

ALLIES of LIGHT

CONSIGLIO NAZIONALE DI OTTICA CONSIGLIO NAZIONALE DI OTTICA Ground-based and balloonborne far-infrared spectral observations to support the preparation of the FORUM mission

Luca Palchetti

2022 Living Planet Symposium 23-27 May 2022, World Conference Center Bonn, Germany

The Team & Affiliations

Luca Palchetti¹, Marco Barucci¹, Claudio Belotti¹, Giovanni Bianchini¹, Francesco D'Amato¹, Samuele Del Bianco², Gianluca Di Natale¹, Alessio Di Roma³, Bianca Maria Dinelli³, Marco Gai², Tiziano Maestri⁴, Guido Masiello⁵, Eli Mlawer⁶, Filippo Pratesi¹, Marco Ridolfi¹, Carmine Serio⁵, Christian Rolf⁷, Ralf Sussmann⁸, Silvia Viciani¹, Hannes Vogelmann⁸

- (1) Istituto Nazionale di Ottica Consiglio Nazionale delle Ricerche, Sesto Fiorentino, ITA
- (2) Istituto di Fisica Applicata "Nello Carrara" Consiglio Nazionale delle Ricerche, Sesto Fiorentino, ITA
- (3) Istituto di Scienze dell'Atmosfera e del Clima Consiglio Nazionale delle Ricerche, Bologna, ITA
- (4) DIFA, Universita' degli Studi di Bologna, ITA
- (5) Scuola di Ingegneria, Università degli Studi della Basilicata, Potenza, ITA
- (6) Atmospheric and Environmental Research, Lexington, MA, USA
- (7) Forschungszentrum Jülich GmbH, Jülich, DEU
- (8) KIT/IMK-IFU, Garmisch-Partenkirchen, DEU

Far Infrared (FIR) in ground-based and balloon-borne measurements

Ground-based zenith-looking observations require high-altitude and dry sites FIR limited to wavenumber > 200-300 cm⁻¹

0.12 Dome C (3230 m) Testa Grigia (3500 m) $\operatorname{sr}\operatorname{cm}^{-1}$ 0.1 M.Gomito (1892 m) BB @ T_{air} at surface 0.08 Radiance [W/(m² 0.06 0.040.02 200400 800 600 1000 1200 1400 Wavenumber [cm⁻¹]

Balloon-borne nadir-looking observations (at about 35 km) are very close to satellite observations (FORUM-like measurements)

The whole FIR is accessible

Support to FORUM mission

Improvements of models in the FIR

- Water vapour spectroscopy and the continuum absorption
- Cirrus cloud radiative properties and better information on particle microphysics
- Snow/ice emissivity

Instrumental support

- Provide real measurements to test the data analysis tools under development
- Prepare a suite of instruments to be used for calibration/validation purposes

www.ino.it

2 instruments were developed: REFIR-PAD and FIRMOS

The REFIR-PAD instrument

Radiation Explorer in the Far-InfraRed – Prototype for Applications and Development

2003-04

Mach-Zehnder Fourier Transform Spectrometer Spectral coverage = 100-1500 cm⁻¹, Resolution 0.4 cm⁻¹ double-sided NESR in the range 0.6-2.5 mW/(m² sr cm⁻¹) Absolute calibration error < 0.5 K Small Payload: 62 cm dia., 55 kg weight, 50 W avg power

Poster section Day 5

Spectral OLR measurements from Teresina stratospheric flight (2005)

Flight

- North-East of Brazil (5° 5' S, 42° 52' W)
- Launch at night 03:36 LT 30 June 2005 •
- Floating altitude at 34 km for about 8 h
- Landing 10 h later, 270 km south-west

Spectral measurement at nadir

Retrieval of the atmospheric state and surface properties

- Best fit with x2 minimization based on LBLRTM FM https://doi.org/10.1029/2010JD014530
- Optimal estimation approach based on SACR FM (LBLRTM) https://doi.org/10.1016/j.jgsrt.2020.106927
- Optimal estimation approach based on KLIMA FM (HITRAN / AER)
- https://doi.org/10.4401/ag-6331

σFORUM

ASI

Project

Flux measurements from Teresina stratospheric flight

Testing of the OLR flux calculation method, exploiting the wide spectral range

- 1. Radiance angular calculation from the retrieved atmospheric state
- 2. Numerical integration with Gaussian quadrature

Comparison with EDA 5 hourly data

Improvements in water vapour spectroscopy from high-altitude ground-based measurements

