

living planet symposium BONN 23-27 May 2022

TAKING THE PULSE OF OUR PLANET FROM SPACE

EUMETSAT CECMWF

Monitoring soil water content from space in the solar domain: the power of radiative transfer models

S. Jacquemoud, A. Dupiau, X. Briottet, S. Fabre & F. Viallefont-Robinet

A3.02.1 Towards a space-based Earth Observation Soil Monitoring System - 27 May 2022

ESA UNCLASSIFIED – For ESA Official Use Only

S. JACQUEMOUD (IPGP, jacquemoud@ipgp.fr) A. DUPIAU (ONERA/IPGP, <u>dupiau@ipgp.fr</u>) X. BRIOTTET (ONERA, <u>xavier.briottet@onera.fr</u>) S. FABRE (ONERA, <u>sophie.fabre@onera.fr</u>) F. VIALLEFONT-ROBINET (ONERA, <u>francoise.viallefont@onera.fr</u>)

Monitoring soil water content from space in the solar domain: the power of radiative transfer models

The hydrological cycle

Trenberth et al. (2007)

Water in soil

Knowledge of soil surface water content is essential for many areas of research in the critical zone:

- Climate: desertification, water and wind erosion
- Micrometeorology: temperature, evaporation
- Agriculture: soil sensitivity to wind erosion, gas exchange, soil aeration
- Continental hydrology: runoff, infiltration and water storage processes
- Defense or homeland security: trafficability
- Planetary studies: surface processes

But also

- Critical zone: best estimate of soil organic carbon (SOC)
- Mineralogy: best estimate of mineral composition and content

Remote sensing measurements

Spectral domain		Penetration depth		8	Satellite / sensor	
Microwaves 1 mm – 1 m	Active	om/dm/m	Transparent atmosphere Spatial resolution Ground penetration	Surface roughness Topography	SMAP, ALOS, SENTINEL-1	
	Passive	cm/am/m	Transparent atmosphere Ground penetration	Surface roughness Spatial resolution	SMOS, SMAP, AMSR-E	
Thermal infrared 3 – 14 μm		mm	Spatial resolution Surface measurement	Cloud, wind, and air temperature	LANDSAT, ASTER, MODIS	
Solar domain 300 – 3000 nm		< 1 mm	Spatial resolution Surface measurement	Cloud	LANDSAT, MODIS, SPOT, SENTINEL-2, Pleiades, PRISMA, EnMAP	

Light scattering properties of bare soils

Bidirectional Reflectance Distribution Function [sr⁻¹]

$$BRDF(\theta_{s},\varphi_{s},\theta_{v},\varphi_{v},\lambda) = \frac{L_{R}(\theta_{s},\varphi_{s},\theta_{v},\varphi_{v},\lambda)}{E_{I}(\theta_{s},\varphi_{s},\lambda)}$$

 \rightarrow Bidirectional Reflectance Factor

Spectral optical properties

Directional optical properties

The dark side of soils...

Radiative transfer models: several approaches

Model	Spectral \rightarrow water content	Bidirectional \rightarrow surface roughness			
Layer	Ångström (1925), Lekner & Dorf (1988), Bach & Mauser (1994), Tian and Philpot (2015), Bablet et al. (2018, 2019, MARMIT), Verhoef et al. (2018, BSM), Dupiau et al. (2022, MARMIT-2)				
Kubelka- Munk	Sadeghi et al. (2015)				
Radiative transfer equation	Twomey et al. (1986, TBM) Tavin et al. (2008), Gao et al. (2021) \rightarrow HAPKE	Hapke (1981, 1984), Despan et al. (1999), Chappell et al. (2006), Wu et al. (2009), Johnson et al. (2013), Labarre et al. (2017, 2019) \rightarrow HAPKE			
	Jacquemoud et al. (1992), Pommerol et al. (2013), Yang et al. (2011), Yao et al. (2018), Zang et al. (2020) \rightarrow HAPKE				
Geometrical / particulate	Garay et al. (2016)	Cierniewski (1987), Cierniewski & Karnieli (2002), Sadeghi et al. (2018)			
Ray tracing	Kimmel & Baranoski (2007, 2009, 2010, SPLITS)	Stankevich & Shkuratov (2004), Ciarniello et al. (2014), Labarre et al. (2017, LuxRender)			

Soil radiative transfer modeling: the MARMIT model

https://pss-gitlab.math.univ-paris-diderot.fr/marmit/marmit

Spectral database: 340 soil samples

https://pss-gitlab.math.univ-paris-diderot.fr/marmit/marmit

Dataset	Ν	SMC (g	g g ^{−1})	Drying	Sieving	θ	Density (g cm ⁻³)	Characteristics	S. Cardination	
		Number of levels	Range	P			(9)			
Lob02	4	9 to 15	0-118 %	Oven-dried	2 mm	15°	0.64-1.54	Various mineralogy	A CONTRACTOR	
Liu02	92	4	0-83 %	Oven-dried	2 mm	15°	0.98-1.88	Various texture	and the second	
Whit04	60	10 to 12	0-45 %	Oven-dried	2 mm	15°	0.88-1.36	30 samples rich in CaCO ₃ 30 clayey samples		
Les08*	32	6	0-87 %	Oven-dried	no	15°		Various texture and color		
Mar12	9	25 to 30	0-50 %	Humidification	no	25°		Limestone samples		
Noc13	111	5	0-25 %	Humidification	2 mm			Various provenance and composition		1 sec
Phil14	3	97 to 205	0-45 %	Oven-dried	2 mm	30°	0.95-1.53	White sand, dark sand and silt		
Bab16*	17	6 to 8	0-40 %	Oven-dried	2 mm	15°		Various composition		a state of the
Dup20*	8	9	0-68 %	Oven-dried	2 mm	15°		Various provenance and composition		
Eon21	4	10 to 18	0-32 %	Humidification		0 °		Various texture		
Total	340	4 to 205	0-118 %			15-30 °	0.64-1.88			- den

Soil radiative transfer modeling: the MARMIT model

Soil radiative transfer modeling: the DART-Lux model

12

Soil radiative transfer modeling: the DART-Lux model

Roosjen et al. (2015), Champion-Legendre (2021), Dupiau et al. (2022)

Soil radiative transfer modeling: the DART-Lux model

Roosjen et al. (2015), Champion-Legendre (2021), Dupiau et al. (2022)

Modeling work

- Reflectance spectra of « flat » wet soils \rightarrow MARMIT-2
- BRDF simulations of bare soils at different levels of humidity and/or surface roughness \rightarrow DART-Lux

Experimental measurements

- In the laboratory: <u>https://pss-gitlab.math.univ-paris-diderot.fr/marmit/marmit</u>
- In the field: HySpex images acquired in the field in Orléans (France) + PRISMA images acquired on the Maccarese farm site (Fiumicino, Italy)

Soil moisture content retrieval

- Inversion of a radiative transfer model \rightarrow MARMIT+RPV, MARMIT+Hapke, or DART-Lux