

living planet symposium BONN 23-27 May 2022

TAKING THE PULSE OF OUR PLANET FROM SPACE

(ยมุรรค 🗔

Characterization of ice and light rain microphysics by G-band radars

³ STFC-RAL, UK ⁴ University of St Andrews, UK ⁵ Thomas Keating Ltd, UK ⁶ Stony Brook Univesity, US ⁷ University of Reading, UK

⁸ Caltech JPL, US

¹ Politenico di Torino, Italy ² University of Leicester, UK

A. Battaglia^{1,2}, B. Courier², P. Huggard³, D.Robertson⁴, R.Wylde⁵, P. Kollias⁶, C. Westbrook⁷, K. Mroz², K. Cooper⁸, C. Mccusker⁷

ESA UNCLASSIFIED - For ESA Official Use Only

→ THE EUROPEAN SPACE AGENCY

G-band in the cloud and precipitation radar arena

→ THE EUROPEAN SPACE AGENCY

- Cloud radars at 140–215 GHz more than 30 years ago! (*Nemarich et al., 1988; Mead et al., 1989; Wallace, 1988*)
- Notional studies (*Lhermitte 1989, Hogan and Illingworth 1999, Battaglia et al., 2014*).

Game changer: mm- and sub-mm solid state power devices and low noise amplifiers have recently enabled higher frequency radar capable of achieving sensitivities good enough for cloud studies.

G-band: window radars

Window frequencies→ <u>lce and light rain</u> <u>microphysics</u>

The UK-CEOI G-band Radar for Cloud Experiment (GRACE) (partners involved: RAL Space, STFC Rutherford Appleton Laboratory with Thomas Keating Ltd., University of Leicester & University of St Andrews) has developed a prototype ground-based, zenith looking 200 GHz Doppler cloud radar.

SPACE AGENCY

G-band: differential absorption radars

Watershed moment: first light of a G-band Doppler system in Chilbolton

- Rain event on May 24th, freezing level at around 1 km (UK "summer" atmosphere conditions).
- GRACE reduced reflectivity results from attenuation and non-Rayleigh effects (which will provide the additional information for microphysical characterization).

First-ever Doppler spectra at G-band

Doppler spectra in rain present peaks and valleys \rightarrow raindrops are non Rayleigh targets at 200 GHz \rightarrow specific sizes produce constructive or destructive interference of the backscattering cross sections \rightarrow "Mie notches"

The decrease in backscattered power with respect to lower frequency can be used to size particles

→ THE EUROPEAN SPACE AGENCY

Triple Frequency Optimal Estimation of drop size distribution

Solid lines in left plot show observed spectra aligned at the Rayleigh region (W-band has been calibrated)

Dashed lines show spectra forward modelled using retrieved PSD.

First multi-frequency G-band radar observations of ice clouds

Ice crystal sizing

- PSDs measured in-situ from 2D-S and HVPS on FAAM aircraft during PICASSO campaign (case 13/02/2018)
- Particle models from ARTS scattering database (Ekelund et al., 2020: ARTS Microwave Single Scattering Properties Database (1.1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.4646605)

Larger DWRs → G band has potential for quantitative retrievals of smaller size crystals compared to those achievable by using longer wavelengths

Significant attenuation expected as well at G-band, particularly with riming -> testbed for PMW scattering properties

Doppler spectra in ice

Trying to select scattering and fall-speed velocity models that better fit measurements

Simulated Doppler spectra at different frequencies using in-situ PSD

GRaCE

14.2

14

14.4

14.6

AM aircraft

(24th May 2021)

6

Range (km) S

2

13.8

30

20

10

0

-10

-20

-30

Z (dBZ)

Science case for cloud&precipitation radar observations ·eesa

<u>Problem</u>: limited understanding of cloud feedbacks is the major source of *uncertainty in climate sensitivity* (from 1.5 up to 4.5^oC) → better characterization of cloud&precipitation vertical structure and microphysics needed

Solution: combination of multi-frequency (Doppler) radars with frequencies ranging from 10 to above 200 GHz allows characterizing from heavy precipitation particles to small-size ice crystals. Inclusion of G-band highly beneficial in three areas: **boundary layer clouds, cirrus and mid-level ice clouds and precipitating snow**.

→ THE EUROPEAN SPACE AGENCY

Conclusions and future work

- Progress in G-band technology is driving sensitivities to levels appropriate for cloud studies → G-band cloud radars are now a reality.
- **First ground-based demonstrators** now acquiring measurements, with airborne demonstrators under constructions.
- DAR systems in the G-band hampered by ITU restrictions

A G-band system could be flown in constellation/formation with other cloud radars (e.g. those to be deployed in the ESA-JAXA EarthCARE or the polar component of the NASA AOS mission) and/or with passive microwave high frequency systems (AWS, ICI) \rightarrow SCOUTS mission seem the best opportunity (open for collaboration with industrial partners keen to develop such a system).

For Doppler spectra geeks

13