

Classifying direct drivers of forest disturbance in near realtime, using multi-sensor Sentinel data and deep learning

Bart Slagter Johannes Reiche Diego Marcos Adugna Mullissa Etse Lossou Marielos Peña-Claros Martin Herold

ESA Living Planet Symposium 27-05-2022

Background – Near real-time disturbance alerts (RADD)

RADD alerts (Reiche et al. 2021 Env. Res. Lett.)

💳 🔜 📲 🚍 💳 🛶 📲 🔚 🔚 🔚 📰 👬 🔚 🔤 🛻 🚳 🍉 📲 🚼 🖬 🖬 📾 🎃 🍁 🔸

Concept – Classifying direct disturbance drivers

- At the level of a detected forest disturbance patch (spatially explicit)
- As timely as possible (near real-time)
- Using Sentinel-1-based RADD alerts, Sentinel-1 and Sentinel-2 data, and a convolutional neural network
- Mapping 4 classes:
 - Road development
 - Selective logging
 - Mining
 - Smallholder agriculture

Concept – Convolutional neural network

eesa

Methods – Training sample acquisition

THE EUROPEAN SPACE AGENCY → THE EUROPEAN SPACE AGENCY

Methods – Study areas

→ THE EUROPEAN SPACE AGENCY

Results – Image classification

6 months

Sm. agriculture (0.77)

Mining (0.96)

2 months

Sel. logging (0.97)

Road dev. (0.86)

Sel. logging (0.69)

Sentinel-2

→ THE EUROPEAN SPACE AGENCY

Results – Near real-time scenario

Classifying disturbance patches:

- Within 2 months
- > 0.80 confidence

Alerts: 2021-2022

Road developmentSelective loggingMining

Results – Classification accuracies

Precision	Recall	F1
Sm. agriculture		
P: 0.976	R: 0.951	F1: 0.964
	_	
Road development		
P: 0.773	R: 0.872	F1: 0.820
Selective logging		
P: 0.876	R: 0.749	F1: 0.808

MiningP: 0.771R: 0.874F1: 0.819

→ THE EUROPEAN SPACE AGENCY

Take-aways and conclusion

- Drivers could be classified rapidly with accuracies up to 0.85 for different user scenarios.
- Driver classifications are most accurate when a longer postdisturbance time period or a confidence threshold is used.
- Potential end users could weigh classification rapidness, confidence and accuracy suiting their needs.

Thank you

Bart Slagter Wageningen University bart.slagter@wur.nl

