

living planet BONN 23-27 May 2022

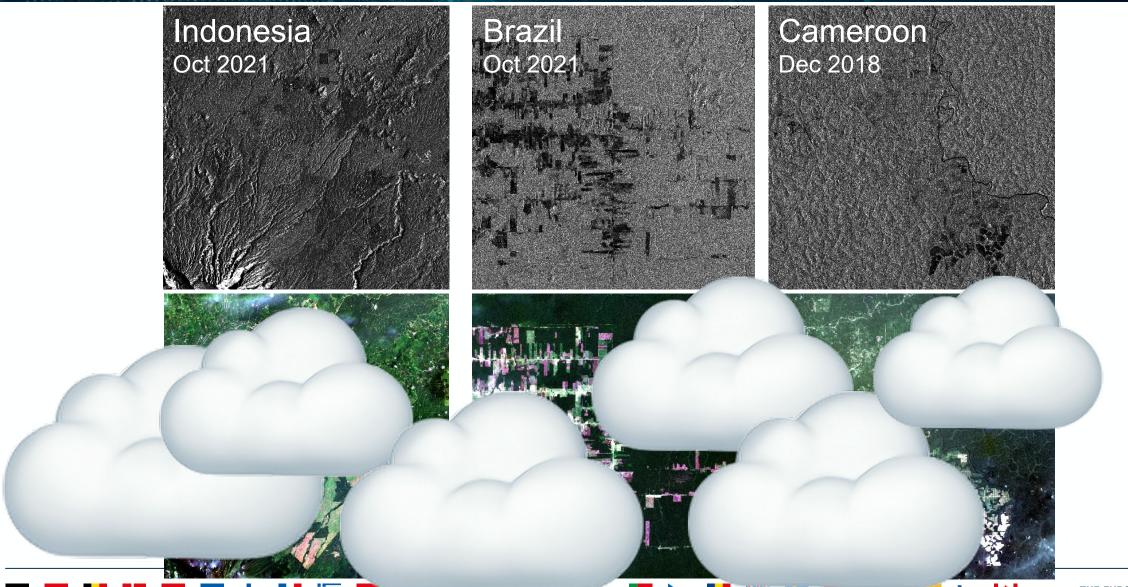
TAKING THE PULSE OF OUR PLANET FROM SPACE

Towards Robust and Timely Deforestation Detection with Sentinel-1 in the Absence of Reliable Reference Data

Johannes N. Hansen, Edward T.A. Mitchard, Stuart King

27/05/2022

Motivation: Sentinel-1 vs. Optical (Planet)



Motivation (continued)

Optical data are good for creating annual maps, but not for sub-annual change detection (clouds...)

Supervised Change Detection

- F/NF models need to be locally calibrated.
- The quality is limited by the quality of the training data.
- The NF class in particular is highly heterogeneous and hard to parametrize.

