</td>
</tr>
<tr>
<td>MER_CMP_AXVIEC20040407_180835_20021224_121445_20121224_121445</td>
<td>24/12/2002</td>
</tr>
<tr>
<td>MER_CP2_AXVIEC20031120_104149_20021224_121445_20121224_121445</td>
<td>24/12/2002</td>
</tr>
<tr>
<td>MER_LAP_AXVIEC20050628_124246_20020321_193100_20120321_193100</td>
<td>21/03/2002</td>
</tr>
<tr>
<td>MER_LVI_AXVIEC20050704_145357_20020321_193100_20120321_193100</td>
<td>21/03/2002</td>
</tr>
<tr>
<td>MER_OAP_AXVIEC20050704_145633_20020321_193100_20120321_193100</td>
<td>21/03/2002</td>
</tr>
<tr>
<td>MER_OC1_AXVIEC20050704_145802_20020321_193100_20120321_193100</td>
<td>21/03/2002</td>
</tr>
<tr>
<td>MER_OC2_AXVIEC20050628_123950_20020321_193100_20120321_193100</td>
<td>21/03/2002</td>
</tr>
<tr>
<td>MER_WVP_AXVIEC20040407_181941_20020321_193100_20120321_193100</td>
<td>21/03/2002</td>
</tr>
</tbody>
</table>

Table 5 – MERIS Level 1 Auxiliary Data Files
3.4 Configuration Table Interface (CTI)

Seven new CTI were disseminated during cycle #51. These files where formatted according to the specifications of the On Board Offset Control Loop Switch to ON requirements. The following files have been disseminated on 6th of October 2006 to be operational on the first orbit of the cycle #52 (orbit #24103):

CTI_NDA_MEVRGT20060928_160123_00000000_00000011_20061009_220029_20781231_235959.N1
CTI_RC1_MEVRGT20060928_161021_00000000_00000007_20061009_220049_20781231_235959.N1
CTI_RC2_MEVRGT20060928_161322_00000000_00000004_20061009_220109_20781231_235959.N1
CTI_DAC_MEVRGT20060928_161723_00000000_00000004_20061009_220129_20781231_235959.N1
CTI_SPC_MEVRGT20060928_162010_00000000_00000004_20061009_220149_20781231_235959.N1
CTI_AVR_MEVRGT20060928_162254_00000000_00000003_20061009_220209_20781231_235959.N1
CTI_STA_MEVRGT20060928_162511_00000000_00000005_20061009_220229_20781231_235959.N1

3.5 Level 1/ Level 2 RR or FR products

During cycle #51 no format changes or algorithm modifications regarding MERIS RR and FR products were implemented into the operational processor.

REMEMBER:
In the middle of cycle #47, some format changes or algorithm modifications regarding MERIS RR and FR products were implemented during the operational processor upgrade from v4.10 to 5.02. The data changes decided within the Data Quality Working Group are listed below:

- New Chlorophyll 1 polynomial characterisation from LOV (Laboratoire d’Océanologie de Villefranche – France)
- Chlorophyll 1 validity range set to [0.01,30.], no PCD raise when out of range
- Troposphere-free MAR99 replaces BLUE-\(\leq 1.5\) (from previous BOMEM runs)
- Gothic R Look Up Table from LOV (Laboratoire d’Océanologie de Villefranche – France)
- Chlorophyll 2 conversion factors from GKSS (revised with latest Neural Network delivery)
- Yellow Substance coding offset and scaling factor changes (linear to log scale, same range)
- Chlorophyll coding range changes ([−2,2] in log10 scale instead of [−3,3] previously)
- Whitecaps threshold set to 10 m.s\(^{-1}\)
- New Case 2 Neural Network from GKSS (with and without linear reflectances as input)
- White scatterer threshold set to 4.8
- MTCI threshold on B13-B8 difference set to 0.05, on B10-B8 to 1e-6 (numerical purpose only), ceiling for B8 set to 0.3, floor for B9 to 0.1
- Preliminary version of LARS Look Up Tables from Hygeos

For further details concerning the changes, please refer to the documentation available at: http://earth.esa.int/pcs/envisat/meris/documentation/MERIS_IPF_evolution.pdf
4 PDS STATUS

The statistics resulting from the query to the PDS inventory facility (INV) for the MERIS products availability are presented in the following paragraphs.