2007, MT_CKD v2.1 by AER Inc. (used in LBLRTM radiative transfer model)

Comparison with measurement from Plateau Rosa 3500 m, Italian Alps 2007, (ECOWAR project)

Result: below 450 cm⁻¹ the MT_CKD model overestimates the magnitude of the continuum coefficient

https://doi.org/10.1364/OE.16.015816

https://doi.org/10.1029/2012GL051542

www.ino.it

2009, MT_CKD v2.4

Comparison with measurement from Cerro Toco 5300m, Chile 2009 (RHUBC-II Campaign)

> **Result:** confirmed the better agreement with LBLRTMv11.6 using MT_CKD v2.4

Water vapour spectroscopy from high-altitude ground-based sites

2014, MT_CKD v2.5.2

Fit of the continuum absorption with measurements from Dome-C 3200m, Antarctica 2011-12, (PNRA PRANA Project)

Result: good consistency between observations and the model. Provided evidence toward needing to adjust absorptive line strengths in AER model

2016, MT_CKD v3.0

Spectroscopy improvements from measurement from Cerro Toco 5300m, Chile 2009 (RHUBC-II Campaign)

Results: the foreign continuum increased > 50% in part of the FIR , line widths of more than 20 lines changed >10%.

Effect of changes from v1.2 to v3.0: the net flux change can be as large as -0.6 W/m² and occurs in the upper troposphere.

https://doi.org/10.1029/2018JD029508

Cirrus cloud properties from high-altitude ground-based sites

Measurements from Concordia station, 3200m, Antarctica 2013-14 Exploited synergy with collocated Backscatter/Depolarisation Lidar

Machine learning cloud identification and classification (CIC code)

https://doi.org/10.5194/acp-21-13811-2021 Presentation in A1.10.1 session by T.Maestri Retrieval of cirrus parameters (SACR code)

https://doi.org/10.3390/rs12213574

The FIRMOS instrument

Far-Infrared Radiation Mobile Observation System, 2018

Mach-Zehnder Fourier Transform Spectrometer Spectral coverage = 100-1000 cm⁻¹, Resolution 0.25 cm⁻¹ max. double-sided NESR in the range 0.5-2.5 mW/(m² sr cm⁻¹) Absolute calibration error < 0.5 K Small Payload: 85x95x50cm size, 60 kg weight, 70 W avg power

www.ino.it

LPS 2022 - Bonn - 27/05/2022

National Institute of Optics

Comparison with MIR measurements

Spectral measurements of the DLR together with E-AERI instrument outside the KIT IMK-IFU Zugspitze laboratory

Comparison between the IWV retrieved with FIRMOS (FIR range) and E-AERI (MIR range) measurements

Retrieval studies and comparison with external measurement <u>Clear sky case</u>

Under publication

LPS 2022 - Bonn - 27/05/2022

National Institute of Optics

Retrieval studies and comparison with external measurement <u>Cirrus cloud case</u>

https://doi.org/10.5194/amt-14-6749-2021

www.ino.it

OD_{lidar}

10

0.

0.01

Ice FIR emissivity: first measurements

Spectral measurement of the upwelling radiance @13.5 degrees off-nadir

Retrieval with OE at 25 cm⁻¹ resolution Comparison with ice model by Huang et al. (2016)

Snow FIR emissivity: first measurements

Spectral measurement of the upwelling radiance @13.5 degrees off-nadir

Retrieval with OE at 25 cm⁻¹ resolution Comparison with snow model by Huang et al. (2016)

Conclusions

- REFIR-PAD has been of support for the development of the idea of measuring the far infrared during the latest 20 years and it was the baseline design of the FORUM FTS proposed to ESA EE9 missions in 2017
- FIRMOS was developed after the FORUM selection to support the preparation of the mission with ad hoc activities which cannot be performed with REFIR-PAD installed permanently in Antarctica
- Both instruments contributed, and will continue to contribute, to support the preparation of the FORUM mission
- The application of REFIR-PAD from Antarctica and FIRMOS-B from stratospheric balloon can provide a suite of instruments able to perform calibration/validation measurements when FORUM is in orbit

Acknowledgements

- **CNES** Teresina Campaign
- ARM/DoE (Cerro Toco Campaign)
- PNRA (Antarctic Campaign) •
- ESA (FIRMOS project) •
- ASI (FORUM scienza project)

www.ino.cnr.it

←

FORUM

