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DeepCube

DeepCube – “Explainable AI pipelines for big Copernicus data” – is a three-year project, funded by the 
Horizon 2020 programme of the European Union under the topic “Big data technologies and Artificial 
Intelligence for Copernicus”. The project aims to unlock the potential of Copernicus data, leveraging on 
advances in the fields of Artificial Intelligence and Semantic Web.

The DeepCube technologies will be showcased in six Use Cases (UCs):

• Forecasting of localized extreme drought and heat impacts in Africa (UC1)
• Climate induced migration in Africa (UC2)
• Fire hazard short-term forecasting in the Mediterranean (UC3)
• Global volcanic unrest detection and alerting (UC4a)
• Deformation trend change detection for critical infrastructure monitoring (UC4b)
• Copernicus services for sustainable and environmentally-friendly tourism (UC5)

https://deepcube-h2020.eu

PSI point cloud 
reliability map is one of 

the products

https://deepcube-h2020.eu/


Persistent Scatterer Interferometry - PSI

PSI

• Area of 
Interest

• Temporal 
Span

PSI is a multitemporal InSAR technology that makes it 
possible to identify radar targets exhibiting a very stable 
return, allowing one to measure surface displacement with 
very high precision

VELOCITY MAP

Sentinel-1, TerraSAR-X, 
COSMO-SkyMed, …



PSI

The quality of PSI point clouds can be negatively influenced by:

• Decorrelation due to weather conditions (e.g. rain, snow) 

• Target change

• Signal not related to an actual deformation (e.g. growing vegetation, 
penetration depending on the level of moisture) VELOCITY MAP



• Velocity
• Temporal Coherence
• Coordinates (Lat,Long)

Unreliable points

…

Data Screening – As-is

The operator identify and remove noisy and unreliable points from the original point cloud, depending on:
• the likelihood of the physical phenomena associated to the measurements with respect to the terrain 

properties and land type
• scattering characteristics
• spatial consistency with respect to the pointwise properties (e.g. coherence, amplitude, velocity, ...)

Time consuming activity
Limitation in the extension of the 
analysis

Land cover, Radar amplitude, DEM, …

+ automatic algorithms



Reliable points
Unreliable points

Training & 
Inference

Data Screening – to-be 

• Velocity
• Temporal Coherence
• Coordinates (Lat.,Long.)

1. The operator labels a subset of random points as 
“Reliable” and “Not Reliable”

2. A model is trained on the set of points labelled by the 
operator

3. The trained model is applied over the entire point cloud

…

Reliable points
Unreliable points

Land cover, Radar amplitude, DEM, …



Multimodal model able to jointly consider pointwise information and the 
spatial correlations between points

• Neighbors generally share the same class 
(high homophily)

• Pointwise properties very different from 
the neighborhood can determine the 
unreliability of a point

• …

Pointwise properties

• The reliability of a point strongly 
depends on coherence

• The land type positively (e.g. build 
areas) or negatively (e.g. vegetative 
areas) influences the reliability

• …

Spatial correlation

Assumptions

In this work we explored the application of Graph Neural Network 
models to meet these requirements



Transductive Setting

stratified split: 8/2/90 
(same as ogbn-products)

Mean SAR 
amplitude

TinItaly
DEM

ESRI Land 
Cover

5x20m 10x10m 10x10m

https://tinitaly.pi.ingv.it/
https://www.arcgis.com/home/item.html?id=d6642f8a4f6d4685
a24ae2dc0c73d4ac

The features used during the 
labelling are the same used for 

training of the model

Data Labelling – Case Study

Hand-labelling> 40.000 points

Reliable points (84%)
Unreliable points (16%)

class imbalance

Resolution

https://tinitaly.pi.ingv.it/
https://www.arcgis.com/home/item.html?id=d6642f8a4f6d4685a24ae2dc0c73d4ac


Graph Construction KNN − Graph (k: 20)
Distance − Haversine

Pointwise Feature Construction

ei,j = pi − pj
i j

pi = (loni, lati)

ei,j : edge feature

pi : node position

Amplitude ∈ ℝ≥0
80𝑥80

DEM ∈ ℝ80𝑥80

Surface Type ∈ {1, … , 10}80𝑥80

Velocity ∈ ℝ
Coherence ∈ 0, 1 ⊂ ℝ

Hand Labeled
Point Cloud

Graph and Feature Construction

Mean SAR 
amplitude

TinItaly
DEM

ESRI Land 
Cover

5x20m 10x10m 10x10m

upsampled (5m)