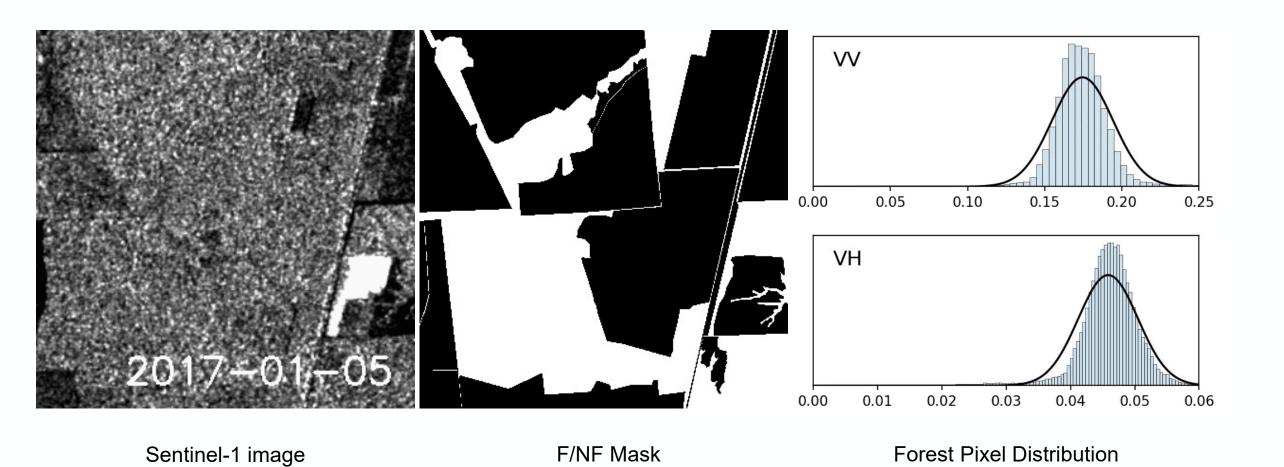
Unsupervised Change Detection

- A change in the observed data need not reflect a change of land cover (e.g., seasonality, moisture).
- Not all land cover changes are deforestation.

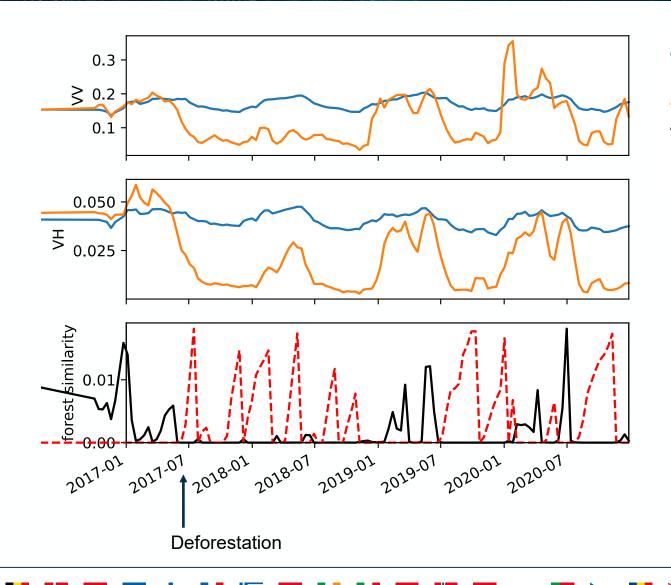
Solution: Semi-supervised?

- Use a static reference mask that is assumed to carry some error.
- Perform a change detection with respect to a derived prototype time series

VV / VH Distribution over Forest



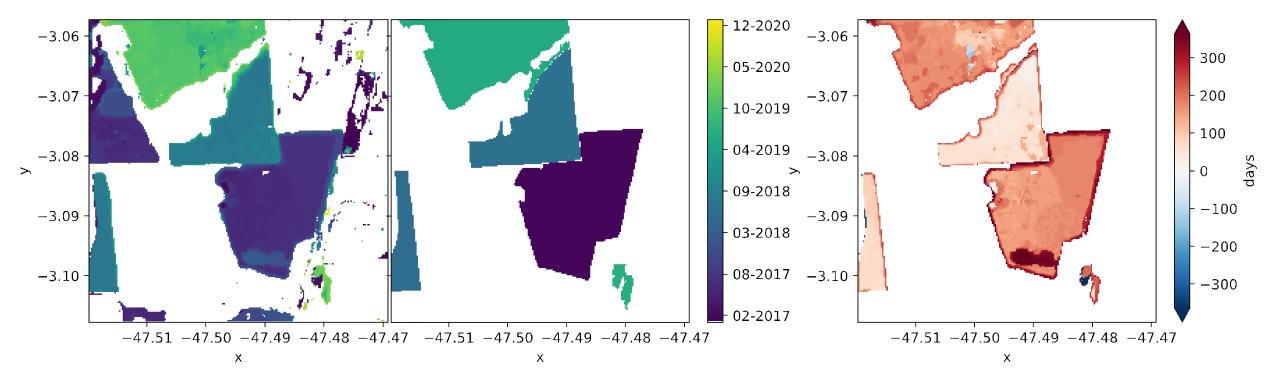
Change Detection Demo



- forest mean forest 98% confidence
- pixel value
- forest similarity
- --- cumulative forest dissimilarity non-forest