4.1 MERIS Level 0 products availability

The table below shows the statistics regarding the RR L0 availability (compared to the planned production).

<table>
<thead>
<tr>
<th>Week</th>
<th>MER_RR__0P %</th>
<th>Inventoried</th>
<th>Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>From 04/09 to 11/09</td>
<td>97.91</td>
<td></td>
<td>2.09</td>
</tr>
<tr>
<td>From 11/09 to 18/09</td>
<td>99.28</td>
<td></td>
<td>0.72</td>
</tr>
<tr>
<td>From 18/09 to 25/09</td>
<td>100</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>From 25/09 to 02/10</td>
<td>67.31</td>
<td></td>
<td>32.69</td>
</tr>
<tr>
<td>From 02/10 to 09/10</td>
<td>100</td>
<td></td>
<td>0.00</td>
</tr>
</tbody>
</table>

Table 6 – Reduced Resolution Level 0 products availability

The number of RR Level 0 products acquired during the cycle is about 92.91 % of the planned ones.
The table below shows the statistics regarding the FR L0 availability (compared to the planned production).

<table>
<thead>
<tr>
<th>Week</th>
<th>MER_FR_0P %</th>
<th>Inventoried</th>
<th>Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>From 04/09 to 11/09</td>
<td>91.03</td>
<td></td>
<td>8.97</td>
</tr>
<tr>
<td>From 11/09 to 18/09</td>
<td>87.83</td>
<td></td>
<td>12.17</td>
</tr>
<tr>
<td>From 18/09 to 25/09</td>
<td>89.95</td>
<td></td>
<td>10.05</td>
</tr>
<tr>
<td>From 25/09 to 02/10</td>
<td>25.90</td>
<td></td>
<td>74.10</td>
</tr>
<tr>
<td>From 02/10 to 09/10</td>
<td>81.38</td>
<td></td>
<td>18.62</td>
</tr>
</tbody>
</table>

Table 7 – Full Resolution Level 0 products availability

The number of FR Level 0 products acquired during the cycle is about 75.22 % of the planned ones.
4.2 MERIS FR acquisitions

The pictures below show the MERIS Full Resolution global coverage for the reporting period. As specified for this type of MERIS products, all lands and coastal areas are covered by MERIS FR acquisitions.

N/A

Figure 3 - MERIS Full Resolution Level 0 acquisitions - Part #1 – 05/09/2006 – 09/09/2006

Figure 4 - MERIS Full Resolution Level 0 acquisitions - Part #2 – 10/09/2006 – 14/09/2006
Figure 5 - MERIS Full Resolution Level 0 acquisitions - Part #3 – 15/09/2006 – 19/09/2006

Figure 6 - MERIS Full Resolution Level 0 acquisitions - Part #4 – 20/09/2006 – 24/09/2006
Figure 7 - MERIS Full Resolution Level 0 acquisitions - Part #5 – 25/09/2006 – 29/09/2006

Figure 8 - MERIS Full Resolution Level 0 acquisitions - Part #6 – 30/09/2006 – 04/10/2006
4.3 MER_CA__0P Products

During the Cycle #51, the following radiometric campaigns have been planned:

- One RGC radiometric gain routine calibration on the 9th of September in orbit 23668.
- One RGC radiometric gain routine calibration on the 23rd of September in orbit 23868.
- One Diffuser Ageing Calibration routine calibration on the 06th of October in orbits 24058 and 24059.
- Two Wavelength type 1 spectral routine calibration on the 06th and 07th of October in orbits 24060 to 24063 (two orbits each).
- One RGC radiometric gain routine calibration on the 07th of October in orbit 24068.