Correlation

coherence

10.42

7%

coherence

Reliable

Unreliable

6%

0
water trees grass crops scrub/

shrub
built 
area

bare 
ground

…

land cover/use

𝑢, 𝑣 : 𝑢, 𝑣 ∈ 𝐸 , yu = yv
|𝐸|

#nodes #edges #cc homophily homophily 
(reliable)

homophily 
(unreliable)

42309 846180 1 0.809 0.894 0.374

𝑢, 𝑣 : 𝑢, 𝑣 ∈ 𝐸 , yu = yv = class

𝑢, 𝑣 : yu = class

“class-wise” homophily

std amplitude (80x80)0 40

4%

0 1

4%

std dem (80x80)



Velocity
Coherence

MLP

Head

Velocity
Coherence

MLP

Embedding

Concatenation

ConvNeXt [2]

Concatenation

MLP

Head

Embedding dim: 3 

Pointwise features Pointwise and spatial correlation

2 FC, ReLU
(2, 96), (96, 96)

2 FC, ReLU
(128, 96), (96, 96)

GNN

Head
GATv2 [3], 
UniMP [4], 

DyResGEN [5], 

Embedding dim: 3 

Velocity
Coherence

MLP

Embedding

Concatenation

ConvNeXt

Concatenation

MLP

Experiments



Validation F1 Score

*Baseline 0.785±0.025

+ Layers 0.803±0.013

Mean results over six different splits and runs of 
each model.
*Similar results were obtained using also simpler 
models (e.g. SVM:  0.754 ±0.027)

The introduction of external layers improve 
the performance of the model Velocity

Coherence

MLP

Head

Velocity
Coherence

MLP

Embedding

Concatenation

ConvNeXt

Concatenation

MLP

Head

Embedding dim: 3 

Pointwise properties



Model Validation F1 Score

Baseline 0.785±0.025

+ Layers 0.803±0.013

GATv2           (1 Layer) 0.825±0.014

UniMP (1 Layer) 0.824±0.013

DyResGEN (1 Layer) 0.829±0.011

Mean results over six different splits and runs of each 
model.

Pointwise and spatial properties

GNN

Head

Embedding dim: 3 

Velocity
Coherence

MLP

Embedding

Concatenation

ConvNeXt*

Concatenation

MLP



Scaling up - GNN

Scaling up the network increases the
performances of the models, but the
improvements slow down after the
introduction of two layers

Model Validation F1 Score Test F1 Score Training/Inference time*

Baseline 0.785±0.025 0.755±0.011

+ Layers 0.803±0.013 0.788±0.003

DyResGEN (1 Layer) 0.829±0.011 0.812±0.007 0h 20m / 8s

DyResGEN (2 Layer) 0.841±0.012 0.822±0.006 0h 50m /10s

DyResGEN (3 Layer) 0.843±0.007 0.823±0.008 1h 30m /12s

Mean results over six different splits and runs of each model.
* AWS Instance: g4dn.xlarge (T4 NVIDIA GPU, 16GB GPU Memory), 0,736 USD/h



Training size Validation F1 Score Test F1 Score

8% 0.843±0.007 0.823±0.008

4% 0.796±0.011 0.778±0.014

2% 0.769±0.014 0.739±0.013

Mean results over six different splits and runs of each model. 
Results are obtained using the DyResGEN (3 layer) model

Scaling down – Training set

It is possible to obtain meaningful
results with only 4% of the point cloud
(~800), containing approximately 130
unreliable points



Conclusions

➢ We presented one of the first works showing an application of Graph Neural 

Networks for the analysis of PSI point clouds

➢ External layers improve the accuracies of the models

➢ It is possible to achieve reasonable accuracies using few data points during 

the training

➢ Graph Neural Network are valuable architectures to combine spatial and 

pointwise properties in PSI applications



Next Steps

➢ Creation of additional hand-labelled PSI point clouds and exploration of the 

inductive setting*

➢ Comparison of GNN to other methods

➢ Improve the construction of the Graph

➢ Identification of other PSI supervised task that could be used for the 

validation of the approach 

*We have already created two additional hand-labelled point clouds and we are testing the model in an inductive setting
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Training parameters
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Training Config

Optimizer AdamW

Base learning rate 4e-3

Weight decay 0.1

Optimizer momentum β1, β2=0.9, 0.999

Batch size 32

GNN Config

Sampling method Neighbor Sampling

Normalization Layer Normalization

ConvNeXt Config

Stochastic depth 0.5

Layer scale 1e-6

Depths [2 2 4 2]

Hidden sizes [12 24 48 96]

Patch size 80x80

Normalization Layer Normalization


