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Introduction

 Burn severity is an ambigious term mostly referred to as 
long-term ecological changes introduced to a landscape via fire 
(Cansler & McKenzie, 20121)

 Knowing the burn severity patterns of a burned area is helpful to
understand ecological and economic consequences of wildfires and to
coordinate post-fire management

 Vegetation indices derived from satellite images were suggested as a 
tool to characterize burn severity patterns across large areas

1Cansler, C. A., & McKenzie, D. (2012). How robust are burn severity indices when applied in a new region? 
Evaluation of alternate field-based and remote-sensing methods. Remote sensing, 4(2), 456-483.
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Introduction

 The difference normalized burn ratio dNBR
has become a standard tool to quickly
characterize burn severity after wildfires

https://un-spider.org/sites/default/files/Spectral_responses.jpg

𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁

𝑑𝑑𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝−𝑓𝑓𝑓𝑓𝑝𝑝𝑝𝑝 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑓𝑓𝑓𝑓𝑝𝑝𝑝𝑝
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Introduction

 Example of a burned area with situation before and after the
fire as seen from an unmanned aerial vehicle and a dNBR
product derived from Sentinel-2 data

Pre-fire Post-fire
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Introduction

 RdNBR has been suggested as a 
refinement of dNBR to account for pre-
fire vegetation composition

Pre-fire Post-fire

𝑁𝑁𝑑𝑑𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑑𝑑𝑁𝑁𝑁𝑁𝑁𝑁

𝑎𝑎𝑎𝑎𝑎𝑎(𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓𝑝𝑝𝑝𝑝)0.5
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Challenges / research gaps

 dNBR and RdNBR have been related to field-plot 
measured indicators of burn severity but identified
relationships vary with geographic location and timing

 Pre-fire vegetation composition is often unknown (no
spatially continuous data available)
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Objectives

 Better understand what drives the Sentinel-2 based 
dNBR and RdNBR signal

 Exploit the availability of very high resolution UAV 
imagery acquired shortly before and after the 2016/2017 
mega-fires of central Chile

 Particularly understand the role of cast-shadows of dead
standing trees and trunks
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Study area
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Methods
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Methods

 Supervised classification of UAV 
images into 6 (pre-fire) and 4 
(post-fire) classes
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Methods

 For each Sentinel-2 pixel the fractional
cover of each land-cover class in the
UAV-classification maps was 
determined (see example )

90% non-vegetation
10% shadow

10% non-vegetation
5 % shadow
85% green-vegetation

 Additionally mean and variance of 
height was derived per Sentinel-2 pixel
from the canopy height model
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Methods

Generalized
Additive Models 
(GAM)

dNBR

RdNBR

Response 

%cov prefire non vegetation

%cov prefire Sclerophyll

%cov prefire Pinus radiata

%cov prefire Nothofagus

%cov prefire dry vegetation

%cov postfire non vegetation

%cov postfire green vegetation

%cov postfire singed vegetation

%cov postfire shadow

Predictors (after dropping highly correlated predictors)

Iterative search – all 
predictor combination for
models with 2-10 predictors
Best model via AIC

prefire mean canopy height

prefire variance canopy height
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Results
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Results
Blue = results without independent validation
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Results
Blue = results without independent validation
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Results
Blue = results without independent validation
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Results
Blue = results without independent validation
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Results
Blue = results without independent validation

 Models with 5 predictors
explain more than 70% of
dNBR and RdNBR variability
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Results
Blue = results without independent validation

 Models with 5 predictors
explain more than 70% of
dNBR and RdNBR variability

 Models with only 2 predictors
explain approximately 60% of
variability
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Results
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Results

 Unclear signal with mean height
dNBR does not capture burned biomass?
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Results

 Unclear signal with mean height
dNBR does not capture burned biomass?

 Vegetation related predictors show
plausible, nearly linear trends
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Results

 Unclear signal with mean height
dNBR does not capture burned biomass?

 Vegetation related predictors show
plausible, nearly linear trends

 Mostly post-fire predictors / no species 
related predictor selected
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Results

 Vegetation-related predictors show
plausible trends

 More green/singed vegetation lower
dNBR

Best model with 2 predictors

2nd best model with 2 predictors

 Postfire shadow and non-vegetation 
shows strong positive linear trend with
dNBR
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Results
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Conclusions

 Largest fraction of variability in dNBR and RdNBR can be
explained by canopy cover consumed (green vegetation / 
singed vegetation) 

 Pre-fire Vegetation composition and height showed hardly 
any effect in our study area

 Cast and terrain shadows may influence the observed
dNBR signal quite notably
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Thank you for your attention!

fabian.fassnacht@fu-berlin.de

mailto:fabian.fassnacht@fu-berlin.de
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