

Machine learning-based parameterizations for ICON and evaluation with satellite data

Fernando Iglesias-Suarez¹, and co-authors: <u>Arndt Kaps¹</u>, <u>Arthur Grundner^{1,2}</u>, Manuel Schlund¹, Mierk Schwabe¹, Tom Beucler³, Pierre Gentine², Marco Giorgetta⁴, and Veronika Eyring^{1,6}

¹ Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Germany ² Columbia University, Department of Earth and Environmental Engineering, Earth Institute, New York, USA

³ University of Lausanne, Institute of Earth Surface Dynamics, Lausanne, Switzerland

⁴ Max Planck Institute for Meteorology, Atmosphere in the Earth System, Hamburg, Germany

⁵ University of Bremen, Institute of Environmental Physics (IUP), Bremen, Germany

Living Planet Symposium 27 May 2022

Outline

JSMILE

I. ERC Synergy Grant USMILE "Understanding and Modelling the Earth System with Machine Learning"

- Problem: subgrid scale parameterizations

II. ML-based cloud classes from satellite data

- Towards process-based model evaluation

III. ML-based Atmospheric Parameterizations for ICON-A

- Building a machine learning based parameterization
- ML-based cloud cover parametrization for ICON-A

IV. Summary and Outlook

ICON: ICOsahedral Non-hydrostatic model (MPI-M, Giorgetta et al. 2018)

I. Problem: subgrid scale parameterizations

Problem ...

USMILE

Tebaldi et al., ESD (2021)

... our approach

~50-150 km

II. ML-based cloud classes from satellite data (I): classification

4

JSMILE

II. ML-based cloud classes from satellite data (II): coarse scale

Translate labelled data (1 km²) to coarse climate models resolution (~100 km²)

Input variables as grid box averages Cloud classes at grid box fractions

Random Forest (RF) Multivariate regression: $\mathbb{R}^8 \to \mathbb{R}^9$

RF applied to ESA Cloud_cci

Cirrus (Ci) in the tropics, particularly over the Maritime Continent => physically meaningful cloud classification

Kaps et al., in review

5

III. Building a ML-based parameterization: cloud cover

Training data from ICON CRM simulations

Regional NARVAL simulations

- 2.5 km resolution
- 66 layers up to 21 km
- 12/2013 and 08/2016

Global QUBICC hindcast simulations

- 5 km resolution
- 87 layers up to 21 km
- 11/2004, 04/2005, 11/2005

USMILE

III: ML-based cloud cover for ICON-A: visual inspection

ML prediction

Reference (Coarse-grained)

Mean Cloud Cover on 1st December, 2013 (averaged predictions on the left)

Grundner (incl. Iglesias-Suarez) et al., in review

III: ML-based cloud cover for ICON-A: accuracy & generalization

Average cloud cover profile

R²-values

- The NNs can accurately learn subgrid cloud cover from coarse-grained CRM simulations
- **Globally trained NNs** (QUBICC) can reproduce subgrid cloud cover of the CRM simulation over the NARVAL region
- While an **increase of reproduction skill** with model complexity is visible, the skill is similar in generalizability tests across data derived from both global and regional CRM simulations.

Grundner (incl. Iglesias-Suarez) et al., in review

ML CLOUD CLASSES (from satellite data) FOR MODEL EVALUATION:

- Good results on high-resolution data (mean R² ~0.89)
- and on coarser climate models resolution (mean R² ~0.85);
- Physically meaningful predictions.

USMILE

ML FOR ATMOSPHERIC SUBGRID PHYSICAL PROCESSES:

- Potential to be as performant as high-resolution simulations
- Demonstrates the potential of deep learning to derive accurate cloud cover parameterizations from CRMs for coarse-scale Earth system models

IV: Summary and Outlook

FUTURE OF CLIMATE MODELING:

ML-based hybrid Earth System Models with improved subgrid scale physical processes

- Novel ML-based parameterisations incorporated into Earth system models
- Key goal: a hybrid modelling approach that maintains physical consistency and realistically extrapolates to unseen climate regimes while reducing climate projection uncertainties.

