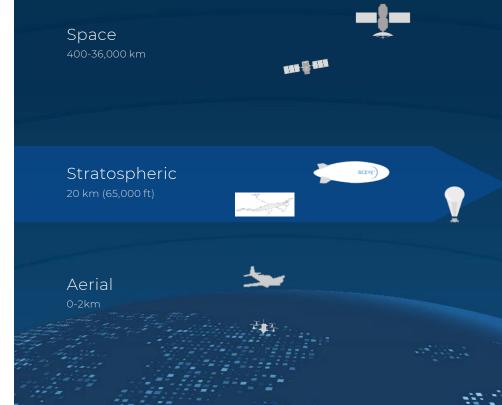
Definition of a HAPS system in support of air quality and greenhouse green gas services

ESA's Living Planet Symposium, 23 - 27 June, Bonn

HAPSVIEW's objectives



HAPSVIEW was an ESA activity to identify how HAPS can provide data to operational air quality or GHG services, such as air quality modelling or greenhouse gas emission inventories.

- The identification of the air quality and GHG modelling user requirements for high-resolution atmospheric composition data to be provided by HAPS.
- The demonstration of the impact a HAPS system can have on improving the status of air quality or GHG modelling in synergy with satellite data
- Definition of the mission requirements for use cases, including the technical platform and the instrument requirements, preliminary system concepts, air space regulations, geophysical data products and synergies with existing and planned satellite missions.

Sweet-spot altitude

Stratosphere is the best of both worlds

- ✓ Near enough to see in high definition, live feeds
- ✓ Heavy lift LTA : multi-instrument (100's kg)
- ✓ Power solar closed-loop (LTA : 1-10kW)
- ✓ Station characterize vast areas
- ✓ Endurance LTA : 200+ days

Page 3

- ✓ **Range** 27,000 sq mi coverage
- ✓ Direct connection 2G/3G/4G/5G & IoT/RPA

Comparing HAPS

FIXED WING

"Solar-powered airplanes have very little thrust and therefore fly slowly. They suffer greatly when trying to fly both high and slowly. That problem is increased by their inability to turn sharply to be stationkeeping."

AIRSHIP

"Airships will dominate this [HAPS] market because heavier-than-air options will not produce enough excess electric power to both fly and supply all payloads."

BALLOON

"Balloons are the original persistent aerial platforms [...] But they float with the wind and so cannot provide persistent service to fixed locations on the ground unless replaced frequently."

- Can't lift nor power payload

– Enough space and lift

- Too random to be controlled

Quotes from "Global Stratospheric UAV Payloads" by Market Forecast and Market Forecast to 2025" By Ed Herlik, May 2017.

Fixed wing

Small payloads – 2-10kg

Custom payloads - SWAP reduction

Power – 100W supply

Source – solar \rightarrow limited surface area for capture and small battery bank

Endurance - weeks+ (26 day record)

Speed - 55-110kmh (15-30 m/s)

Station \rightarrow wide radius circles (10km) – few degrees of bank, increasing energy required for higher bank angles

Range – regional → mid-range missions

+/- 40° latitudes – growing over time to +/- 80°

Applications | *single mission focus*

Balloons

Small payloads - 10-20kg

Power – 100W supply

COTS equipment – adaptation for stratosphere

Source – solar \rightarrow limited capture and small battery bank

Endurance – weeks \rightarrow months

Drift \rightarrow unpowered, very wide radius circles, random paths (150km+)

Range – intercontinental \rightarrow long-range missions

+/- 70° latitudes – growing over time to +/- 90°

Applications | single mission focus

Airships

Large payloads – $100 \rightarrow 500$ kg +

Power – 10's kW supply

COTS equipment – minimum adaptation

Source – very large solar capture \rightarrow large battery banks

Endurance – 200+ days : months → years

Persistent \rightarrow station keeping on spot

Highly maneuverable \rightarrow fly and course : track, 'mow'

Speed – 0-100kmh sprint (0-28m/s)

