

Estimating Evapotranspiration using Combined Physics-Based and Data-Driven Machine Learning

Reda ElGhawi^{1,2,3}, Alexander J. Winkler¹, Basil Kraft^{1,2}, Christian Reimers¹, <u>Marco Körner</u>³, and Markus Reichstein¹

¹ Max Planck Institute for Biogeochemistry Biogeochemical Integration Jena, Germany

² International Max Planck Research School for Global Biogeochemical Cycles Jena, Germany

www.bgc-jena.mpg.de/bgi relghawi@bgc-jena.mpg.de ³ Technical University of Munich TUM School of Engineering and Design Department of Aerospace and Geodesy Chair of Remote Sensing Technology Munich, Germany

www.asg.ed.tum.de/lmf marco.koerner@tum.de

Evapotranspiration as a Key Flux: Looking into *Stomatal* and *Aerodynamic Resistance*

Hybrid Modelling of Land-Atmosphere Fluxes: Estimating Evapotranspiration using Combined Physics-Based and Data-Driven Machine Learning327/05/2022

Hybrid Model

ТЛП

Hybrid Modelling of Land-Atmosphere Fluxes: Estimating Evapotranspiration using Combined Physics-Based and Data-Driven Machine Learning 5 27/05/2022

Hybrid Modelling of Land-Atmosphere Fluxes: Estimating Evapotranspiration using Combined Physics-Based and Data-Driven Machine Learning 6 27/05/2022

Multi-Task Learning

Hybrid Modelling of Land-Atmosphere Fluxes: Estimating Evapotranspiration using Combined Physics-Based and Data-Driven Machine Learning 7 27/05/2022

A-priori Information

Big Leaf

Model

The FLUXNET 2015 dataset

Site ID	IGBP	Elevation (m)	Mean Annual Temperature (°C)	Mean Annual Precipitation (mm)	Data Availability
DE-Tha	ENF	385	8.2	843	19 years (1996 - 2014)
FR-Pue	EBF	270	13.5	883	15 years (2000 - 2014)
FR-LBr	ENF	61	13.6	900	12 years (1996 - 2008)
CH-Cha	GRA	393	9.5	1136	10 YEARS (2005 - 2014)
DE-Gri	GRA	385	7.8	901	11 YEARS (2004 - 2014)
US-Var	GRA	129	15.8	559	15 YEARS (2000 - 2014)

•ENF (Evergreen Needleleaf Forests: Lands dominated by woody vegetation with a percent cover >60% and height exceeding 2 meters. Almost all trees remain green all year. Canopy is never without green foliage).

•EBF (Evergreen Broadleaf Forests: Lands dominated by woody vegetation with a percent cover >60% and height exceeding 2 meters. Almost all trees and shrubs remain green yearround. Canopy is never without green foliage).

•GRA (Grasslands: Lands with herbaceous types of cover. Tree and shrub cover is less than 10%. Permanent wetlands lands with a permanent mixture of water and herbaceous or woody vegetation. The vegetation can be present in either salt, brackish, or fresh water.)

Evaluating *predictions* against *observations*

Evaluating *latent heat flux* predictions against relevant *climate variables*

Evaluating *predictions* against relevant *climate variables*

Predicted latent variable evaluated against constrained model	R ² metric value averaged over sites	
r latant variable	a priori constraint	$R^2 = 0.901$
	Multi-Task Learning	$R^2 = 0.826$
r latent veniable	a priori constraint	$R^2 = 0.055$
	Multi-Task Learning	$R^2 = 0.261$

Hybrid Modelling of Land-Atmosphere Fluxes: Estimating Evapotranspiration using Combined Physics-Based and Data-Driven Machine Learning 11 27/05/2022

Conclusion

- Hybrid modelling allows
 - the retrieval of *latent variables*
 - that are *physically interpretable* in comparison to both *purely data-driven* and *physicsbased approaches,* and
- *Equifinality* can be circumvented by inducing more theory or data
- Data-driven modelling *needs* to be boosted by domain expertise!