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Background – Near real-time disturbance alerts (RADD)

RADD alerts (Reiche et al. 2021 Env. Res. Lett.)

Smallholder agriculture Roads + selective logging Mining
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Concept – Classifying direct disturbance drivers

• At the level of a detected forest disturbance patch (spatially explicit)
• As timely as possible (near real-time)
• Using Sentinel-1-based RADD alerts, Sentinel-1 and Sentinel-2 data, and a 

convolutional neural network
• Mapping 4 classes:

• Road development
• Selective logging
• Mining
• Smallholder agriculture
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Concept – Convolutional neural network
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Methods – Training sample acquisition

Disturbance alerts

Created disturbance layers
- Disturbances mapped for 2 years
- 24 alert layers (monthly)

Jan. 2020

Feb. 2020

Mar. 2020

...

...

...

Dec. 2021

Reference polygons 

Class polygons
- Road development
- Selective logging 
- Mining 
- Smallholder agriculture
- Other

Input Images (~80.000)

Forest disturbance patch
Binary layer (RADD)

Surrounding disturbance
Disturbance dates scaled (RADD)

Sentinel-2 composite before
SWIR, NIR, Red, Green
Cloudshadow-masked median composite

Sentinel-2 composite after
SWIR, NIR, Red, Green
Cloudshadow-masked quality composite

Sentinel-1 composite before
VV, VH, Descending, terrain-corrected
Median composite

Sentinel-1 composite after
VV, VH, Descending, terrain-corrected
Median composite



6

Methods – Study areas
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Results – Image classification 
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Results – Near real-time scenario

Alerts: 2021-2022

Mining

Road development
Selective logging

Classifying disturbance patches:
• Within 2 months
• > 0.80 confidence



9

Results – Classification accuracies

Precision  Recall        F1

Sm. agriculture
P: 0.976       R: 0.951       F1: 0.964

Road development
P: 0.773        R: 0.872       F1: 0.820 

Selective logging
P: 0.876        R: 0.749       F1: 0.808

Mining
P: 0.771        R: 0.874       F1: 0.819 
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Take-aways and conclusion

• Drivers could be classified rapidly with accuracies up to 0.85 for 
different user scenarios.

• Driver classifications are most accurate when a longer post-
disturbance time period or a confidence threshold is used.

• Potential end users could weigh classification rapidness, confidence 
and accuracy suiting their needs.
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Thank you

Bart Slagter
Wageningen University
bart.slagter@wur.nl
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