ENVISAT - AATSR

Cyclical Report #113

<table>
<thead>
<tr>
<th></th>
<th>START</th>
<th>END</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE</td>
<td>20TH MARCH 2012</td>
<td>19TH APRIL 2012</td>
</tr>
<tr>
<td>TIME</td>
<td>22:04:34</td>
<td>22:04:31</td>
</tr>
<tr>
<td>ORBIT</td>
<td>52601</td>
<td>53032</td>
</tr>
</tbody>
</table>

This subset from a Level 1B AATSR product for orbit 52866, acquired on 8th April 2012, shows on the left an RGB image composed of data from the 0.87, 0.67 and 0.55 micron channels in the nadir view, complemented by a false colour image of the 12 micron thermal channel data on the right.

prepared by/préparé par: AATSR IDEAS and QWG team

reference/référence: 1

revision/révision: 0

date of issue/date d’édition: 03 May 2012

status/état: Technical Note

Document type/type de document: Technical Note

Distribution/distribution:
A P P R O V A L

<table>
<thead>
<tr>
<th>Title</th>
<th>AATSR Cyclic Report – Cycle 113</th>
</tr>
</thead>
<tbody>
<tr>
<td>author</td>
<td>Pauline Cocevar</td>
</tr>
</tbody>
</table>

C H A N G E L O G

<table>
<thead>
<tr>
<th>reason for change</th>
<th>issue/revision</th>
<th>date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

C H A N G E R E C O R D

<table>
<thead>
<tr>
<th>reason for change</th>
<th>page(s)</th>
<th>paragraph(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

AATSR CYCLIC REPORT # 113

1 INTRODUCTION ...1
 1.1 Acronyms and Abbreviations ..1

2 SUMMARY ..2

3 SOFTWARE & AUX FILE VERSION CONFIGURATION ...3
 3.1 Software Version..3
 3.2 Auxiliary Files...3
 3.2.1 Status of Daily Visible Calibration Files ..4
 3.2.1.1 VC1 File Availability ...4
 3.2.2 Status of other Auxiliary Files ...4

4 PDS STATUS ..5
 4.1 Instrument Unavailability ..5
 4.2 L0 Data Acquisition and L1B Processing Status ..5
 4.2.1 Orbits Affected by Poor Data Quality ..6
 4.3 L0 and L1B Backlog Processing Status ..6

5 DATA QUALITY CONTROL..7
 5.1 Monitoring of Instrument Parameters ..7
 5.1.1 Jitter ..7
 5.1.2 Sensor Temperature ..8
 5.1.3 Viscal ..8
 5.1.4 NEΔT ...8
 5.2 User Rejection ..9
 5.3 Software Problem Reporting ..9
 5.3.1 Existing SPRs that are still open ..9
 5.3.2 New SPRs since the last cyclic report ...12
 5.3.3 Closed SPRs ...12
 5.4 Monthly Level 3 Products ..12

6 CALIBRATION/VALIDATION ACTIVITIES & RESULTS..16
 6.1 Calibration ..16
 6.2 Validation ..16

7 DISCLAIMERS ..18
AATSR CYCLIC REPORT # 113

1 INTRODUCTION

The AATSR Cyclic Report is distributed by the AATSR IDEAS team to keep the AATSR community informed of any modification regarding instrument performances, the data production chain and the results of calibration and validation campaigns at the end of each Envisat 2010+ cycle, which consists of 431 complete orbits over the course of 30 days.

This document is available online at: http://earth.esa.int/pcs/envisat/aatsr/reports/cyclic/

1.1 Acronyms and Abbreviations

AATSR Advanced Along Track Scanning Radiometer
APC Antenna Pointing Controller
CR Cyclic Report
DDS Data Dissemination System
DMOP Detailed Mission Operation Plan
DMS Data Management System
EN-UNA-YYYY/# Envisat Unavailability (plus year and number)
ESOC European Space Operation Centre
GOSTA Global Ocean Surface Temperature Atlas
HSM High Speed Multiplexer
IDEAS Instrument Data quality Evaluation and Analysis Service
IECF Instrument Engineering and Calibration Facilities
IPF Instrument Processing Facilities
LUT Look Up Table
MPS Mission Planning Schedule
NRT Near Real Time
OCM Orbit Control Manoeuvre
OBDH On-board Data Handling
PDS Payload Data Segment
PMC Payload Management Computer
RAL Rutherford Appleton Laboratory
SPR Software Problem Reporting
SSR Solid State Recorder
SW Software
VISCAL Visible Calibration