Tight turning radius \rightarrow low speed, stationary turn

Range – intercontinental \rightarrow long range missions

+/- 40° latitudes – growing over time to +/- 70°

Application | multi-role : work-horse of the sky

User requirements

European Air Quality Normative Framework and Future Outlook

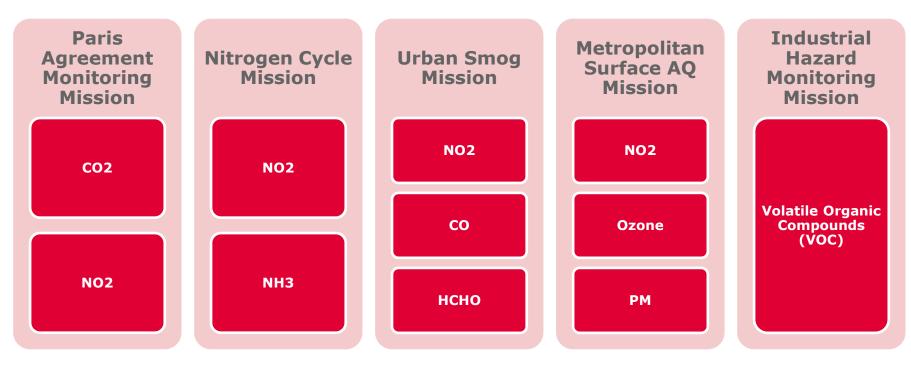
- Analysis performed in preparation of the future Copernicus generation (NEXTSPACE)
- Consolidation of end user needs of space-based observations
- Policy aspects include regulations related to actions on emission reductions related to air quality, substances depleting the ozone layer and climate change policies
- Policy aspects related to CO2 emissions from Agriculture, Forestry and other land use (AFOLU)
- Energy policies on sustainable energy production and safe and secure energy supply (e.g. monitoring of methane leaks)
- Specific policies related to air quality in the framework of the EU Clean Air Policy:
 - Ambient air quality directives
 - National emissions ceiling directive
 - > Control on the sources of air pollution incl transport, industry, domestic combustion etc

User requirements

User communities

Two key stakeholders involved in the study

- > The province of South Holland / Municipality of Rotterdam
- Ministry of Environment and Spatial Planning (Regional government of Andalusia) / Seville Town Hall


Wider user community involved indirectly in the study

- EU institutions
- International and European research community incl. CAMS
- National institutions
- National research communities w.r.t. Air Quality
- Public companies
- Private companies
- Other

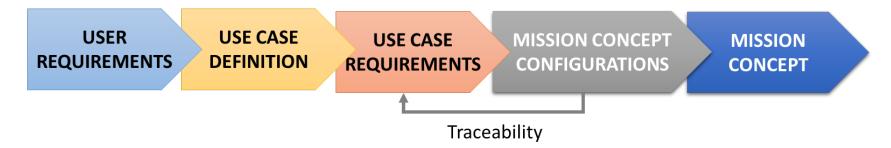
Use cases – gathered candidates

Potential HAPS applications along observable atmospheric components:

Selected Use Cases

In order to get feasible mission requirements, only two use cases were selected:

 Use Case #1: "Paris Agreement Monitoring Mission"
• Priority-A components: CO_2 , NO_2 • Priority-B components: HCHO, CH_4 , CO, Aerosols
 Use Case #2: "Metropolitan surface AQ Mission"



From Use Case to Mission Concept

Traceability from Use Case to Mission Concepts:

From this traceability analysis with Use Case requirements several conclusions can be drawn:

Multi-payload mission propose better compliances

Duplication of system allows a better coverage (spatial and temporal) of the area of interest

To get complete compliance with use case requirements, new technology shall be developed (lidar for instance)

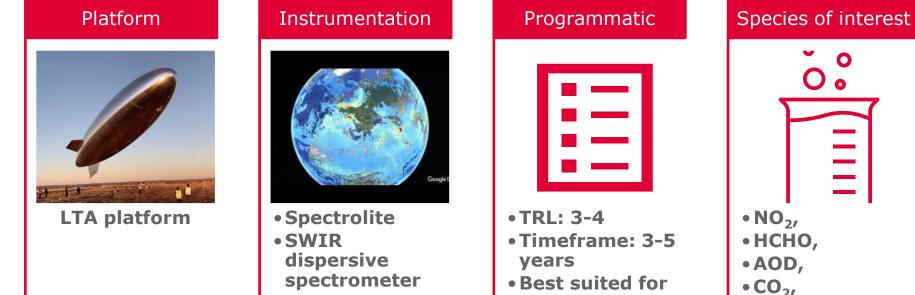
Hybrid approach seems more promising than pure LTA or HTA

Consortium approach for mission selection

Consortium though was to propose several concept that can cover several application inspired from the Use Case but also a development plan in the dissemination of HAPS throughout Europe for air quality and green house gases monitoring.