The Radiometric Calibration scheduled for the 9th of September 2006 in orbit 23668 has not been performed due to the SM anomaly (see section 5.1 for more details). The files with data corresponding to the remaining RGC calibrations are not available at the reporting issue.

All the DAC and WV1 type calibrations planned were successfully executed.

The list of calibration files available is reported below:

MER_CA__0PNPDE20060924_210229_000001782051_00286_23887_0015.N1 RGC
MER_CA__0PNPD20061006_194625_000001782051_00457_24058_0026.N1 DAC
MER_CA__0PNPD20061006_212702_000001782051_00458_24059_0027.N1 DAC
MER_CA__0PNPDE20061006_230735_000001792051_00459_24060_0022.N1 WV1
MER_CA__0PNPDE20061007_004811_000001792051_00460_24061_0023.N1 WV1
MER_CA__0PNPDE20061007_022847_000001792051_00461_24062_0024.N1 WV1
MER_CA__0PNPDE20061007_040924_000001792051_00462_24063_0025.N1 WV1

5 INSTRUMENT/DATA UNAVAILABILITY

5.1 Instrument Unavailability

Three instrument unavailabilities have been reported during cycle #51.

- On the 7th of September (DOY 250) at 16.40.30z, a Service Module anomaly on board ENVISAT switched OFF all instrument. MERIS was unavailable from this date until the next Sunday 10th of September recovered at 15.52.00z.
- MERIS SDPSS switched unexpectedly into PAUSE mode on Saturday 16th of September at 18:19:23, back in Measurement at 18:21:15 the same day.
- Due to an Orbit Control Mode/Manœuvre (see MERIS EN-UNA-2006/0276), MERIS was switched off to prevent from extra energy consumption from DOY 256 (13th of September 2006) at 03.20.00 until 08.30.00.

In the reporting period, 32 EDAC-corrected SEU occurred. The dates, times and geolocation of these events are given in the table below:
On doy 271 (28th September) at 08:09:53z command **E004** (Reset History sent by Spacon each pass) has not been executed because in execution time conflict with a command **E033-002** (Direct&Average Mod Bo) already onboard and scheduled by MPS. Since extra commanding to limit loss of data in case of PAUSE mode, the risk of conflict with E004 is higher.

5.2 Data Unavailability

One data unavailability has been reported during cycle #51.

- All Artemis communications segments since 26th September have been lost following an Envisat APC anomaly related to the Antenna Elevation Motor temperature. Measures have been taken to downlink SSR LR data (including DS2) temporarily via Svalbard, whilst anomaly investigations are ongoing and a solution is found for a return to the Kiruna/Artemis scenario. On 20th September the minimum APC Elevation Motor temperature dropped, and on 26th September at 269.12.24.55 the temperature eventually dropped below the lower limit, causing the APC to be switched off autonomously by the PMC. On 27th and 28th September, attempts to switch on the APC were not successful, due to the lower temperature limit being breached again,
and due to error in a new time-tagged sequence to switch on whilst in the warm part of the orbit. On 29th September, the redundant APC was finally switched back on, and the antenna moved into a position where the elevation motor is warmed by the sun. Investigations are ongoing, with the temperature being closely monitored. Please refer to Anomaly Report ENV-996.

6 CALIBRATION AND INSTRUMENT CHARACTERIZATION

6.1 Calibration

6.1.1 Radiometric calibration
During Cycle #51, two radiometric calibrations (RGC type) were successfully executed on the 12th and 26th of August. For more details see section 4.3.

6.1.2 Spectral calibration
During Cycle #51, no erbium calibration (Wavelength Type 1 or 2) were planned.

6.1.3 Geolocation
The accuracy specification for MERIS geolocation is 2000 m, with an operational goal of 150 m. The 290 m (nadir) bands 2, 5, 8 are used to estimate the absolute geolocation accuracy. This analysis shows significant improvements since launch, with one major upgrade, which occurred in 2003 DOY (Day of Year) 343. The update of the star tracker has been performed to reduce the systematic offset and improve orientation parameters. Global absolute geolocation error (North and South hemispheres) for the three consecutive periods can be summarized as follow:

(I) Initially, after the launch, according to results related to the 2002 period, the geolocation accuracy is in the order of ± 135 metres along-track and ± 207 metres across-track. The RMS absolute geolocation error stays within the range of 251.24 ± 81 m.