The AATSR list of acronyms and abbreviations is available at the following site: http://envisat.esa.int/dataproducts/aatsr/CNTR5.htm#eph.aatsr.glossary
2 SUMMARY

Cyclic Report: 113

Cycle Start: 20th March 2012, 22:04:34 Orbit #: 52601

Cycle End: 19th April 2012, 22:04:31 Orbit #: 53032

The main activities during the cycle have been as follows:

- **ENVISAT Anomaly**
 - On 08 April 2012 at 12:28:00, communication links were lost with ENVISAT, preventing reception of telemetry data. ESA’s Mission Control is working to re-establish contact with the satellite.

- **ESRIN downtimes and delays**
 - 28 March 2012: Network maintenance caused communication interruptions

- **Kiruna downtimes and delays**
 - 26 March 2012: System problems caused NRT production and dissemination delays
3 SOFTWARE & AUX FILE VERSION CONFIGURATION

3.1 Software Version
AATSR IPF for Level 1 and Level 2: Version 6.03
AATSR L2P Processor: Version 1.5.

3.2 Auxiliary Files

AATSR processing uses the following auxiliary files:

- Browse Product Lookup Data
 (ATS_BRW_AX)
- L1b Characterisation Data
 (ATS_CH1_AX)
- Cloud Lookup Table Data
 (ATS_CL1_AX)
- General Calibration Data
 (ATS_GC1_AX)
- AATSR Instrument Data
 (ATS_INS_AX)
- Visible Calibration Coefficients Data
 (ATS_VC1_AX)
- L1b Processing Configuration Data
 (ATS_PC1_AX)
- L2 Processing Configuration Data
 (ATS_PC2_AX)
- SST Retrieval Coefficients Data
 (ATS_SST_AX)
- LST Land Surface Temperature Coefficients Data
 (ATS_LST_AX)

Because the PC1 file contains the orbit period, two versions now need to be maintained after the mission extension orbit manoeuvres.

The latest filename for each auxiliary file in use in the PDS is as follows:

<table>
<thead>
<tr>
<th>Product name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATS_BRW_AXVIEC20020123_072338_20020101_000000_20200101_000000</td>
</tr>
<tr>
<td>ATS_CH1_AXVIEC20070720_093530_20020301_000000_20200101_000000</td>
</tr>
<tr>
<td>ATS_CL1_AXVIEC20101015_104659_20020301_000000_20200101_000000</td>
</tr>
<tr>
<td>ATS_GC1_AXVIEC20070720_093834_20020301_000000_20200101_000000</td>
</tr>
<tr>
<td>ATS_INS_AXVIEC20070720_094014_20020301_000000_20200101_000000</td>
</tr>
<tr>
<td>ATS_PC1_AXVIEC20101015_101827_20020301_000000_20101021_235959</td>
</tr>
<tr>
<td>ATS_PC1_AXVIEC20101015_100604_20101022_000000_20200101_000000</td>
</tr>
<tr>
<td>ATS_PC2_AXVIEC20020123_074151_20020101_000000_20200101_000000</td>
</tr>
<tr>
<td>ATS_SST_AXVIEC20051205_102103_20020101_000000_20200101_000000</td>
</tr>
</tbody>
</table>

Table 3-1 Latest auxiliary files currently in use by the PDS
3.2.1 STATUS OF DAILY VISIBLE CALIBRATION FILES

3.2.1.1 VC1 File Availability

The following daily reflectance channel calibration files were not available during this cycle:

<table>
<thead>
<tr>
<th>Date</th>
<th>Validity range</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>02/04/2012</td>
<td>31/03/2012</td>
<td>07/04/2012</td>
</tr>
<tr>
<td>03/04/2012</td>
<td>01/04/2012</td>
<td>08/04/2012</td>
</tr>
</tbody>
</table>

Table 3-2 Unavailable VC1 files

This reporting period, there were continued issues with the IECF regarding dissemination of certain orbital files and email notification. VC1 files continued to be delivered routinely until the Envisat Service Module anomaly on 8th April 2012.

