Cyanobacteria detection with Sentinel 2 MSI

How to use machine learning to detect cyanobacteria risks in inland waters

<u>Jorrit Scholze</u>, Kerstin Stelzer, Carole Lebreton, Dagmar Müller Brockmann Consult GmbH

ESA Living Planet Symposium 2022, Bonn, Germany

BROCKMANN CONSULT

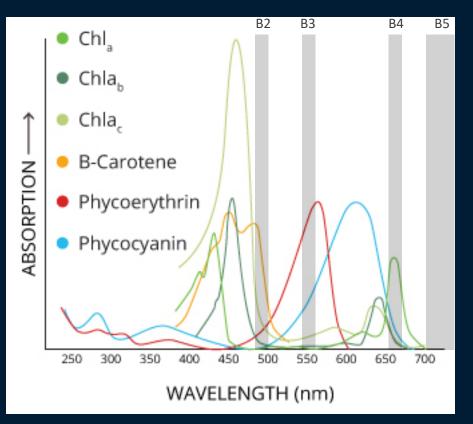
Importance of **Cyanobacteria Detection**

o Potentially harmful cyanobacteria

- Affect freshwater and coastal ecosystems
- Health impact
- Relevant for recreational activities

Assessing and monitoring water quality

- Monitoring of lakes for local authorities
- Potential indicator for climate change



Earth Observation for Cyano Detection

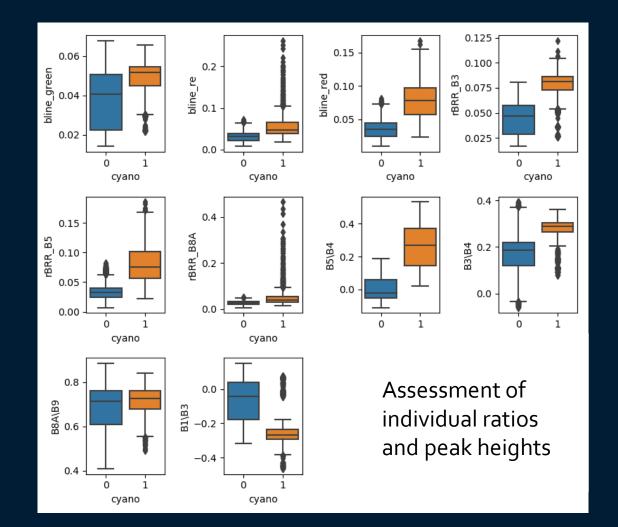
- Various publications and algorithms address immersed and floating cyano detection¹
 - Phycocyanin detection, cell counts, abundances
 - Based on water colour sensors with respective bands at absorption features
 - Spatial resolution of medium resolution water colour sensors not sufficient for small inland waters
- S2 MSI proven to be a valuable sensor for monitoring smaller inland waters bodies
 - cyano absorption features not covered with channels

¹ Kutser 2004,2009, Kahru et al. 2007, Simis et al. 2005, Alikas et al 2010, Matthews et al. 2012, Lunetta et al. 2014

Methodology

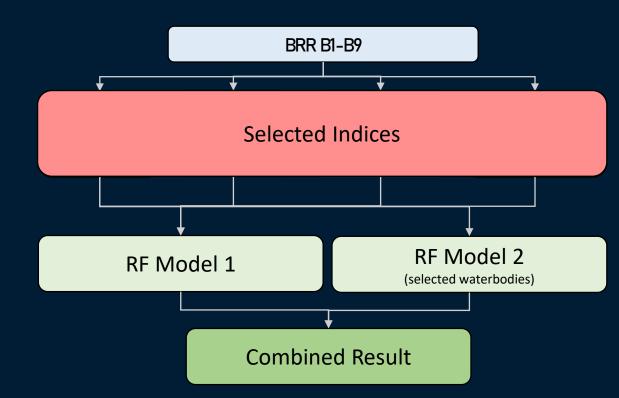
Maximum Peak Height¹ (MPH) based for MERIS and OLCI

