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P UsSMILE Outline

. ERC Synergy Grant USMILE “Understanding and
Modelling the Earth System with Machine Learning”

— Problem: subgrid scale parameterizations

ll. ML-based cloud classes from satellite data
— Towards process-based model evaluation

lll. ML-based Atmospheric Parameterizations for ICON-A
— Building a machine learning based parameterization
— ML-based cloud cover parametrization for ICON-A

IV. Summary and Outlook
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Problem ...

... our approach

l. Problem: subgrid scale parameterizations
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1. Massive data from Earth
observation

2. High-resolution
cloud resolving models

3. Progress in machine
learning

Science:

~50-150 km

Coupled hybrid model
(ICON-ML-ESM)
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ll. ML-based cloud classes from satellite data (I): classification
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Cloud classes for process
based model evaluation.

Improved assessment of

model realism.
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Mean accuracy (R2): 0.89

Kaps et al., in review
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we USMILE ll. ML-based cloud classes from satellite data (llI): coarse scale
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Translate labelled data (1 km?2) to coarse climate models resolution (~100 km?2)

Input variables as grid box averages Random Forest (RF)
Cloud classes at grid box fractions Multivariate regression: R® — R
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Predicted Deep convection fraction

Cirrus (Ci) in the tropics, particularly over the Maritime
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Deep convection fraction

Continent => physically meaningful cloud classification

RF test-split predictions
Accuracy (R?): 0.85
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HF USMILE lll. Building a ML-based parameterization: cloud cover

Training data from ICON CRM simulations
Regional NARVAL simulations Global QUBICC hindcast simulations

- 2.5 km resolution - 5 km resolution
- 66 layers up to 21 km - 87 layers up to 21 km
- 12/2013 and 08/2016 - 11/2004, 04/2005, 11/2005

High-res state
variables

Coarse-grained
state variables
(160km & 80 km)
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ML prediction

Reference (Coarse-grained)

Vertical layers

lll: ML-based cloud cover for ICON-A: visual inspection

Mean Cloud Cover on 1st December, 2013
(averaged predictions on the left)
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Grundner (incl. Iglesias-Suarez) et al., in review




lll: ML-based cloud cover for ICON-A: accuracy & generalization
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model complexity is visible, the skill is similar
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EF UsmiLe IV: Summary and Outlook

ML CLOUD CLASSES (from satellite data) FOR MODEL EVALUATION:
« Good results on high-resolution data (mean R2 ~0.89)

« and on coarser climate models resolution (mean R? ~0.85);
» Physically meaningful predictions.

ML FOR ATMOSPHERIC SUBGRID PHYSICAL PROCESSES:
» Potential to be as performant as high-resolution simulations

« Demonstrates the potential of deep learning to derive accurate cloud cover
parameterizations from CRMs for coarse-scale Earth system models

FUTURE OF CLIMATE MODELING:
ML-based hybrid Earth System Models with improved subgrid scale physical
processes

* Novel ML-based parameterisations incorporated into Earth system models

» Key goal: a hybrid modelling approach that maintains physical consistency and
realistically extrapolates to unseen climate regimes while reducing climate
projection uncertainties.
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