3.2.2 STATUS OF OTHER AUXILIARY FILES

No auxiliary files changed during this cycle.
4 PDS STATUS

4.1 Instrument Unavailability

AATSR data were unavailable due to instrument unavailability at the following times during the cycle:

<table>
<thead>
<tr>
<th>UTC Start</th>
<th>UTC Stop</th>
<th>Reason</th>
<th>Reference</th>
<th>Planned</th>
</tr>
</thead>
<tbody>
<tr>
<td>08-Apr-2012</td>
<td>(ongoing)</td>
<td>ENVISAT service module not communicating</td>
<td>EN-UNA-2012/0060</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 4-1 Instrument unavailability during cycle 113

4.2 L0 Data Acquisition and L1B Processing Status

<table>
<thead>
<tr>
<th>Week</th>
<th>Orbit</th>
<th>Availability (s)</th>
<th>Availability (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>Dates</td>
<td>Start Stop</td>
<td>Inst Unav</td>
</tr>
<tr>
<td>1</td>
<td>20-Mar-2012 22:04:34</td>
<td>52601 52687</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>26-Mar-2012 21:44:30</td>
<td>52687 52773</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>01-Apr-2012 21:24:27</td>
<td>52773 52860</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>07-Apr-2012 22:44:38</td>
<td>52860 52946</td>
<td>467794</td>
</tr>
<tr>
<td>5</td>
<td>13-Apr-2012 22:24:34</td>
<td>52946 53032</td>
<td>517197</td>
</tr>
</tbody>
</table>

Table 4-2 Instrument and data unavailability weekly summary for Cycle 113

The instrument was available for 62.00% of the time during the cycle. The L0 data were available for 61.73% of the time during the cycle. The L1b data were available for 61.73% of the time during the cycle.

The following L0 data were missing from this cycle:

<table>
<thead>
<tr>
<th>UTC Start</th>
<th>UTC Stop</th>
<th>Duration (s)</th>
<th>Orbit Start</th>
<th>Orbit End</th>
</tr>
</thead>
<tbody>
<tr>
<td>05-Apr-2012 11:07:35</td>
<td>05-Apr-2012 11:35:32</td>
<td>1677</td>
<td>52824</td>
<td>52824</td>
</tr>
<tr>
<td>08-Apr-2012 10:58:27</td>
<td>08-Apr-2012 12:28:00</td>
<td>5373</td>
<td>52867</td>
<td>52868</td>
</tr>
</tbody>
</table>

Table 4-3 ATS_NL__0P missing data during Cycle 113

Data missing at L0 are also missing at L1B. There were no additional L1B data missing from this cycle.
4.2.1 ORBITS AFFECTED BY POOR DATA QUALITY

The information reported in Section 4.2 does not consider the quality of the data, only whether or not it is available.

During this cycle, the following orbit contained frames suffering from bad/missing telemetry:
- 52824 (05 Apr 2012)

The cloud-clearing algorithm failed on the following orbits during this cycle:
- 52609 (21 Mar 2012), northeast Atlantic
- 52652,53 (24 Mar 2012), south of Australia
- 52670 (25 Mar 2012), Southern Ocean
- 52692 (27 Mar 2012), south Pacific
- 52758 (31 Mar 2012), Southern Ocean
- 52765,73 (01 Apr 2012), south Pacific, northwest and south Atlantic
- 52776 (02 Apr 2012), southeast Pacific
- 52783,85 (02 Apr 2012), both Indian Ocean
- 52799 (03 Apr 2012), southern Indian Ocean

4.3 L0 and L1B Backlog Processing Status

There is no update available on the status of backlog processing.

