

GPU-Accelerated EO processing toolbox by

Russell Gibson

Living Planet Symposium 2022 C1.08 Advanced Solutions for SAR processing and analytics

Introduction

Acceleration of EO data processing

SAR & Optical tools

Graphical Processing Units

Estonian GSTP activity

C++ and CUDA

Open Source Software

Introduction: GPU Processing

Introduction: Expert user input to algorithm selection

Introduction: Processing algorithms

Sentinel-1 coherence estimation routine

Apply Orbit file

TOPSAR Split

Back-geocoding

Coherence Estimation

TOPSAR Deburst

TOPSAR Merge

Range-doppler Terrain Correction

Sentinel-1 calibration routine

TOPSAR Split

Thermal Noise Removal

Calibration

TOPSAR Deburst

Range-doppler Terrain Correction

Sentinel-2 and any other raster data resampling

Gabor feature extraction (coming July 2022)

ALOS PALSAR Zero-Doppler focusing (coming July 2022)

ALUs Architecture

Designed to be as lightweight as possible:

- Command line tools
- Built on top of the standard tools and libraries, components "off the shelf"
- Easy to embed into different solutions
 - Jupyter notebooks and other frontends
 - Docker, kubernetes
 - Optimizations can be achieved on the platform level

ALUs v.s. ESA SNAP - Speed

Processing speed in seconds – extracted inputs (single S1 subswath)

SNAP version 8.0.9 and ALUs version 1.0.0 were used for comparison.

All the tests were performed on a laptop PC:

- CPU: Intel i7 10750h
- RAM: 32GB
- GPU: NVIDIA GeForce GTX 1660 Ti 6GB
- SSD (NVMe): SAMSUNG MZALQ512HALU-000L2

ALUs vs. ESA SNAP - Accuracy

S1 Coherence routine

S1 Calibration routine

© 2022 CGI Inc.

Use Case: C-SCALE/EO4UA

- Copernicus eoSC AnaLytics Engine (C-SCALE) a H2020 activity with the aim to federate European EO infrastructure services, such as the Copernicus DIAS and others
- ALUs is the basis for a C-SCALE use case named SAROnTheFly
 - Part of the EO4UA initiative
 - Production of ARD over Ukraine
 - Monitor agricultural activity
 - Year-long coherence time-series
 - Deployment in a cloud environment
 - Investigation of data transfer latencies
 - CREODIAS CARD S1 chains as benchmark
 - Coherence: 11 seconds per subswath

RGB composite of three S1 coherence products produced by ALUs around Mykolaiv, UA (c) European Commission, Joint Research Centre. Contains modified Copernicus Sentinel information₉2022

Use Case: Bulk Processing via Parallel Computing (BULPP)

- BULPP a modular, cloud-based bulk processing platform for EO data
- An ESA TDE activity by CGI, sarmap and University Polytechnica of Bucharest
 - Accelerate EO processing algorithms in the cloud with GPU-s
 - Create common, modular components to be reused for future use cases
 - Two reference algorithms in development:
 - ALOS PALSAR Zero-Doppler processing
 - Gabor feature extraction

Future

Project close October 2022 Toolbox Validation Campaign

Wealth of Team GPU processing capability

Passion for GPU processing

Open to discuss new ideas and challenges

Insights you can act on

Sven Kautlenbach
Priit Pender
Anton Perepelenko
Martin Jüssi
Russell Gibson

cgi.com

https://bitbucket.org/cgi-ee-space/alus