Retrieving forest moisture content in western USA using a microwave-LiDAR synergy

D. Chaparro^{1,2}, T. Jagdhuber^{1,3}, M. Piles⁴, F. Jonard⁵, A. Fluhrer^{1,3}, M. Vall-Ilossera², A. Camps², C. López-Martínez², A. Feldman⁶, D. Entekhabi⁷

¹ Microwaves and Radar Institute, German Aerospace Center (DLR)

- ² CommSensLab, Politechnic University of Catalonia (UPC)
- ³ Institute of Geography, University of Augsburg (UniA)
- ⁴ Image Processing Laboratory, University of València (UV)
- ⁵ Earth Observation and Ecosystem Modelling Lab, University of Liège (ULiege)
- ⁶ NASA Goddard Space Flight Center

⁷ Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT

1. Goal & Motivation

Goal: Retrieving vegetation moisture in forests using a multi-sensor approach

Vegetation optical depth (VOD) \rightarrow Linked to biomass, water content and structure of plants

 $VOD = b \cdot VWC$

- \blacktriangleright Vegetation Water Content (VWC) [kg/m²] \rightarrow water per unit area: depends on biomass
- > Gravimetric vegetation moisture (m_g) [kg/kg] > water per wet biomass linked to plant water status

2. Approach

> A multi-sensor approach (Fink et al., 2018) to retrieve m_q and sense vegetation water status:

- SMAP VOD (Apr. 2016 Apr. 2018), 9 km gridding
- ➢ 61-day moving window
- Filters: snow & frozen ground, outliers (mean ± 1.96·std)

 $m_g = f(VOD, VH, \delta, Shapes)$

- Vegetation height: Lang et al., 2022 (preprint)
- Aggregated at 9-km

 $m_g = f(VOD, VH, \delta, Shapes)$

- > Vegetation volume fraction (δ):
 - Previous work: SMAP radar (too short: ~3 mo.) and Aquarius radar (too coarse: ~100 km)

 $m_g = f(VOD, VH, \delta, Shapes)$

- Current work: Sentinel-1 backscatter (SMAP-Sentinel L2 SM product; 3 km)
 - ✤ Aggregated at 9 km
 - ♦ Filters: only $30^{\circ} < \alpha < 50^{\circ}$, snow & frozen ground, outliers (mean ± 1.96·std)

$$\delta = k \cdot RVI \longleftarrow RVI = \frac{\sigma_{VH}}{\sigma_{VV} + \sigma_{VH}}$$

k calibration and shapes inclusions:

- > Vegetation volume fraction (δ):
 - Period 2016-2018

Change = percentile 95 – percentile 5

 $m_g = f(VOD, VH, \delta, Shapes)$

4. Evaluation of the approach

5. In situ data for validation

- Life Fuel Moisture Content (LFMC) measurements from Yebra et al. (2019)
- Tree species (and only where VH>15 m.)
- Period 2016-2018

-100

6. Multi-sensor retrieval results of m_q

- \succ m_a results are between 0.3 and 1 kg/kg, showing some overestimation
- Mode and mean are in the expected range (~0.5 kg/kg)
- > Overestimation is found especially in low density (lower VH) forests (eastern and northern regions)

6. Multi-sensor retrieval results of m_q

- > Comparison between in situ and estimates (per station & day pairs) shows similar results...
 - ... with slightly higher spread for the estimates
 - ... and average overestimation of 0.02 kg/kg

6. Multi-sensor retrieval results of m_q

- > Daily comparisons between in situ and estimates in a focus region:
 - Regionalitymenteriessbertewerell instituteend (estimate) show similar trends
 - Mogreestich, atess prody the (pot lundary) it the fith eitch date for two energy preak in May 2017 (1)
 - and Consistency with remote sensing inputs
 - Having enough in situ samples \rightarrow Build a time-series for the region
 - ✤ Focus in Apr. 2017 Jan. 2018

7. Outline and ongoing work

- A multi-sensor approach to retrieve vegetation moisture in gravimetric units (mg) is proposed
 - Synergy among SMAP (radiometer), Sentinel-1 (radar) and GEDI+Sentinel-2 (LiDAR/Optical)
- > Non-linear relationship between m_a and VH, with m_a values in the expected range in forests
 - A machine learning approach will be explored to deal with non-linear relationships and more complex links between variables.
- ➢ Results show m_g estimates ranging between 0.3 and 1 kg/kg → Some overestimation (+0.2 kg/kg) if compared to the expected maximum (~0.8 kg/kg).
- m_g estimates compare well (similar mean) with in situ values, but show slightly higher variation and range
- > Regional-scale time-series of m_q estimates compare well (r = 0.77) with in situ time-series
- Regional m_g estimates capture part of the in situ m_g decrease (-22% in front of -46%) during 9 months in the focus region

THANKS FOR YOUR ATTENTION!!

