

living planet symposium BONN 23-27 May 2022

TAKING THE PULSE OF OUR PLANET FROM SPACE

EUMETSAT CECMWF

Convolutional neural networks for soil organic carbon mapping from Sentinel-2 satellite imagery; a case study in Bavaria state

Nikolaos Tziolas, Dr. Uta Heiden, Klara Dvorakova, Dr. Pablo d'Angelo, Simone Zepp, Prof. Dr. Bas van Wesemael

27/5/2022

ESA UNCLASSIFIED – For ESA Official Use Only

The rationale

Transition from data to knowledge for action for soil related strategic goals implementation

Neural Networks (e.g., DL)

Pillars that should drive the DL architecture development

- DL is not a panacea
- Move from black to glass box models (XAI); Explainability is important for debugging AI models and making informed decisions (<20% present explainability or mentioned it's importance)

 Interpretability: Post-hoc explainability techniques; Interpretability-driven model designs
 Accuracy: Hybrid modelling approaches; New explainability-preserving modelling approaches

(dx.doi.org/10.1016/j.inffus.2019.12.012)

Study area and data

- 1933 topsoil samples (LUCAS, Bavarian Environmental Agency and State Research Center for Agriculture); SOC content ranges from 0.26 to 180 g · kg⁻¹
- Sentinel-2 data (exc. 60m bands) from 12 tiles; cloud coverage <80%; range from 2018-2020; <u>i</u>) spring; <u>ii</u>) spring-autumn; and <u>iii</u>) full months
- Processing with Soil Composite Mapping
 Processor by DLR

CNN architecture

→ THE EUROPEAN SPACE AGENCY

- Shallow deep learning architecture able to handle multispectral data, supporting also multi-output predictions;
- Exploits the complementary information contained from multiple spectral sources (<u>no need to find the best</u> <u>pre-treatment</u>);
- Address the issue of interpretability;
- Evaluate the inclusion of spectral indices (e.g., NDVI, NBR2 etc.) as additional predictors (CNN with indices)

Local error correction mechanism

- Local error correction mechanism, where information from a global model is used to localize multiple models (utilize the k ∈ [10, 200] nearest neighbors)
- Spectral distance calculation and closest neighbor selection by Euclidean Distance

Predictive performance

Spring_SRC

- Best performance for the Spring soil reflectance composites (SRC)
- There is no need to include vegetation indices as additional spectral features in CNN;
- Statistical marginal improvement (~1%) due to the proposed error-correction scheme;
- The herein proposed CNN scored significantly better compared to current SOTA models for Sentinel-2 data (PLS: R²=0.49, RMSE =13.76 g · kg⁻¹, RPD =1.4).

→ THE EUROPEAN SPACE AGENCY

CNN interpretability

The **visible range**, and in particular the beginning of the spectrum. This may be attributed to **soil color** and the albedo of the sample which is influenced by the presence of organic matter

The **upper SWIR region**, where absorptions due to the presence of organic materials may also be found.

8

SOC map in Bavaria

20% of the Rol recognized as exposed soils Visually homogeneous predictions; free of any apparent artifacts

SOC map In Bavaria

Remarks and Suggestions

Conclusion

We developed for a first time a localized multichannel CNN able to handle Sentinel-2 data to predict soil properties

Future steps

- Exploitation of additional information sources like the DEM and environmental covariates in a multibranch approach;
- Utilize both geographical and spectral distance vectors for neighbor selection.
- Utilize **hyperspectral missions** (e.g., PRISMA, EnMAP) to leverage the benefits of the multi-input CNN model.

THANK YOU!

CONTACT US

ntziolas@auth.gr

Nikolaos Tziolas

💻 🔜 📲 🚍 💳 🛶 🛛 🖉 🚟 🚍 🖏 🖉 🗮 🚍 👬 🚍 🛶 🚳 🛌 📲 🚼 🛨 📰 📾 🕍 → The European Space Agency