Winter Arctic sea ice profiling from NASA's ICESat-2: 2018-2022

Alek Petty*, Marco Bagnardi (presenting),

Nathan Kurtz, Rachel Tilling, Steven Fons, Nicole Keeney, Alex Cabaj, Paul Kushner,

NASA's ICESat-2 mission

- Photon counting laser altimeter (ATLAS).
- A strong and weak beam (strong beam with 4x the energy pulse strength of the weak beam) 90 m apart but 2.5 km along-track.
- Much better resolution, sampling rate and precision than ICESat.
- Very consistent science quality data since October 2018.

ATL03 photons to ATL07 segment heights

ATL03

- Individual photon heights
- Vertical uncertainty of ~20 cm
- Footprint diameter of ~11 m

ATL07 (surface heights) ATL10 (freeboard)

- Aggregate of 150 along-beam photons
- Coarse/fine windowing filters.
- Lowers vertical precision to ~2 cm
- Mean along-track resolution of ~30 m

Distance or Time

Validation of ATL07/ATL10 with spring 2019 OIB/ATM

- ATL07/10 validated against spring OIB measurements (ATM elevations).
- Very good height agreements (r > 0.97, SD < 1 cm)
- Good freeboard agreement (not shown here, SD < 4 cm).
- BUT leads were in short supply.

Validation of ATL07/ATL10 with spring 2019 OIB/ATM

See Kwok et al., 2019 for more info

Surface type classification (needed for freeboard)

Radiometric classification: Decision tree for estimating surface type

1. Photon Rate (proxy for surface reflectance)

2. Gaussian fit (proxy for surface roughness)

3. Normalized background rate (proxy for surface albedo)

Specular lead (high photon rate, low roughness and low background if solar elevation high) **Dark lead** (low photon rate, low-medium roughness, low background if solar elev high) **Sea ice:** everything else*

Sea surface classification: additional height filter for increased reliability 4. Relative height

Candidate sea surface segment (low height compared to local distribution)

*In summer everything could also be a melt pond! Also cloud flag but that is very rare/unused.

Comparisons of ATL07 surface classification with Sentinel-2

Sentinel-2 imagery (Lincoln Sea Arctic Ocean, 05/26/19)

- Coincident Sentinel-2 imagery (<1.5 hours in this case, near exact spatial overlap).
- Multiple examples show strong agreement in the specular ATL07 leads and S-2 imagery.
- ATL07 dark (rough) leads show more mixed response due to cloud contamination.

~ 20 km along track distance

The official ICESat-2 sea ice products (ATL07/ATL10/ATL20/ATL21) only go as far freeboard/sea surface height, but we can *hopefully* do more...

- Sea ice thickness this talk!
- Dynamic Ocean Topography earlier talk!
- Surface roughness/pressure ridge distributions
- Lead/pond fraction and ice concentration upcoming poster
- Chord length/floe size upcoming poster

See also "Combining High-Resolution ESA and NASA Satellite Altimetry to Advance Understanding of Arctic Sea Ice Topography", Date: 27.05.2022, poster session for A9.06 Sea Ice Remote Sensing

Along-track winter Arctic sea ice thickness (IS2SITDAT4)

- Use hydrostatic equilibrium to convert freeboard to thickness
- Apply daily gridded (100 km) snow loading estimates from NESOSIM v1.1 redistributed to ATL10 (~20 m) using OIB regression analysis.
- Use spread in input assumptions for uncertainty quantification.
- IS2SITDAT4 V1 thickness data (full-res and 10 km means) now posted at the NSIDC.

updated IS2SITDAT4 example from Petty et al., 2020 (JGR Oceans).

Monthly gridded winter Arctic sea ice thickness (IS2SITMOG4)

- Produce monthly gridded data by binning along-track data onto a 25 km North Polar stereographic grid.
- Easier means of visualizing and analyzing large-scale winter sea ice conditions from ICESat-2
- Includes ancillary data of ice type (OSI SAF) and concentration (CDR)
- IS2SITMOG4 V2 now at the NSIDC.

Version 1 presented in Petty et al., 2020 (JGR Oceans). Version 2 in Petty et al., 2022 (The Cryosphere Discuss).