Information on the status of the AATSR Archive of consolidated products is provided at: http://earth.eo.esa.int/pcs/envisat/aatsr/reports/archivestatus.html
5 DATA QUALITY CONTROL

5.1 Monitoring of Instrument Parameters

5.1.1 JITTER

The plots show the jitter-trend since the start of the mission and since the recent mission extension, against both orbit-number and cycle-number. The mean jitter-rate (per-orbit) is shown in blue and the maximum rate per orbit in red. The green horizontal line shows the nominal mean jitter-level achieved for much of the mission.

The jitter plot for the extended mission shows no significant, sustained change in the mean jitter-rate over this cycle compared to that in recent cycles.
5.1.2 SENSOR TEMPERATURE

The detector temperature plots for Cycle 113 can be found at: http://www.aatsrops.rl.ac.uk/EDSX/CyclePlots/DetTemps113.pdf

Detector temperatures have been nominal throughout this cycle.

5.1.3 VISCAL

NRT calibration quality for the AATSR reflectance channels was maintained during the cycle. The list of "orbital" VC1 files delivered for this cycle can be found at: http://www.aatsrops.rl.ac.uk/EDSX/CyclePlots/VC-113.txt

5.1.4 NE\(\Delta T\)

Information on the NE\(\Delta T\) for Cycle 113 is shown in Table 5-1. Figure 5-3 shows the trend since launch.

<table>
<thead>
<tr>
<th></th>
<th>Hot BB (T = 301.57 \text{ K})</th>
<th>Cold BB (T = 262.48 \text{ K})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Count (\text{NE} \Delta T \text{ (mK)})</td>
<td>Count (\text{NE} \Delta T \text{ (mK)})</td>
</tr>
<tr>
<td>12 (\mu \text{m})</td>
<td>1.54</td>
<td>32.2</td>
</tr>
<tr>
<td>11 (\mu \text{m})</td>
<td>1.48</td>
<td>30.1</td>
</tr>
<tr>
<td>3.7 (\mu \text{m})</td>
<td>2.52</td>
<td>31.8</td>
</tr>
<tr>
<td></td>
<td>1.16</td>
<td>33.8</td>
</tr>
<tr>
<td></td>
<td>1.09</td>
<td>32.9</td>
</tr>
<tr>
<td></td>
<td>1.21</td>
<td>75.6</td>
</tr>
</tbody>
</table>

Table 5-1 NE\(\Delta T\) information for 08 April 2012 (Cycle 113)
5.2 User Rejection

There were no user rejections during this cycle.

5.3 Software Problem Reporting

This section describes the new and open SPRs, their potential impact on the data quality, and any SPRs that have been closed.

5.3.1 Existing SPRs that are still open

The following SPRs are still open:

Wrong REF_DOC in MPH of AATSR products
NA-PR-10-05334
As a result of the AMALFI-2 pilot project, it has been discovered that the REF_DOC field in the MPH of AATSR products is different from the product specification name.

1) The REF_DOC should follow “AA-BB-CCC-DD-EEEE_V/I”, 23 characters where
AA-BB-CCC-DD-EEEE is the ESA standard document number and V/I is the volume/issue.

2) The referenced product spec is still 3/K. whilst the one applicable, and also referenced in the SRN of 6.03 is 4/A.

AATSR Child Products contain insufficient number of ADS records

NA-PR-08-03912

The number of ADS records present in AATSR child products is insufficient for processing of the entire product. Users are currently advised to order products of at least 1 granule longer to obtain all required ADS records. Excluding the SQADS and the scan pixel x and y ADS, the DPM requires that for AATSR full resolution products, the number of records in the ADS shall be one greater than the number of MDS granules in the product. Child products are currently produced with a number of ADS records equal to the number of MDS granules in the product. In the case of the SQADS, this is sampled only every 512 rows, rather then every 32, so in order to provide coverage for every granule in a child product, the number of SQADS records strictly required depends on the length of the child product and where the child product starts in relation to the 512 record boundaries. Parent products by definition start on a 512 record boundary, but child products need not. If we define a product segment of 512 consecutive rows (=16 granules) as a frame, then the number of SQADS records required in the child product is equal to the number of frames overlapped by the child product. For the case of the Scan Pixel x and y ADS, the records represent instrument scans, not image rows. There is no simple algorithm to define the number of records from the parent product that should be included in the child product.

