

Augmented Reality Applications for Remote Sensing in Secondary Education using Radar, Lidar, and Imaging Spectrometer Data

<u>Claudia Lindner</u>, Nico Kraft, Darius Happe, Annette Ortwein, Kilian Staar, Andreas Rienow,

Department of Geography, Ruhr-University Bochum

Or search for "Columbus Eye" in the Google Play Store.

Sorry no iOS yet, I'm on it!

Worksheets with markers @ (EN) http://columbuseye.rub.de/english/ (DE) http://columbuseye.rub.de/unterricht/

	•		•
Part	grade	subjects	English?
Algal Bloom	10-13	Geo+Bio+Phy	planned
Aralkum	7-9	Geo	yes
Mountains in the Solar System	5-7	Geo/Maths	planned
Image Processing	10-13	CS	planned
Earth By Night – Light pollution	7-9	Geo	yes
Earth By Night – Energy	7-9	Geo	yes
Earth Moon System	8-12	Phy+Geo	yes
Satellite Systems	any	Phy/Maths/Geo	yes
The Eye of the Cyclone	7-9	Geo	yes
Volcanoes on Mars?	7-8	Geo	yes
Volcanos under the Radar	7-10	Geo+Maths+Phy	planned

Living Planet Symposium 23-27 May 2022 Bonn, Germany

Existing app parts

RUHR UNIVERSITÄT RUE BOCHUM

Teaching and Learning...

<u>...about</u> EO

Tools and methods

- Research
- Disciplines Professional development

What is possible with EO?

<u>...through</u> EO

- Spatial thinking Data literacy
- Critical thinking
- Analytical thinking
- Citizenship formation

Which transferable skills are acquired when using EO?

...with EO

Technical skills Explorative learning Research-based learning Problem-oriented learning

How is EO used as a learning tool?

Modified according to Uwe Schulze (2021)

Teaching Earth Observation teaches more than Earth Observation!

"Satellite Systems"

- Not bound to any • specific topic
- General • introduction into Earth Observation
- Teaching *about* and through EO

eye

"Satellite Systems"

- All information within the app
- Accurate orbits ٠
- Temporally "to scale": ۲ 1d = 1440 min » 288 s ≈ 6 min \rightarrow 90 min sat orbits » 18 s
- Map & model day-night-cycle ٠
- Expandable

	• •	
🔻 📾 🔽 Satellite Orbit (S	cript) 🛛 🗐 📑	۵,
Script	🖻 SatelliteOrbit	
Track	ːːːːːːːːːːːːːːːːːːːːːːːːːːːːːːːːːːːːː	0
Center	👃 Center (Transform)	0
Spinning Earth	🛢 EarthSpin (SpinFree)	\odot
Altitude	0.693	
Period	98.6	
Inclination	98.181	
Descending Node Local T	18	
Forward		
Trailing SO	Sen-1A (SatelliteOrbit)	\odot
Trailing Degrees	180	

Living Planet Symposium 23-27 May 2022 Bonn, Germany

UNIVERSITÄT RU BOCHUM

RUHR

"Image Processing" using DESIS data

- For Computer Science, grades 10-13 Students are to:
- Describe digital images in the RGB color space
- Explain and implement changes in contrast, saturation, and brightness
- Process hyperspectral imagery using the NDVI
- Teaching *with* EO

DESIS image (©DLR) – R: Infrared

Living Planet Symposium 23-27 May 2022 Bonn, Germany RUHR UNIVERSITÄT BOCHUM RUB

"Image Processing" using DESIS data

- Play around with • the sliders and describe what is happening
- Introduction to the • RGB color space •
 - Discuss how the sliders affect R, G, and B

Living Planet Symposium 23-27 May 2022 Bonn, Germany

UNIVERSITÄT RU BOCHUM

RUHR

"Data Compression" using DESIS data

- Divide in 3 groups, each analyse one compression algorithm
- Read some text, play with the app, and find out how the algorithm works
- Discuss how and why each algorithm is suitable for imagery
- Present findings to the other groups
- Discuss: "There is no perfect compression algorithm."

COKEPLER H+H ISS

Living Planet Symposium 23-27 May 2022 Bonn, Germany RUHR UNIVERSITÄT BOCHUM

В

For Maths, grades 7-10

Teaching *about*, *through*, and *with* EO

Students are to:

- Calculate the area of triangles, rectangles, and circles
- Use sin/cos/tan to calculate angles and side lengths within those
- Calculate volume and density of simple shapes
- Learn to mathematize environmental problems
- Learn to develop and explain their own approaches
- Develop awareness for a recent societal problem and base their opinion on calculatable facts
- Understand some basics of satellite remote sensing and its applications

"Mining Data" using GEDI data

- Calculate an average depth of the mine
- Calculate the volume of the mine
- Estimate the amount of coal being mined and how much energy came from it
- CO₂ calculations & discussion

Living Planet Symposium 23-27 May 2022 Bonn, Germany RUHR UNIVERSITÄT BOCHUM RUB

"Volcanos on Mars?"

- Simple 3D models to give pupils an idea of the scale of the mountains and the slope angles.
- Switch between Earth an Mars
- Real/calculated sea level
- Scale bar and highest/lowest spots marked
- Teaching through and with EO

Living Planet Symposium 23-27 May 2022 Bonn, Germany RUHR UNIVERSITÄT BOCHUM RUB

Olympus Mon Place Mars 'Sea level' Off Legend On columbus = eye Maunakea 4.207 m Ocean floor -6.030 m "Sea level" Legend On Place Earth Mars Off On

"Volcanos on Mars?" & Mars VR

- Mars Viking Colorized Global Mosaic 232m v2,
- Mars MGS MOLA,
- MEX HRSC Blended DEM Global 200 m v2,

Lindner, C., Ortwein, A., Staar, K., Rienow, A. (2021): Different Levels of Complexity for Integrating Textured Extra-terrestrial Elevation Data in Game Engines for Educational Augmented and Virtual Reality Applications. *KN - Journal of Cartography and Geographic Information.*

Living Planet Symposium 23-27 May 2022 Bonn, Germany RUHR UNIVERSITÄT BOCHUM

"Mars VR"

- Virtual expedition to a \bullet dangerous/inaccessible place
- Analyse Rover landing sites in VR \bullet using EO methods
- Combination of 2D and 3D materials ٠ for better understanding of maps in the "real world"

Living Planet Symposium 23-27 May 2022 Bonn, Germany

RUHE

Conclusion & Outlook

- Continually producing Augmented Reality apps using Earth and other planetary observation satellites, including the ISS
- More than geography, applications in various STEM subjects
- EO is an integral part, but on different levels of utilization, sometimes just an example (*with EO*), sometimes the subject (*about EO*), sometimes the method (*through EO*)
- Real EO data can be integrated into these apps for the benefits of students
- iOS planned (eventually!) (I promise!!)

Thank you! Any questions?

