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Introduction
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• Combine satellite data (CERES-EBAF, Cryosat2…), oceanic 
insitu-observations (T/S/V from moorings), and reanalyses (C3S 
ERA5; CMEMS GREP, …) to obtain a consistent estimate of the 
Arctic energy budget

• Largely independent estimates of various budget terms are 
already highly consistent - full budget closure obtained through a 
variational approach

• In this presentation:
1) Different perspectives on Arctic Ocean warming
2) Monitoring of high-latitude oceanic transports

Mean Arctic Energy budget
2005-2009 (in Wm-2)

Mayer et al. (2019)



Arctic Ocean warming 1993-2019
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• Large spatial variability in oceanic warming

• Long-term warming over 60-90N is ~0.8 Wm-2 plus 0.2 Wm-2 when taking sea ice 
melt into account – similar to global average ocean heat uptake

• How can this be reconciled with Arctic amplification?

OHC data from 4 
ocean reanalyses



Ocean warming 1993-2019 – stratified by surface conditions
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• Warming of ice-free Arctic ocean much faster than global average, but little warming 
underneath sea ice

Fraction of warming Fraction of area
Ice-covered 17% 63%

Ice-free 83% 37%



Ocean warming – stratified by water masses
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• Strongest ocean warming in Atlantic Water (AW) layer: 
exposed to surface and strongly linked to changes in AW 
inflow 

• Rapid warming ~2002-2016, but weak warming in recent 
years

Section along Greenland-Scotland Ridge

Fraction of warming Fraction of volume
AW 64% 18%
PW 5% 5%

Deeper layers 31% 77%



Oceanic transports and ocean warming
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• Periods of enhanced warming in AW layer 
coincide with stepwise changes in heat 
transport

• Good agreement of insitu-based and 
reanalysis-based oceanic transports



Oceanic transports and ocean warming
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• Periods of enhanced warming in AW layer 
coincide with stepwise changes in heat 
transport

• Good agreement of insitu-based and 
reanalysis-based oceanic transports



Focus on Greenland-Scotland-Ridge oceanic transports
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Zonal-depth sections based on oceanic reanalyses

Red arrows: main AW inflow branches
Blue arrows: Polar water outflow
Black arrows: overflow water outflow

• How well can current reanalysis products reproduce 
the zonal structure of observed oceanic exchanges at 
GSR?



Greenland-Scotland-Ridge oceanic transports - validation
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• Most branches are quantitatively well represented by ocean 
reanalyses – best performance by high-resolution products

• All reanalyses underestimate oceanic heat transport – related to 
too weak AW inflow
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Variations in oceanic transports – interannual time scale
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• The reduction of heat transport in 2018/19 was 
mainly related to reduced inflow in Farow-
Shetland Channel – consistent in observations
and model-based products

GSR heat transport anomalies
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Variations in oceanic transports – decadal time scales
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GSR heat transport anomalies
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Atlantic Water inflow temperature anomalies
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AVISO SLA in Atlantic Subpolar Gyre region
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• On decadal timescales heat transport covaries
with inflow temperatures at GSR

• Inflow temperatures appear to show a delayed
response to variations in the Subpolar Gyre, 
with warmer inflow during weak SPG phases

High SLA  weak SPG
Low SLA  strong SPG



Variations in oceanic transports – decadal time scales
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GSR heat transport anomalies
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Atlantic Water inflow temperature anomalies
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AVISO SLA in Atlantic Subpolar Gyre region
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• On decadal timescales heat transport covaries
with inflow temperatures at GSR

• Inflow temperatures appear to show a delayed
response to variations in the Subpolar Gyre, 
with warmer inflow during weak SPG phases

High SLA  weak SPG
Low SLA  strong SPG



Summary
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• Arctic Ocean contributes ~4% to global ocean heat uptake – similar to its area relative to the global ocean

• But: ice-free Arctic ocean warms much faster than the global average

• Reanalysis-based oceanic transports into Arctic agree well with observations on branch scale  great tool 
for Arctic climate monitoring

• Oceanic transports modulate Arctic Ocean warming on interannual (related to wind-driven SLA variations 
in Nordic Seas) and decadal scale (related to strength of Subpolar Gyre). 

• Recently reduced rates of Arctic Ocean warming linked to currently strengthened SPG via oceanic 
transports 
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