Update to AATSR Child product generation requirements

NA-PR-08-04015

The 'Child Product Generation Requirements' on pages 520-521 of the document 'PDS Technical Specification for Maintenance and Evolution' (PO-RF-CSF-GS-20437) currently reads:

"For time extraction, for each data set in the parent product, the time stamp of the DSRs shall be compared to that of the requested start time (t0) segment. The first DSR extracted from each data set to form the new child data set is the one with a time stamp immediately preceding or equal to t0. The last DSR extracted from each DS is the one immediately preceding t1."

To ensure that a sufficient number of Auxiliary Data Set Records are present in AATSR child products, the requirement should be changed to read as follows:

"For time extraction, for each data set in the parent product, the time stamp of the DSRs shall be compared to that of the requested start time (t0) segment. The first DSR extracted from each data set to form the new child data set is the one with a time stamp immediately preceding or equal to t0. The last DSR extracted from each DS is the one immediately preceding t1.

For AATSR data, the last ADS DSR extracted from each DS is the one whose time label is equal to or greater than t1 provided such a DSR exists, otherwise the last ADS DSR in the product."
Processing of L1/L2 fails with product
ATS_NL__0PNPDE20100515_214836_000061722089_00272_42911_1524.N1
IDEAS-PR-10-05411
The problem does not occur in prototype, but in PDGS operational chain and in
Gamme validation platform. Processing the following L0 product to L1 and L2 fails
ATS_NL__0PNPDE20100515_214836_000061722089_00272_42911_1524.N1.
Please consider that same error occurs also IN GAMME test environment.
19.08.2010 -Feedback from ELCA:"There is just a debug option that has to be
removed from the optimization options while building AATSR IPF. When building
the IPF with the correct options this error does not occur and the processing
completes and generates L1/L2 products."

AATSR MPH OSV field does not agree with SPH auxiliary filename
IDEAS-PR-11-05568
We are noticing that, on occasion, the OSV source field in the MPH does not agree
with the auxiliary data file name given in the SPH. For example: (1) in product
ATS_TOA_1PRUAP20110527_222624_000065273103_00029_48319_8139.N1,
the MPH gives the OSV source as "FR", while the SPH reports that the file used
was actually an FPO file
(AUX_FPO_AXVPDS20110528_102115_20110527_190825_20110606_212212);
(2) in product
ATS_TOA_1PNPDE20110526_021402_000066813103_00003_48293_4416.N1,
the MPH gives the OSV source as "FP", while the SPH reports that the file used
was actually an FRO file
(AUX_FRO_AXVPDS20110528_102115_20110527_221000_20110527_005000).
Note that this does not always happen, but seems to be related to when files are
processed using a non-anticipated file type, but not in every instance. ELCA’s
analysis: “The solution is to compute in output product’s MPH the OSV value based
on the orbit file passed in the job order instead of using the L0 MPH’s value.”

AATSR: Reduce the logging noise by removing the warning on jitter
IDEAS-PR-11-05587
The requirement is that the scan jitter warnings are disabled (this information is
present in the products themselves, and we are aware and monitoring jitter levels
from the operational data anyway). There are numerous warnings of this type, even
in the logs from a successful processing run, so they prevent the log from being
easily read to diagnose any problems.
We see this also useful for PDGS, since the logging size will reduce.
It is agreed that this change shall be included in the IPF version for the
reprocessing.

AATSR: AATSR products non conformance to FODP
IDEAS-PR-11-05594
From O&M: PBI000000004179: The AATSR Flight Operations and Data Plan
(FODP), PO-PL-ESA-AT-0152, Issue 2 Revision 5 dated 22 November 2001
defines the meaning of “consolidated” in Appendix B.1 as follows: “… time-ordered,
no overlap nor data gap except when the instrument is not operated …”, and for
Level 0 there should be sufficient overlap only so that the higher level products can be chopped “… ANX to ANX …”. The FODP is part of the high level agreement between ESA and Defra and so can be taken as the definitive requirement for AATSR products. We would like to enquire as to the current definition applied to consolidated products and ask that a change be proposed and the impact of such a change evaluated.