(II) The 2003 period is characterised by a degradation of the absolute geolocation accuracy where error is around ± 209 metres along-track and ± 295 metres across-track. For this period, the RMS absolute geolocation error stays within the range of 368.39 ± 67 m.

(III) After the update, 2004 period, MERIS geolocation is achieving the goal of 300 m with accuracy of ± 132 m along-track and ± 165 m across-track. The RMS absolute geolocation error remains within the range of 212 ± 22 m.

When correcting products from the systematic offset (centred results), for 2004 period the RMS absolute geolocation error stays within the range of 166 ± 18 m. The amount of products located on northern hemisphere is much larger than the one from the Southern hemisphere. Comparison between the two sets of results is not trivial. For the 2004 period, this study demonstrated the temporal stability of the absolute geolocation. More results are now needed to confirm this trend. For more details, refer to the Gael Consultant (Fr) report available on the ESA website:

http://earth.esa.int/pcs/envisat/meris/reports/
6.1.4 VEU Temperature Analysis

During one of the operation modes of MERIS, Stabilization mode, a thermal regulation of VEU (Video Electronic Unit) unit is performed in order to stabilise its temperature to reach full performances and insure a safe transition towards Observation and Calibration modes. During observation, the VEU Temperature has to remain in the operational acceptance temperature range -10°/+50° in order to meet the image quality requirements. The VEU temperature should be maximum +/- 10°C different from the last radiometric calibration for optimum performance.

On 7th of September, due to a Service Module anomaly raised on ENVISAT and leading to a complete switch-off of the PLM equipment, MERIS VEU temperature fell to 0°C. after recovery, the VEU temp raised back to its nominal ranged values as shown in the figure below. On 13th of September, an ENVISAT orbit control manoeuvre (OCM) has been executed – all instruments where switched off to avoid extra energy consumption. MERIS went back to its nominal state after 5 hours of inactivity when the payload system recovered.

![Figure 10 - VEU Temperature during cycle #51](image)

6.1.5 Vicarious calibration results

For absolute calibration of MERIS by vicarious methods, METRIC2.0 tools are used to perform data extraction and spatial compression from MERIS Level1b products over specified sites following site type specific radiometric and geographic criteria. The child L1b products are ordered systematically on
the basis of sites definition and mission analysis. Because the list of sites can be over-dimensioned and vary with season, it has a validity period of 3 months. Each L1b child product is submitted to METRIC with the correct version of auxiliary files MER_INS_AX and MER_CP1_AX used during its generation, and a dedicated resource file which stores all parameters necessary for data filtering (cloud and aerosol screening, distance from coast…). Metric generates one file for each selected site pertaining to the following categories, according to the potential use of the data in the calibration processing: Rayleigh, Glitter, Desert, Snow, and Buoy. Output files have HDF format.

During cycle #24 new overpass tables have been regenerated for all sites of interest updating the relative orbits inside the cycle. The site map is shown in the following picture:

![Figure 11 - METRIC calibration site map](image)

Based on the second reprocessing dataset (see section 9), the entire METRIC sites Child products have been generated with the last version of the METRIC tool (2.0).

This reprocessing started in December 2005 in ACRI premises, and has involved data from ENVISAT launch to present. The number of Level 1B products extracted over METRIC sites is given in the chart below:
The lack of data extracted for the 2004 year will be filled accordingly to the availability of the L1B child products. The METRIC v2.0 tool has been delivered to ESRIN where it will be used in operational mode in parallel to the new version of the processing chains (MERISv5.02)

6.2 Instrument Characterization

6.2.1 Instrument degradation

No new results to be shown for cycle #51. For the last updates, refer to Cyclic Report #45 that can be found on the above-mentioned MERIS website (see Section 6.1.3).