Change Detection Result

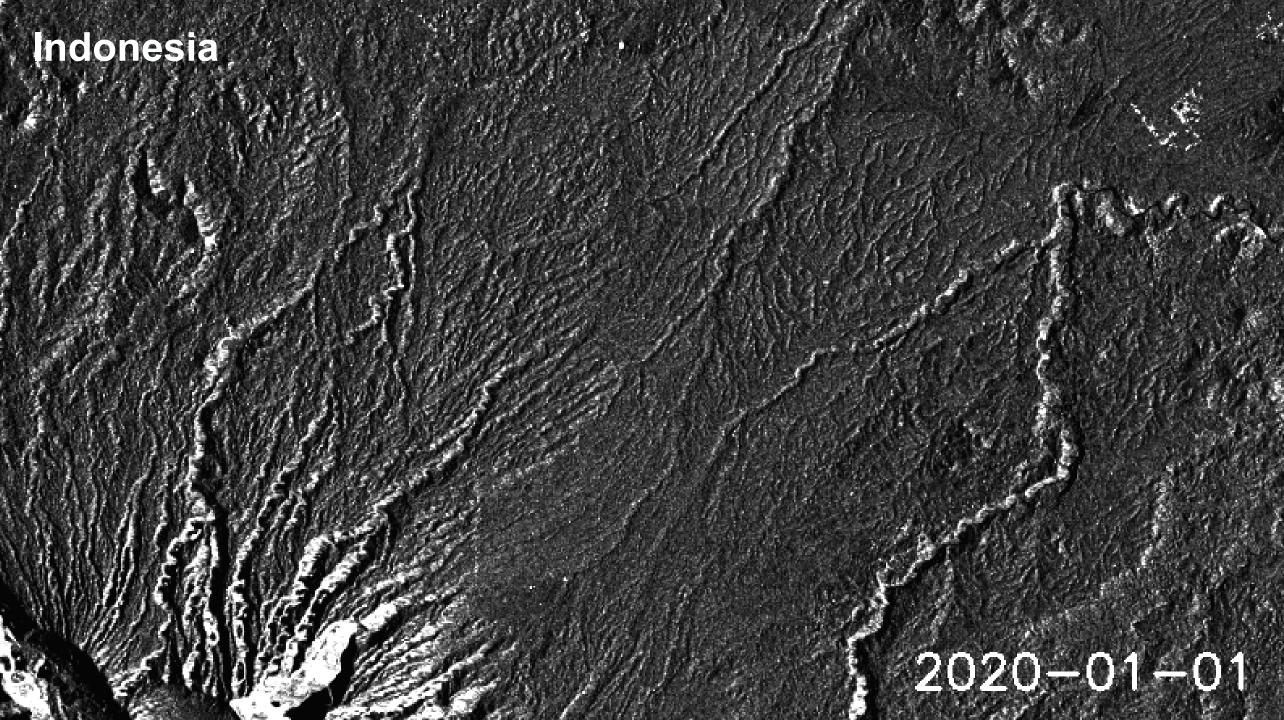
Change Detection Map



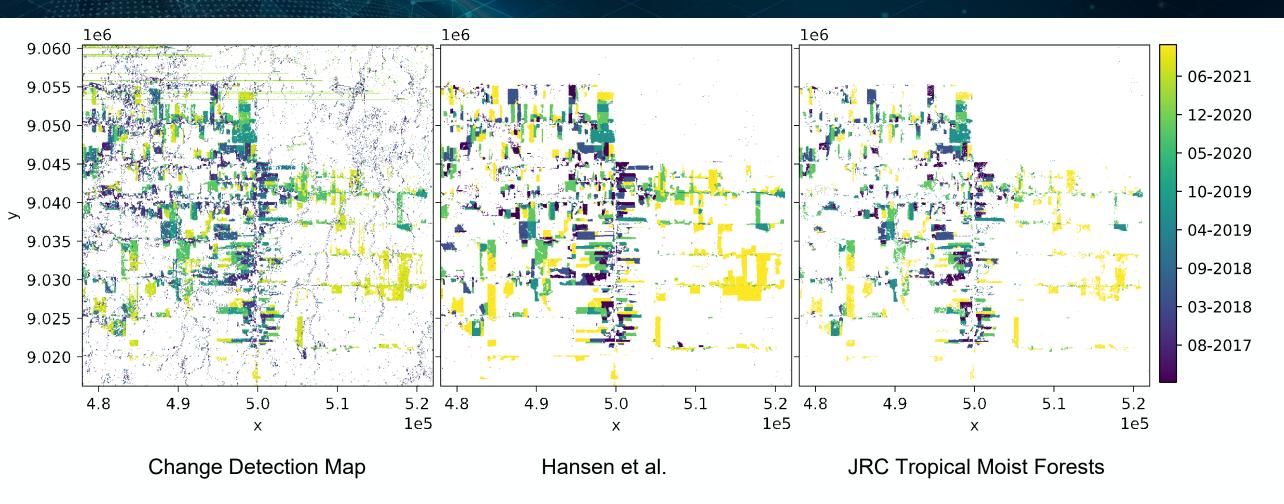
Visually Interpreted Reference