- good results based on in-situ comparison
- Atmosphere
 - Rayleigh correction \rightarrow BRR
- \circ In-Water
 - S2 spectral band at 620nm is missing \rightarrow MPH not applicable
 - Our approach:

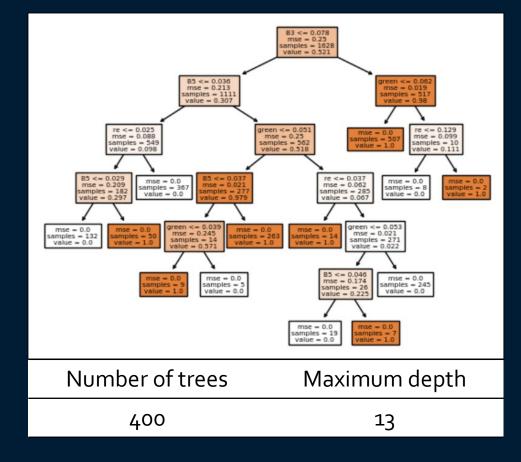

Using a Random Forest Model to detect distinct spectral features of cyano blooms with S2.

¹Matthews, M. W., & Odermatt, D. (2015).

Selection of Model Inputs


- manually selected dataset covering various water types:
 - Cyano blooms
 - high chlorophyll biomass blooms, springblooms
 - clear water cases
- Cyanobacteria blooms defined from insitu data:
 - Biovolume of Cyano > 50% of total biovolume and a minimum CHL-a concentration of 10 $\mu g/L$
- Dataset taken in lakes in Germany and the US
- Analysis of indices and peak heights to distinguish cyanos from green algae
 blooms

Model Configurations

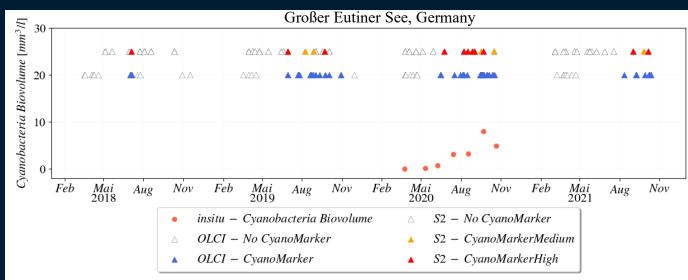

- Selection of 4 indices based on BRR
- $_{\odot}~$ Identification of two Models
 - Model 1: covering various waterbodies
 - Model 2: covering cyano abundances in darker brown lakes
 - Combination of both model results

Random Forest

- Supervised machine learning algorithm
- Multiple decision trees, with each tree representing a class prediction
- Wisdom-of-crowds concept
 Class with the most votes becomes the model's prediction
- Easy and fast model training
- Full dataset split
 - 70% training data
 - 30% test data

Testing of Model

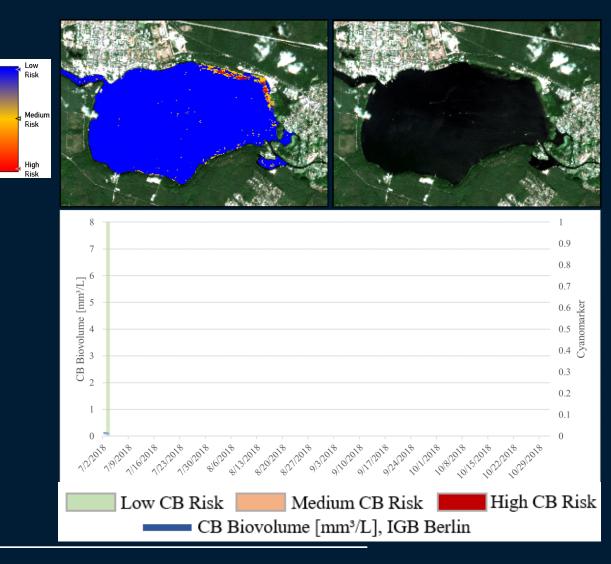
- Test dataset showed very high accuracy
 - OAA > 95%
- Based on manually collected water pixels
 - Biased approach
- Unbiased validation necessary
 - Extensive in-situ dataset from German authorities