6.2.2 Diffuser ageing

No new results to be shown for cycle #51. For the last updates, refer to Cyclic Report #45 that can be found on the above-mentioned MERIS website.

6.2.3 Smile Effect

No new results to be shown for cycle #51. For the last updates, refer to Cyclic Report #23 that can be found on the above-mentioned MERIS website.
6.2.4 Spectral evolution from erbium measurements
No new results to be shown for cycle #51. Please refer to Cyclic Report #23 that can be found on the above-mentioned MERIS website.

7 DATA QUALITY CONTROL

7.1 MERIS products quality status
IPF version 5.02 did not have any impact on the MERIS products quality; an increase of the Level 2 processing time has been reported – it is linked to the increase of the number of pixels taken into account for the retrieval of aerosols over land, and the more detailed aerosols Look Up Table.

7.2 Anomalies and Software Problem Reporting (SPR)
Blank records have been identified in some MERIS products rejected by visual inspections using the AMALFI system. These black lines crossing the track are a nominal behavior of the processor, which replaces missing or corrupted Instrument Source Packets (ISPs) with blank data to preserve the geographical consistency of the scene.

8 FIRST 2003 MERIS ARCHIVE REPROCESSING
Information concerning the 1st reprocessing of the 2003 MERIS data archive done spring 2004 can be found on the MERIS website:

http://earth.esa.int/pcs/envisat/meris/documentation/First_2003_MERIS_Reprocessing.pdf

The document explains also how to get the reprocessed data.

9 SECOND 2005 MERIS ARCHIVE REPROCESSING
Following the recommendations of the Data Quality Working Group and the Science Advisory Group, improvements to MERIS processing resulted in version 7.4 of the off-line processor MEGS. It is currently being used for a complete reprocessing of the MERIS Reduced Resolution data archive. The corresponding time period extends from June 2002 to June 2005. 2003 and 2004 data will be made available through the MERCI (MERIS Catalogue and Inventory) service by the end of year 2005. For further information see:

http://envisat.esa.int/services/catalogues.html

10 MERIS PROCESSOR EVOLUTION
A detailed description of the MERIS IPF evolution since March 2002 until present, in terms of data format changes and algorithm modifications, can be found on the MERIS website:
11 VALIDATION ACTIVITIES AND RESULTS

The presentations given at the MAVT-2006 yield at ESRIN premises, Frascati, Italy, from 20 to 24 March 2006 are now available at the following address:
http://envisat.esa.int/workshops/mavt_2006/

12 WATER VAPOUR AND BROWSE MAPS

Water Vapour data, retrieved from MER_LRC_2P products, have been used to generate global coverage maps for each day of the cycle. Maps are available on the ESA website:
http://earth.esa.int/pcs/envisat/meris/maps/watervapour/

MERIS tracks for each day of the cycle have been plotted using Browse products. Maps are available on the ESA website:
http://earth.esa.int/pcs/envisat/meris/maps/browse/

13 HOW TO GET MERIS DATA

Information concerning the different ways to access the MERIS data can be found on the MERIS website:
http://earth.esa.int/pcs/envisat/meris/documentation/Access_to_MERIS_data.pdf

14 GENERAL INFORMATION

1. The European Space Agency organised a joint MERIS and (A)ATSR workshop, held at ESRIN, Frascati, Italy, on 26-30 September 2005. All information about the objectives of the workshop as well as the participants’ presentations can be found on ESA’s official page:
http://envisat.esa.int/workshops/meris_aatsr2005/

2. The European Space Agency organised the second working meeting on MERIS and AATSR Calibration and Geophysical Validation (MAVT-2006) in ESRIN, Frascati, Italy, from 20 to 24 March 2006. All information about the objectives of the workshop as well as the participants’ presentations can be found on ESA’s official pages:
http://www.congrex.nl/06M07