Change Detection Delay

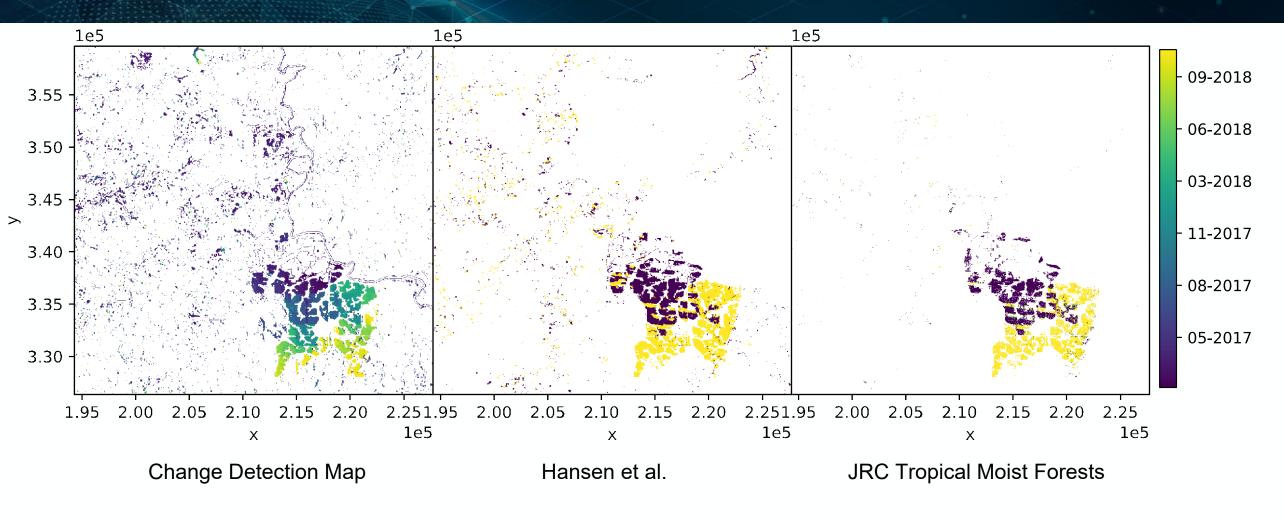
Cameroon



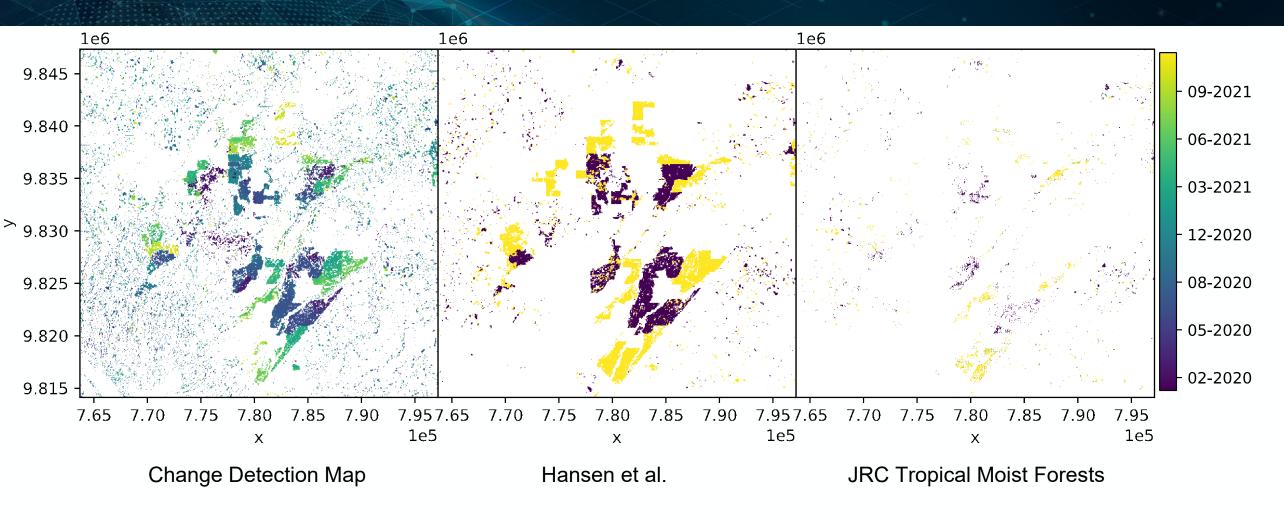
Change detection results (Brazil)



