

CHALMERS

Sea surface circulation observed by SAR in the Baltic Sea using the synergy between Sentinel-1 and TanDEM-X

Anis Elyouncha¹, Leif E. B. Eriksson¹ and Harald Johnsen²

¹Chalmers University of Technology, Gothenburg, Sweden

²NORCE, Tromsø, Norway

Introduction - Doppler centroid

- **Goal**: Investigate the potential of spaceborne SAR to monitor the Baltic Sea in/out flow through the Danish straits
- Doppler centroid estimation
 - Along-track interferometry (ATI), e.g. TanDEM-X, SEASTAR
 - Doppler centroid anomaly (DCA), e.g. Envisat, Sentinel-1
- The two methods estimate the SAR Doppler centroid

$$f_{DC} = \frac{1}{2\pi} \frac{\phi_{ATI}}{\tau} = \frac{k_e}{\pi} V_r$$

- V_r : Radial velocity (RVL) of the satellite relative to moving ocean surface
- $V_r = V_h \cdot sin(\theta)$, assumes negligible vertical velocity

Introduction - Doppler centroid

• Different sources of motion

$$f_{DC} = f_{geom} + f_{phys} + f_{error}$$

- f_{geom} : Due to satellite velocity relative to solid rotating Earth
 - requires accurate orbital/attitude parameters
- **f**_{phys}: Due to ocean surface currents and waves
- Precision requirement: $\Delta V_h = 0.1$ m/s requires $\Delta f_{DC} = 3.7$ Hz, (X-band), $\Delta f_{DC} = 2.08$ Hz (C-band) at $\theta = 35^{\circ}$
- Usually Doppler calibration is needed = estimation of f_{error}
 - requires a reference (in height and velocity)

Study area

<image>

Fehmarn Belt

Depth profile

Data

- Satellite data
 - Sentinel-1A & B, OCN products (ESA), 21 images
 - TanDEM-X SLC, images (DLR), 8 images
- In situ data, moored buoy (BSH)
 - \circ $\;$ Wind speed and direction at + 10 m $\;$
 - Current speed and direction at -10 m
- Reanalysis data (ECMWF)
 - \circ ERA5, wind speed and direction at 10 m
- Ocean model data (Copernicus)
 - Nemo-Nordic, model current
 - BALTICSEA_ANALYSIS_FORECAST_PHY_003 _006, surface layer 1 m thick

Insitu vs ERA5 wind

- Insitu wind covers only June
- MAE = 1.59 m/s
- Max inst. diff upto 6 m/s

Insitu vs Model current

- Insitu current is at -10 m
- MAE = 0.16 m/s
- Max inst. difference 0.75 m/s

Examples - Model wind and current

Examples - SAR Doppler velocity

2020-06-26

Wind and current variability

- High temporal variability of both wind and current
- Small current magnitude < 0.3 m/s

Results - Sentinel-1 RVL - before wave bias correction

- High correlation between SAR DC and radial wind (R=0.82)
 - Doppler velocity dominated by wind
- 2020-06-15 and 2020-06-17, low wind (< 0.25 m/s), low SNR

Low wind cases - Noisy DC

• 2020-06-15 and 2020-06-17, wind speed < 0.25 m/s, very low SNR

Results - Sentinel-1 - after wave bias correction

• Sentinel-1 derived "current", after removing the wave bias

Results - TanDEM-X RVL

- Similar to Sentinel-1: High correlation between RVL and radial wind
 - Doppler velocity dominated by wind

Results - TanDEMX after wave bias correction

• Sentinel-1 derived "current", after removing the wave bias

Results - Combination of Sentinel-1 and TanDEM-X

• RVL vs radial wind speed (wave contribution)

Results - Combination of Sentinel-1 and TanDEM-X

• SAR derived "current", after removing the wave bias

Results - summary

Calibration and wave bias correction

Before wave bias correction

After wave bias correction

SAR RVL

SAR RVL

SAR derived "current"

Differences between Doppler GMFs

CDOP vs KaDOP

• Opposite variation vs incidence angle!

 $u10 = 7 \text{ m/s}, \theta = 35 \text{ deg}$

Conclusions

- Calibrated RVL, high correlation (>0.9) with radial wind speed
- After wave bias correction, good correlation (~0.72) with insitu radial current
- SAR is capable of monitoring the Baltic Sea flow through the Fehmarn Belt
 - Synergy increases temporal sampling
- Sensitivity to wave bias correction and input (wind or waves) to Doppler GMF
 - CDOP and KaDOP GMFs give slightly different results
 - Validity of Doppler models at low (<25) and high (>45) incidence angles
- Extended dataset needed for comprehensive analysis

Looking forward to SEASTAR

- Total current vector instead of radial
- Simultaneous wind and current measurements
- Fast revisit phase