

living planet symposium BONN 23-27 May 2022

TAKING THE PULSE OF OUR PLANET FROM SPACE

៳៷ϝ 🤃

1 km evaporation and soil moisture simulations across Europe based on GLEAM and the Sentinel constellation

Dominik Rains, Darren Ghent, Isabel Trigo, Emanuel Dutra, Sofia L. Ermida, Petra Hulsman, Akash Koppa, Jose Gómez-Dans, Diego Miralles

27/05/2022

ESA UNCLASSIFIED – For ESA Official Use Only

💳 💶 📲 💳 📰 📰 💶 💶 💶 📕 🔜 📲 层 🔤 层 🔤 🔤 வ 🚳 🖂 📲 👫 🕂 🖬 🗮 💳 👘 → The European Space Agency

1 km evaporation and soil moisture simulations across Europe

0 mm/yr

EVAPORATION - GLEAM

precipitation and soil moisture

transpiration

Miralles et al. 2014

→ THE EUROPEAN SPACE AGENCY

EVAPORATION – GLEAM – GLEAM-HR

1 km evaporation and soil moisture simulations across Europe

EVAPORATION – GLEAM – GLEAM-HR

- Reimplementation in Python
- Version control with test branches, DL hybrid-branch etc.

Article Open Access Published: 08 April 2022

A deep learning-based hybrid model of global terrestrial evaporation

Akash Koppa 🖾, Dominik Rains, Petra Hulsman, Rafael Poyatos & Diego G. Miralles Nature Communications 13, Article number: 1912 (2022)

- DTE-Hydrology (Po valley, ESA) and DTE-Hydrology Evolution (Mediterranean basin, ESA)
- > 4DMED (Mediterranean basin, ESA)
- ET-Sense (BELSPO, Stereo III) 1km on European domain

128 116

	Lust commu	cast opente
docs	Remove unsupported documentation theme options	3 months ago
🗎 examples	Merge branch 'feature/data-assimilation' into 'develop' Feature/data as	3 weeks ago
src/pygleam	Fix condensation distribution for bare soil	2 weeks ago
tests	removed print statement in test_model.py	3 weeks ago
Coveragerc	Change project structure using PyScaffold 3.2.2 Goal is to convert pygle	3 months ago
.gitignore	Add Interactive sensitivity analysis example	1 month ago
.gitlab-cl.yml	Specify dependencies exclusively in setup.cfg Goal is to have one obvio	3 months ago
AUTHORS.rst	Update AUTHORS.rst	2 months ago
HANGELOG.rst	Change project structure using PyScaffold 3.2.2 Goal is to convert pygle	3 months ago
LICENSE.bit	Change project structure using PyScaffold 3.2.2 Goal is to convert pygle	3 months ago
* README.md	added blankline to README.md	3 weeks ago
🗅 setup.cfg	Change documentation theme	3 months ago
🖶 setup.py	Change project structure using PyScaffold 3.2.2 Goal is to convert pygle	3 months ago

292.0

EVAPORATION – GLEAM – GLEAM-HR

SATDATA project

- providing operational data to Dutch water authorities
- > pyGLEAM implementation with local forcing data
- Implemented in Cloud environment

<u>1 km</u>

<u>1 km</u>

<u>1 km</u>

0.10°

<u>1 km</u>

0.25°

1 km

5 km

<u>1 km</u>

5 km

250 m

250 m

6

LSAF | Sentinel 3

LSAF | Sentinel 3

Sentinel 1

MSWEP v2

Sentinel 3

AMSR-E | SMOS

Sentinel 1

LIS/OTD

Sentinel 3

Sentinel 5P

SoilGrids

MODIS

*

+

EVAPORATION – GLEAM – GLEAM-HR – ET-SENSE – LAI – S1 – S3 LST

Interception Model	Surface Net Radiation	CERES	1°	
Gash model driven by observed rainfall	Outgoing Shortwave	CERES	1°	
Potential Evaporation	Soil Moisture (DA)	AMSR-E SMOS	0.25°	
Priestley and Taylor driven by observed meteo	Precipitation	MSWEP v1	0.25°	
	Skin Temperature	AIRS	0.5°	
$E = E_{p} \times S + E_{i}$	Vegetation Optical Depth	AMSR-E SMOS	0.25°	
	Snow Water Equivalent	GlobSnow	0.25°	
Stress Module Semi-empirical relationship to	Lightning Frequency	LIS/OTD	5 km	
root-zone moisture and VOD	Leaf Area Index	-	-	
	Solar Induced Fluorescence	-	-	
Soil Module Multi-layer profile driven by	Soil Properties	SoilGrids	0.25•	
precipitation and soil moisture	Land Cover Fractions	MODIS	250 m	