Model 1			RF CB				
	Class	Cyano	No Cyano	Sum	UA		
True CB	Cyano	507	8	515	98.45		
	No Cyano	2	513	515	99.61		
	Sum	509	521				
	ΡA	99.61	98.46		OAA:	99.03	
Model 2 RF CB							
	Class	Cyano	No Cyano	Sum	UA		
B	Cyano	36	4	40	90.00		
True CB	No Cyano	2	191	193	98.96		
	Sum	38	195				
	ΡA	94.74	97.95		OAA:	97.42	

Validation of Model

- Validation of model based on:
 - In-situ measurements
 - Cyano Biovolume > 50% of total Biovolume
 - CHL-а > 1оµg/L
 - Same day
 - OLCI MPH CyanoMarker
 - Time series of German lakes
 - Check periodic cyano abundance
- High confidence in cyano risk assessment with random forest model

Germany				RF CB			
	Class	Cyano	No Cyano	Sum	UA		
	1 CB	Cyano	15	2	17	88.24	
	In-situ CB	No Cyano	2	30	32	93.75	
		Sum	17	32	49		
		ΡA	88.24	93.75		OAA:	91.84



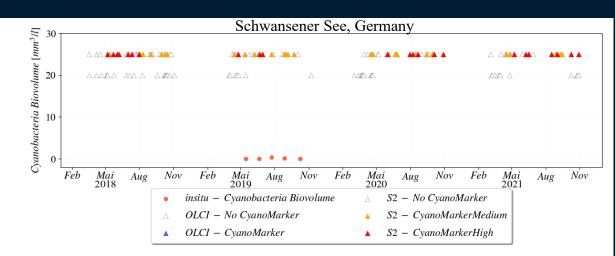
Case Study – Müggelsee

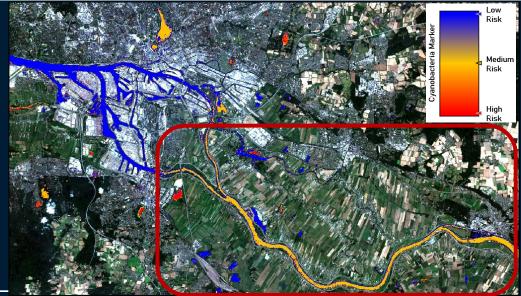
Müggelsee (Berlin, GER)

- Frequent cyano abundance
- Monthly in-situ measurements
- S2 MSI cyano risk identifies
 cyano bloom in time and space
 - Spatial information cyano bloom crucial for public bathing places
 - Static in-situ measurements station not covering full spread of cyano bloom

Validation with the CyanoTRACKER

Using public monitoring programs to validate model CyanoTRACKER (University of Georgia)




Limitation encounters

- Limitations for S2 MSI cyanobacteria risk assessment
 - High algae blooms with CHL-a concentrations > 100µg/L
 - Shallow waters/bottom reflection
 - Rivers with high CHL-a concentrations

Risk assessment

- No cyano biovolume
- Low biomass cyano blooms undetected

Improvements & Conclusion

Improvements

- Continuation of improving the model
 - Extension of training dataset
 - Extension with a third model

• Limitations for S2 MSI cyanobacteria detection

- Phycocyanin absorptions wavelength 620nm not covered with S2 MSI
- Upcoming high-resolution sensors may include bands covering these wavelengths

Conclusion

- Random Forest Model approach based on selected indices and a manually selected training dataset
- High confidence in cyanobacteria risk detection based on S2 for various lakes

Thank you!

