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These advanced geophysical sea-ice models
are not perfect
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Correct forecast errors of sea-ice dynamics with machine learning before they appear

Already possible (not exclusive):
Cloud convection (Rasp et al., 2018)

Atmospheric boundary layer (Chen et al., 2022)

Ocean turbulence (Bolton and Zanna, 2020)

We can even learn the dynamics from observations
(Bocquet et al. 2020, Gottwald and Reich 2021, Farchi et al. 2021)

How can we use similar approaches for the sea-ice dynamics?

Enhance these advanced models with
neural networks
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Sea-ice imposes new challenges for neural networks

Multifractality⭍⭍ DamageMarginal ice zone⭍

Low-res High-res
Forecast error

De
ns

ity
Scaling from small-scale model to Arctic-scale model

→ Screening of possible approaches
3
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Maxwell-Elasto-Brittle model (Dansereau et al. 2016; Dansereau et al. 2017)

based on discontinuous Galerkin finite elements and Rheolef solver (Saramito 2020)
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Wave-like forcing
in y-direction
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based on discontinuous Galerkin finite elements and Rheolef solver (Saramito 2020)
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1D-like setup

Marginal ice zones

Wave-like forcing
in y-direction

5

Maxwell-Elasto-Brittle model (Dansereau et al. 2016; Dansereau et al. 2017)

based on discontinuous Galerkin finite elements and Rheolef solver (Saramito 2020)

Testbed based on a sea-ice dynamics-only model
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Maximum likelihood approach Global per-variable uncertainty

Ensemble of forcing parameters and initial cohesion

4800/960/2400 training/validation/test samples

Training based on an ensemble of trajectories
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for triangular data?

Input Prediction

7



27.05.2022

Project into Cartesian space
+ apply convolutional neural network

Interpolate

Input Prediction

7



27.05.2022

Project into Cartesian space and
apply convolutional neural network

U-Net backbone
(Ronneberger et al. 2015)

Interpolate

Input Prediction

+ dilation

7



27.05.2022

Project into Cartesian space and
apply convolutional neural network

U-Net backbone
(Ronneberger et al. 2015)

Interpolate Project
Linear

function

Input Features Prediction

+ dilation
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How is the performance of our neural network?
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Projected target
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Forecast error reduced in offline testing dataset

Projected
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Projected

Balancing step within training data stabilises 
hybrid forecast
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Spin-up
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9Again encouraging results for hybrid modelling
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Take home messages

Subgrid-scale sea-ice dynamics can be parameterised
with neural networks

Efficient feature mapping in projected Cartesian space with U-Nets
+ learning of all variables with maximum likelihood

Forecast errors reduction by around 45% in a 1D MEB model setup
+ first promising results in the hybrid modelling setup

Do you have questions?
Feel free to also write me an email: tobias.finn@enpc.fr

10


	Learning and screening of neural networks for sub-grid-scale parametrisations�of sea-ice dynamics
	For the first time, one blink away from predicting sea-ice
	These advanced geophysical sea-ice models�are not perfect
	Enhance these advanced models with�neural networks
	Enhance these advanced models with�neural networks
	Enhance these advanced models with�neural networks
	Enhance these advanced models with�neural networks
	Sea-ice imposes new challenges for neural networks
	Sea-ice imposes new challenges for neural networks
	Sea-ice imposes new challenges for neural networks
	Sea-ice imposes new challenges for neural networks
	Sea-ice imposes new challenges for neural networks
	Sea-ice imposes new challenges for neural networks
	Sea-ice imposes new challenges for neural networks
	How to learn parametrisations with twin experiments
	How to learn parametrisations with twin experiments
	How to learn parametrisations with twin experiments
	How to learn parametrisations with twin experiments
	How to learn parametrisations with twin experiments
	Testbed based on a sea-ice dynamics-only model
	Testbed based on a sea-ice dynamics-only model
	Testbed based on a sea-ice dynamics-only model
	Testbed based on a sea-ice dynamics-only model
	How to train for all nine variables at the same time?
	Use maximum likelihood approach
	Training based on an ensemble of trajectories
	Training based on an ensemble of trajectories
	How to make use of inductive bias�for triangular data?
	Project into Cartesian space�+ apply convolutional neural network
	Project into Cartesian space and�apply convolutional neural network
	Project into Cartesian space and�apply convolutional neural network
	How is the performance of our neural network?
	Forecast error reduced in offline testing dataset
	Forecast error reduced in offline testing dataset
	Forecast error reduced in offline testing dataset
	Forecast error reduced in offline testing dataset
	Forecast error reduced in offline testing dataset
	Forecast error reduced in offline testing dataset
	Balancing step has only little impact�on offline performance
	Balancing step within training data stabilises hybrid forecast
	Balancing step within training data stabilises hybrid forecast
	Network is trained after spin-up�→ at the moment problems with spin-up
	Network is trained after spin-up�→ at the moment problems with spin-up
	Network is trained after spin-up�→ at the moment problems with spin-up
	Take home messages
	Take home messages
	Take home messages
	Take home messages
	Take home messages

