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Enhance these advanced models with

neural networks

Correct forecast errors of sea-ice dynamics with machine learning before they appear

Geophysical sea-ice model

v U, Already possible (not exclusive):
% . E Cloud convection (Rasp et al., 2018)
EN - machine learning/ |-+ z Atmospheric boundary layer (Chen et al., 2022)
Neural network Ocean turbulence (Bolton and Zanna, 2020)

Data assimilation'
We can even learn the dynamics from observations
(Bocquet et al. 2020, Gottwald and Reich 2021, Farchi et al. 2021)

How can we use similar approaches for the sea-ice dynamics?
27.05.2022 2
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Sea-ice imposes new challenges for neural networks

4, Marginal ice zone 4, Damage 4 Multifractality

Wl T it B 4
F " e w’ v A ] 1 Damaged
v _ o g g 1 Undamaged

Forecast error

Density

Low-res  High-res

Scaling from small-scale model to Arctic-scale model

— Screening of possible approaches
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How to learn parametrisations with twin experiments
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How to learn parametrisations with twin experiments
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How to learn parametrisations with twin experiments
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How to learn parametrisations with twin experiments
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How to learn parametrisations with twin experiments

Low-resolution

forecast
QQ{Q Learring ]
Comparison
°§’ b PN » . /m
Projected . < E
reality S =
2 2
[aN
[ Projection P ] Projection by Lagrange interpolation

as used in FEM solvers
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Testbed based on a sea-ice dynamics-only model

Maxwell-Elasto-Brittle model (Dansereau et al. 2016; Dansereau et al. 2017)
based on discontinuous Galerkin finite elements and Rheolef solver (Saramito 2020)
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based on discontinuous Galerkin finite elements and Rheolef solver (Saramito 2020
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How to train for all nine variables at the same time?

Etot — >\1£1 —|— )\2£2 —|— tee —|— )\9£9
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Use maximum likelihood approach

Etot — >\1£1 —|— )\2£2 —|— tee —|— >\9£9

Maximum likelihood approach l Global per-variable uncertainty

-L1 + log(2scaley) + - - 4 L Lo + log(2scaleg)

scaleg
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Training based on an ensemble of trajectories

Etot — >\1£1 —|— )\2£2 —|— tee —|— >\9£9

Maximum likelihood approach l Global per-variable uncertainty

Lior &8 —— L1 + log(2scaley) + - - - 4 L Lo+ log(2 scaleg)

scale; scaleg
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Ensemble of forcing parameters and initial cohesion
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Training based on an ensemble of trajectories

Etot — >\1£1 —|— )\2£2 —|— tee —|— >\9£9

Maximum likelihood approach l Global per-variable uncertainty

Lior & Scale L1 + log(2scale;) + - - - 4 Scaﬁeg Lg + log(2 scaleg)
A0 wain
— . TN s
- - P

Ensemble of forcing parameters and initial cohesion

27.05.2022 4800/960/2400 training/validation/test samples 6



How to make use of inductive bias

for triangular data?

Input Prediction
b o7 4

f
M 3
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Project into Cartesian space

Input Prediction
Lt ” Popt
f Ly
M M 3
Interpolate
e
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Project into Cartesian space and

apply convolutional neural network

Input Prediction
> L '
“b‘ "'i\r’ -
U-Net backbone
(Ronneberger et al. 2015)

»7

Interpolate
- |41— - - - jj

+ dilation
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Project into Cartesian space and

apply convolutional neural network

Input Features Prediction
> ¥ b I |
,Qf .;IfIII L 30
U-Net backbone _
(Ronneberger et al. 2015) Linear
Interpolate Project function
- l*ﬂE T Hj — —
g
+ dilation
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How is the performance of our neural network?
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Forecast error reduced in offline testing dataset
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Forecast error reduced in offline testing dataset
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Multi-modality of damage
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Forecast error reduced in offline testing dataset
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Forecast error reduced in offline testing dataset
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Forecast error reduced in offline testing dataset
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Balancing step has only little impact

on offline performance
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Balancing step within training data stabilises

hybrid forecast

Projected target
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Balancing step within training data stabilises

hybrid forecast

Projected target
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Network is trained after spin-up
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Network is trained after spin-up

— at the moment problems with spin-up
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Network is trained after spin-up
— at the moment problems with spin-up

27.05.2022 Again encouraging results for hybrid modelling 9
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Subgrid-scale sea-ice dynamics can be parameterised
with neural networks
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Take home messages

Subgrid-scale sea-ice dynamics can be parameterised
with neural networks

Efficient feature mapping in projected Cartesian space with U-Nets
+ learning of all variables with maximum likelihood

Forecast errors reduction by around 45% in a 1D MEB model setup
+ first promising results in the hybrid modelling setup

Do you have questions?

Feel free to also write me an email: tobias.finn@enpc.fr
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