Ready to Fly	High TRL based concept
Mission	Rely on existing technology
Configuration	Limited compliance with Use Case
User-Driven	Mid TRL based concept
Mission	Technology to mature
Configuration	Better compliance with Use Case
Forward-	
Forward-	Low TRL based concept
Forward-	Low TRL based concept New technology and science to develop
Looking Mission	
	New technology and science to develop
Looking Mission	New technology and science to develop
Looking Mission Configuration	New technology and science to develop High Level of compliance with Use Case
Looking Mission Configuration Event tracking	New technology and science to develop High Level of compliance with Use Case More private oriented mission

Ready to Fly Mission Configuration



Species of interest Platform Instrumentation Programmatic Ξ **ADS Zephyr** • TNO spectrolite •TRL: 5-6 • NO₂, Commercial • Timeframe: 2-3 • HCHO, Hyperspectral years • AOD camera • Best suited for a short-term demo

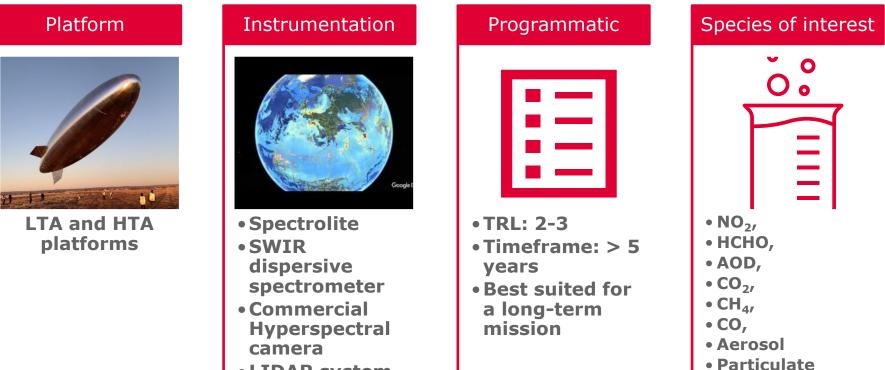
User-Driven Mission Configuration

 Commercial Hyperspectral camera

a mid-term

mission

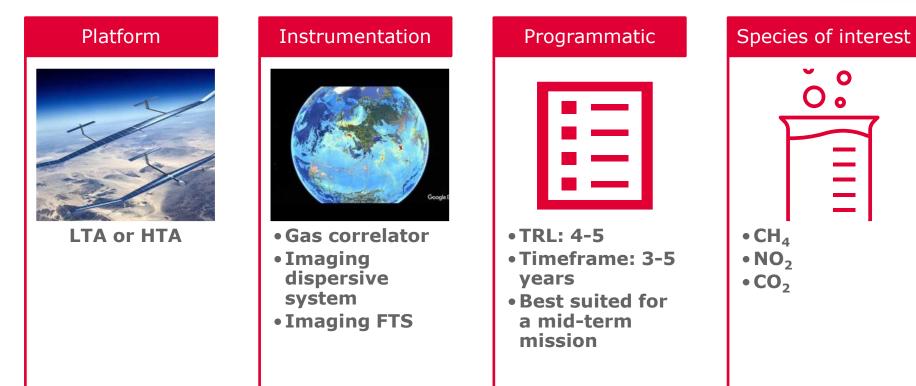
• CH₄,


• CO,

Aerosol

Ξ

Forward-Looking Mission Configuration



• LIDAR system

matter

Event tracking Mission Configuration

Mission Requirement Document Criteria for definition

Two criteria were followed for the definition of the mission objective, the selection of required geophysical products, and selection of HAPS system

User needs. Defined on the results of consultations with **Rotterdam/South-Holland** and **Seville/Andalusia** local and regional authorities.

Maturity. Feasibility has been assessed by obtaining the user requirements using the status of the science and state-of-the-art technologies. **Both user uptake and SRL/TRL (science and technology readiness level) are taken into consideration.**

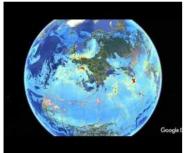
Mission Requirement Document Paving the way to a demonstration

From the previously analyzed configurations the most suited for a short-term demonstration was the ready to fly configuration.

The MRD followed a simplified combined mission concept of the Paris Agreement Monitoring HAPS mission and the Metropolitan Surface Air Quality mission.

While the Metropolitan Surface AQ mission primarily focusses on the understanding of ozone pollution and the chemical and physical processes affecting ozone concentrations, the Paris Agreement Monitoring HAPS mission focusses on CO2 and NO2, primarily on the detection and quantification of the emissions in the metropolitan areas.

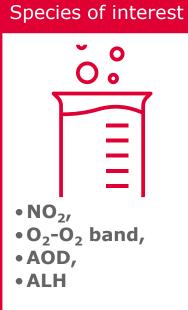
Mission Requirement Document Proposed demonstration concept



Platform

Sceye 2

Instrumentation



- TNO spectrolite
- Commercial Hyperspectral camera

Programmatic

•TRL: 5-6 •Timeframe: 2-3 years

Thank you

Carlos Domenech cdomenech@gmv.com GMV

© GMV Property 2021 - All rights reserved