Interactive analysis presented in a novel online JupyterBook: nicolekeeney.com/icesat2-book

Summary stats (2018 Nov to 2019 Apr)

comparisons presented in Petty et al., 2020).

- Improvement related to removal of dark leads/increases in freeboard in rel003 onwards.
- Next step is CRYO2ICE along-track thickness comparisons, ideally with the Europeans!

ICESat-2 winter Inner Arctic Ocean – All ice

- Freeboard declines of 2-3 cm/yr.
- NESOSIM snow depth interannual rankings different to freeboard rankings.
- Thinner 2020-2021 sea ice compared to previous 2 winters, especially in Nov/Dec 2020.

ICESat-2 winter Inner Arctic Ocean – First-year ice only

- Thinner FYI freeboards in past 2 winters.
- First-year ice interannual freeboard differences largely explained by changes in NESOSIM snow depths.
- Result is very consistent thicknesses across the 3 winters.

ICESat-2 winter Inner Arctic Ocean – Multi-year ice only

- Much thinner freeboards in past 2 winters, partly offset by snow depth differences.
- 10-50 cm declines in MYI thickness, lowest in the most recent 2020-2021 winter.
- Good agreement with Kwok and Kacimi (2022) CryoSat-2/ICESat-2 results, e.g. 50 cm MYI decline.

ICESat-2 sea ice summary

- Very happy with how ICESat-2 is performing over sea ice.
- Still actively engaged with cal/val activities to improve data quality and uncertainty quantification, while also producing higher-level sea ice data.
- Keen to work with our European colleagues on CRYO2ICE comparisons

	ATL03 (photon heights)	ATL07/10 (segment heights)	ATL20/21 (daily/monthly gridded)	IS2SITMOGR4 (monthly gridded)	IS2SITDAT4 (segment thickness)	Chord length (along-track and gridded)
Time period	Year-round, Entire mission	Year-round, entire mission	Year-round, entire mission	Winter only, up to Apr 2021	Winter only, up to Apr 2021	Winter only, up to Apr 2019
Hemisphere	Both	Both	Both	Arctic only	Arctic only	Both
Quick-look also?	No	Yes	Not yet	No	No	No
Latest version	rel005	rel005	rel003/rel002	Version 2	Version 1	Version 1
Latency	~60 days	~60 days/~2-3 days (QL)	~60 days	~60-210 days (June/July)	~60-210 days (June/July)	TBD

Thank you! (alek.a.petty@nasa.gov)

References

Petty, A. A., Keeney, N., Cabaj, A., Kushner, P., and Bagnardi, M (2022), Winter Arctic sea ice thickness from ICESat-2: upgrades to freeboard and snow loading estimates and an assessment of the first three winters of data collection, The Cryosphere Discuss. [preprint], doi: 10.5194/tc-2022-39.

- Analysis available at nicolekeeney.com/icesat2-book

Petty, A. A., M. Bagnardi, N. T. Kurtz, R. Tilling, S. Fons, T. Armitage, C. Horvat, R. Kwok (2021), Assessment of ICESat-2 sea ice surface classification with Sentinel-2 imagery: implications for freeboard and new estimates of lead and floe geometry Earth and Space Science, 8, e2020EA001491. doi:10.1029/2020EA001491.

Petty, A. A., N. T. Kurtz, R. Kwok, T. Markus, T. A. Neumann (2020), Winter Arctic sea ice thickness from ICESat-2 freeboards, Journal of Geophysical Research: Oceans, 125, e2019JC015764. doi:10.1029/2019JC015764

Kwok, R., Kacimi, S., Markus, T., Kurtz, N. T., Studinger, M., Sonntag, et al., (2019), ICESat-2 surface height and sea-ice freeboard assessed with ATM lidar acquisitions from Operation IceBridge, 44, 11228–11236, doi: 10.1029/2019GL084976.

Kacimi, S. and Kwok, R.: Arctic Snow Depth, Ice Thickness, and Volume From ICESat-2 and CryoSat-2 2018–2021, (2022), 49, e2021GL097448, doi: 10.1029/2021GL097448,.