Prototyping products from the new ISCCP-NG Georing of advanced VIS/IR imagers

Martin Stengel

Daniel Philipp, Andrew Heidinger, Coda Phillips

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Background

Motivation

- Satellite-based datasets that require **enhanced spectral information** were in the past limited to individual GEO-sensors or to polar-orbiting sensors with sparse temporal sampling (and partly issues with calibration and satellite drift)
- The new ISCCP-NG activity aims at generating a new GEO-ring of passive imager measurements facilitating, among others, the retrieval of a rich set of cloud properties with near-global coverage and high spatiotemporal resolution

• In this study...

... we prototyped cloud (and radiative flux) properties based on the new
ISCCP-NG L1g test data, applying a retrieval system developed in ESA Cloud_cci

→ Community Cloud retrieval For Climate (CC4CL, Sus et al., McGarragh et al., AMT, 2018) - developed in ESA Cloud_cci

Features:

- ANN based cloud detection and phase determination
- OE retrieval of cloud properties (COT, CER, CTP, ...CWP)
- OE retrieval of T_{skin} in clear-sky pixels
- Post-processor for radiative broadband fluxes (SW+LW, TOA+BOA, up+dn, allsky+clear-sky using retrievals above and NWP data (BUGSRAD; Christensen et al., ACP, 2017)
- Potential to process aerosols (Aerosol_cci)
- Level-2 uncertainties for cloud properties (+ uncertainty propagation Level-2 to Level-3, Stengel et al., ESSD, 2017, 2020)
- CC4CL is working well for AVHRR, MODIS, AATSR, SLSTR, **SEVIRI** and other sensors.

id	name	ABI	AHI	FCI	AMI	AGRI	SEVIRI
1	00_47um	470 nm	455 nm	0.47 μm	470 nm	0.47 μm	
2	00_51um		510 nm	0.51 μm	509 nm		
3	00_65um	640 nm	645 nm	0.65 μm	639 nm	0.65 μm	0.635 μm
4	00_86um	860 nm	860 nm	0.86 µm	863 nm	0.825 μm	0.81 µm
5				0.91 μm			
6	01_38um	1380 nm		1.38 μm	1.37 μm	1.375 μm	
7	01_60um	1610 nm	1610 nm	1.6 µm	1.61 µm	1.61 µm	1.64 μm
8	02_20um	2260 nm	2260 nm	2.2 μm		2.25 μm	
9	03_80um	3.90 μm	3.85 μm	3.8 µm	3.83 µm	3.75 μm	3.92 μm
10	06_20um	6.15 μm	6.25 μm	6.2 μm	6.21 μm	6.25 μm	6.25 μm
11	06_70um	7.00 μm	6.95 μm		6.94 μm	7.1 μm	
12	07_30um	7.40 μm	7.35 μm	7.3 μm	7.33 μm		7.35 μm
13	08_60um	8.50 μm	8.60 μm	8.5 μm	8.59 μm	8.5 μm	8.70 μm
14	09_70um	9.70 μm	9.63 μm	9.6 µm	9.62 μm		9.66 µm
15	10_40um	10.3 µm	10.45 μm	10.4 μm	10.35 μm	10.7 μm	10.8 µm
16	11_00um	11.2 μm	11.20 μm		11.23 μm		
17	12_00um	12.3 μm	12.35 μm	12.4 μm	12.36 µm	12.0 μm	12.0 μm
18	13_30um	13.3 µm	13.30 µm	13.3 µm	13.29 μm	13.5 μm	13.4 μm

SEVIRI subset in current ISCCP-NG L1g

id	name	ABI	AHI	FCI	AMI	AGRI	SEVIRI
1							
2							
3	00_65um	640 nm	645 nm				0.635 μm
4	00_86um	860 nm	860 nm				0.81 µm
5							
6							
7	01_60um	1610 nm	1610 nm				1.64 μm
8							
9	03_80um	3.90 μm	3.85 μm				3.92 μm
10	06_20um	6.15 μm	6.25 μm				6.25 μm
11							
12	07_30um	7.40 μm	7.35 μm				7.35 μm
13	08_60um	8.50 μm	8.60 μm				8.70 μm
14							
15	10_40um	10.3 μm	10.45 μm				10.8 µm
16							
17	12_00um	12.3 μm	12.35 μm				12.0 μm
18	13_30um	13.3 μm	13.30 μm				13.4 μm

DWD

• Based on applying SRFs to full spectrum measured by IASI and SCIAMACHY

• Based on applying SRFs to full spectrum measured by IASI and SCIAMACHY

Monthly mean 13.3um/13.4um TB (July 2020)

Examples – cloud properties

Examples – TOA radiative flux

DWD

Examples – TOA net CRE (30min)

- Conducted a feasibility study applying CC4CL to the new ISCCP-NG L1g
- Now a rich set of cloud properties can be inferred with high temporal resolution and near-global coverage

ESA Cloud_cci+

- ESA Cloud_cci+ project phase II: 2023/03-2025/02
- Potentially fine-tune and run Cloud_cci algorithm on ISCCP-NG L1g for extended period
- Sustained framework for long-term application unknown

EUMETSAT CM SAF

- CDOP-4 Phase (2022/03-2027/02):
- Applying CM SAF cloud algorithms, a 1-year demonstrator cloud dataset will be generated based on ISCCP-NG L1g
- Contribute to and support ISCCP-NG cloud property intercomparisons done in ICWG
- CDOP-5 Phase (2022/03-2027/02) and beyond:
- Broadening/intensifying the CM SAF data production activities for ISCCP-NG to establish a sustained European contribution

Thank you