Change detection results (Cameroon)



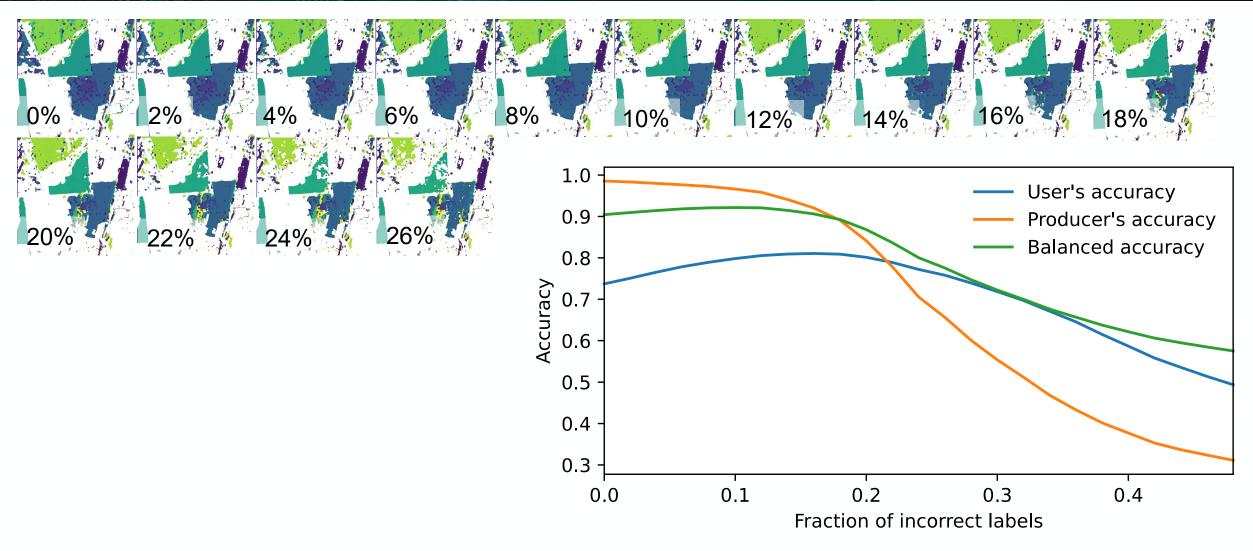
Change detection results (Indonesia)



Change Detection Accuracy Assessment

Reference	Site	UA	PA	BA
Hansen	Paragominas	77.7%	86.5%	85.5%
	Cameroon	48.0%	67.7%	81.4%
	Riau	49.8%	61.0%	76.9%
	Porto Velho	62.0%	76.4%	83.2%
JRC	Paragominas	57.9%	91.7%	83.6%
	Cameroon	34.9%	82.2%	88.1%
	Riau	5.3%	48.3%	68.0%
	Porto Velho	42.9%	84.0%	85.0%
Visual	Paragominas	75.7%	96.5%	90.4%

Robustness to Noisy Labels



Conclusions

- Semisupervised change detection using Sentinel-1 can be used to iteratively improve on existing (optical-based)
 deforestation maps
- The method is not limited to deforestation, but can potentially detect any deviation from a reference class
 - Crop harvesting
- The specifics of the method can still be improved:
 - Reduce noise (false positives)
 - Improve change detection delay

Work in progress. Preprint at:

Hansen, J. N., Mitchard, E. T. A., and King, S., "Detecting Deforestation from Sentinel-1 Data in the Absence of Reliable Reference Data", *arXiv e-prints*, 2022. https://arxiv.org/abs/2205.12131