EVAPORATION – GLEAM – GLEAM-HR – ET-SENSE – LAI – S1 – S3 LST

- Vegetation phenology (VOD) input for vegetation stress module
- Empirical relationship based on scaled, not absolute, values
- LAI a direct substitute for VOD
- Postprocessed ProbaV product

Yere in the stress module with e.g. hybrid approach and new use of vegetation phenology within GLEAM

EVAPORATION – GLEAM – GLEAM-HR – ET-SENSE – LAI – S1 – S3 LST

- Assimilation of Sentinel-1 backscatter observations requires forward simulations from model to observation space
- Water Cloud Model takes into account roughness, vegetation state and soil moisture, needs calibration
- Explore Support Vector Regression as alternative
- > Assimilation using Ensemble Kalman Filter (32 ens)

 $egin{aligned} x^a &= x^b + K(y - h(x^b)) \ K &= PH^{ op}(HPH^{ op} + R)^{-1} \end{aligned}$

For all considered ISMN sites: (a) R between GLEAM soil moisture and S1 backscatter observations, as well as between the WCM or SVR forward simulations and S1 backscatter; (b) RMSD between the WCM or SVR forward simulations and S1 backscatter.

EVAPORATION – GLEAM – GLEAM-HR – ET-SENSE – LAI – S1 – S3 LST

(a) Distribution of the assimilation impact (ΔR) for all considered ISMN sites when using the WCM or SVR forward simulations.

Temporal subset of soil moisture time series for the open-loop run and both assimilation experiments together with ISMN soil moisture for (b) Acqui Grandcal and (c) SMOSMANIA Sabres.

EVAPORATION – GLEAM – GLEAM-HR – ET-SENSE – LAI – S1 – S3 LST / ALB

- > Key forcing variable for GLEAM is <u>net radiation</u>, but also use of outgoing shortwave and air temperature
- > Higher-resolution, gap-free, products challenging \rightarrow Downscaling of all-sky LSAF products using albedo and LST
- Combine advantages of geostationary temporal resolution with spatial resolution of retrievals from polar-orbiting platforms.

	Variable	Satellite	Orbit	temporal	spatial	clear-sky/all-sky
$SNR = (SW_{in} + LW_{in}) - (SW_{out} + LW_{out})$	905 - F					
$SW_{out} = SW_{in} + \alpha$	SW_{in}	MSG	geostationary	hourly	5–7 km	all-sky, clear-sky+model
	LW_{in}	MSG	geostationary	hourly	5–7 km	all-sky, clear-sky+model
$LW_{out} = \varepsilon * \sigma * LST^4 + (1 - \varepsilon) * LW_{in}$	LST	MSG	geostationary	hourly	5-7 km	all-sky, clear-sky+model
	LST	Sentinel 3 A	polar	2–3 days	1 km	clear-sky
	ε	MSG	geostationary	hourly	5–7 km	clear-sky composite
	α	MSG	geostationary	hourly	5–7 km	clear-sky composite
	α	ProbaV	polar	daily	1 km	clear-sky composite

1 km evaporation and soil moisture simulations across Europe

EVAPORATION - GLEAM - GLEAM-HR - ET-SENSE - LAI - S1 - S3 LST / ALB

 Albedo downscaled through simple bias-correction using albedo from ProbaV

 $SW_{out} = SW_{in} * \alpha$

- > 1) Normalisation of S3 LST (~2-3 days) to nearest full hour using diurnal cycle from LSAF LST hourly data
- > 2) Bias correction of LSAF LST towards normalised S3 LST per pixel
- 3) Assimilate normalised S3 LST observations into time series from 2) to generate 'Sentinel-like' gap-free time series

0.275

0.250

0.225

0.200

0.175

- 0.150

0.125

0.100

0.075

0 050

Publication in preparation!

11

EVAPORATION – GLEAM – GLEAM-HR – ET-SENSE – LAI – S1 – S3 LST / ALB – First Runs

First simulation runs for 2018 – 2019 ongoing using 1km net radiation

12

EVAPORATION – GLEAM – GLEAM-HR – ET-SENSE – LAI – S1 – S3 LST / ALB – First Runs

THE EUROPEAN SPACE AGENCY

EVAPORATION – GLEAM – GLEAM-HR – ET-SENSE – LAI – S1 – S3 LST / ALB – First Runs – Conclusions

- Conclusions:
- > Use of LAI as VOD replacement works well (although use of vegetation phenology will change)
- S1 assimilation using WCM/SVR improves soil moisture simulations within expectations
- Use of geostationary and polar-orbiting radiation and LST/Albedo retrievals for increased spatial heterogeneity in radiation forcing
- First simulations (without S1) show satisfactory results both in terms of validation and spatial patterns
- Next steps:
- Comprehensive sensitivity analysis with different forcing updates/combinations
- Release 2018–2019 test dataset both for E as well as merged LST/Rnet radiation