This PBI is a copy of the PBI1161. The PBI1161 was corrected via a CRQ but the delivery introduced other problem so the CRQ was discarded. Consequently, the problem described by PBI1161 is still present.

5.3.2 NEW SPRS SINCE THE LAST CYCLIC REPORT

There were no new SPRs opened since the last Cyclic Report.

5.3.3 CLOSED SPRS

There were no SPRs closed since the last Cyclic Report.

5.4 Monthly Level 3 Products

The following plots have been generated from the available Meteo products acquired for March 2012. These consist of 439 products from orbits 52318 to 52759. Figure 5-5, Figure 5-6, Figure 5-7 and Figure 5-8 show the SST average in dual and nadir views, the standard deviation and the number of contributory orbits for March 2012. Figure 5-9 and Figure 5-10 show anomalies of the monthly averages from an SST climatology. Please note that individual colour scales for each plot are not available, however the scheme used is given in Figure 5-4, and the data ranges of each plot are specified in the accompanying caption.
Figure 5-4 This is the colour scheme used for the following plots, running linearly from left to right with increasing magnitude.

Figure 5-5 Monthly average Dual View SST, with a data range of 270 - 305 Kelvin for March 2012

Figure 5-6 Monthly average Nadir View SST, with a data range of 270 – 305 Kelvin for March 2012
Figure 5-7 Standard deviation of the monthly average SST with a colour key range of 0 to 5 K, and a maximum value of 9 K for March 2012

Figure 5-8 Number of contributory orbits to the calculation of the SST, with a colour key range of 0 to 16 (maximum value), for March 2012
Monthly SST anomaly maps, referenced to the GOSTA climatology dataset, are now being produced (beginning at Cyclic Report #106). Figure 5-9 and Figure 5-10 display the SST anomalies for dual- and nadir-view SSTs for March 2012, respectively. The anomaly scale runs from -10 K (blue) to +10 K (red). Orbits affected by cloud-clearing failures, which would show up as strong blue in the anomaly maps, are listed in Section 4.2.1. Any orbit which is found to have exhibited a cloud-clearing failure is also mentioned in the AATSR Daily Report at: http://earth.eo.esa.int/pcs/envisat/aatsr/reports/daily/
6 CALIBRATION/VALIDATION ACTIVITIES & RESULTS

6.1 Calibration

No calibration results were reported during this cycle.

6.2 Validation

The Met Office has validated the AATSR dual-view SST data using the global network of in situ drifting buoy SST data; the results for Cycle 113 being shown in Figure 6-1. The updated SST coefficients released in December 2005 were used in the AATSR SST retrievals.

![Figure 6-1 Comparison of daily mean difference between 10° AATSR SST values and in situ drifting buoy SST for Cycle 113. Data provided by the Met Office](image)

During cycle 113, there were 909 night time match-ups, with a mean (UL derived dual-view skin SST minus buoy SST) of -0.06 K, standard deviation 0.30 K, and a mean (dual-view depth SST minus buoy SST) of +0.09 K, standard deviation 0.29 K. A total of 782 daytime match-ups were found, with a mean (UL derived dual-view skin SST minus buoy SST) of +0.02 K, standard deviation 0.36 K, and a mean (dual-view depth SST minus buoy SST) of +0.15 K, standard deviation 0.36 K. As these data are comparisons of a single point buoy measurement against a much larger spatially averaged value they are not a true indicator of AATSR’s accuracy and are used to show consistency of data quality between cycles.
Figure 6-2 Plot of daily number of match-ups between 10´ AATSR SST values and in situ buoy SST for Cycle 113. Data provided by the Met Office.

Figure 6-3 Map showing global distribution of match-ups between 10´ AATSR SST values and in situ buoy SST for Cycle 113. The cyan dots indicate a match-up to a drifting buoy. Data provided by the Met Office.
7 DISCLAIMER

No new disclaimers have been issued during this cycle.