

MISSION CONCEPT FOR SPACE-BORNE GRAVIMETRY WITH COLD ATOMS INTERFEROMETRY

S. MOTTINI
THALES ALENIA SPACE

LIVING PLANET SYMPOSIUM 2022

BONN - MAY 26TH

THALES ALENIA SPACE OPEN

Date: 08/06/2022

Template: 83230347-DOC-TAS-EN-006

Ref: <reference:

PROPRIETARY INFORMATION
© 2019 Thales Alenia Space

SPACE FOR LIFE ///

- Top manufacturer of telecommunications satellites
- World leader in satellite constellations

- Defense telecom satellites
- Very High Resolution optical/RF instruments
- Ground control systems

- Study Earth's oceans
- Study Earth's continents
- Forecast the weather
- Understand climate change

- Exploring our solar system
- Understanding our universe
- Living & working off Earth
- In-orbit services

Enabling location & map services Ensuring the safety of travelers Providing accuracy & reliability Enabling the Internet of Things

MORE THAN

8,000 EMPLOYEES

17 SITES ******
WORLDWIDE

/// 2

THALES ALENIA SPACE – SPACE TO EXPLORE (Domain of Exploration and Science – ITALIA)

EXPLORING OUR SOLAR SYSTEM

- CASSINI: Saturn
- BEPI-COLOMBO: Mercury
- EXOMARS 2020

UNDERSTANDING OUR UNIVERSE

- ALMA: The origin of the Universe
- EUCLID: the dark matter
- ROSETTA: the comets
- HERSCHEL-PLANCK

LIVING & WORKING OFF EARTH

- ISS
- Lunar Platform
- Human spaceflight
- Reusable spacecraft

IN-ORBIT SERVICES

2009: GOCE (Gravity Field And Steady-state Ocean Circulation Explorer)

GOCE's Pillars

/// EGG Gradiometer with electrostatic accelerometers

/// DFACS Attitude Control

Date: 6/8/2022

Template: 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION
© 2019 Thales Alenia Space

GOCE'S GRADIOMETER

Accelerometer

Geoid accuracy	2 cm
Resolution	100 km
Acceleration sensitivity	2·10 ⁻¹² m/s ²
Gravity anomalies	0.6 mGal (1 mGal = 10^{-5} m/s ²)

PROPRIETARY INFORMATION © 2019 Thales Alenia Space

Structure in Carbon-Carbon (CTE: 10⁻⁷/K)

Baseline: 0.5 m

THALES ALENIA SPACE OPEN

Template: 83230347-DOC-TAS-EN-006

Address Gravimetry from Space: Mission and Platform Contribution

Study environmental changes on a global scale → Measurement from space

Three fundamental features are typical objectives for gravity missions and platforms:

- Uninterrupted tracking in three spatial dimensions
- Measurement (or compensation) of non-gravitational forces (→ Drag Free Control System)
- Lowest possible orbital altitude (gravity field attenuates with the square of the distance) for the maximum sensitivity.

Unfortunately, the lower is the orbit, the more is the air-drag the satellite experiences

Address Gravimetry with Quantum Accelerometers / Gyroscopes

Principles and expected benefits

- Quantum states used as references
- State propagation to probe space
 - → Orders of magnitude more sensitive, long term stability

□ State of the art:

- On ground: up to commercial products
- In space: TRL from 3 to 6, according to specific subsystems

■What to explore

- Concepts compatibility with relevant environment
- SWaP compatibility (Size, Weight and Power)
- Benefits w.r.t. classical technology. Pure vs. Hybrid solutions

Accelerometer with a Quantum Mass: Cold Atom Interferometry

The laser acts as a ruler marking atoms position on their phase

Interferometer phase shift is proportional to the acceleration: $\Phi = k \cdot g \cdot T^2$

Gradiometry With Free Fall Cold Atoms

/// Simultaneous measurement of gravity gradient and rotation rate

/// At least one order of magnitude improvement in gravity gradient sensitivity, especially at very low frequencies

/// Rotation sensitivity at the level of 30 prad/s/√Hz

DFACS of New Generation

DFACS provides reduction of non-gravitational accelerations (due to atmosphere drag), angular and linear on three axes.

AOCS sensors	_	Accelerometer set		
	_	GNSS receivers		
	_	2 star trackers		
	_	2 CESS		
	_	2 three-axis magnetometer		
	-	2 three-axis coarse rate sensor		
Actuators	_	3 magnetic torquers		
	_	8 μRIT electric thrusters		
	_	1 RIT electric thruster		

Angular rates	< 10 ⁻¹⁰ rad ² /s ² /Hz
Angular rates (Knowledge)	< 10 ⁻⁸ rad/s/√Hz
Pointing stability	< 10 ⁻⁴ rad
Linear acceleration	< 10 ⁻⁹ m/s ² /Hz ^{1/2} @ 0.1 Hz

Template: 83230347-DOC-TAS-EN-006

Quantum Sensing in Space – Recent studies

(ESA 2016 - 2018)

Study of a CAI mission scenario and evaluation of the potential performance compared to GOCE.

Partners: LENS (I), Marwan Technologies (I), Politecnico di Milano (I), TU Delft (NL)

A tri-axial Cold Atom interferometer (based on rubidium) to be accommodated on a realistic platform, to be flown on a realistic orbit, addressing static gravity ought to improve on the performance of GOCE

Mission and Platform contribution to CAI

- Full-fledged DFACS control (3-axis linear and angular acceleration control using ultra-high accuracy accelerometer and proportional micro-newton thrusters) as the one currently proposed for "classical" missions such as NGGM/MAGIC, provides drag-free environment at GOCE-like altitude (<300 km) compatible with the scientific performance
- Only nadir-pointing platforms can be designed for such performance at such altitude
- DFACS requires acceleration measurements at 10 Hz, which cannot be provided by current CAI technology. Measurements for drag free are based on GOCE-like accelerometer.
- Estimate of the angular rate provided by the controller (for centrifugal acceleration correction)
- Single-axis CAI instrument plus GOCE-like full tensor gradiometer, the CAI providing the low-bandwidth extension and reference, would require strongly miniaturized solution

Template: 83230347-DOC-TAS-EN-006

Orbital Rate Degrades Performance

- The rotation of the effective wave vector with respect to the atom clouds reduces contrast
- Tilted mirrors are introduced to compensate for average rate (spherical Earth approximation).
 Additional compensation of slow rate modulation at orbital frequency
- Tilted mirrors prevent gyro-mode. Angular rate shall be provided by AOCS/DFACS for centrifugal acceleration correction
- Angular rate estimate provided by the controller (or by a top-level gyro) is not yet adequate to reach the expected reconstruction

How big is a triaxial Cold Atom Gradiometer?

Instrument Volume.

The estimated payload size is: $(1052 \times 1052 \times 1600)$ mm

- 3 x single axis instrument: $(1052 \times 444 \times 805)$ mm
- 3 x laser system: approx. (300 \times 300 \times 400) mm
- 3 x electronic system: approx. (300 \times 300 \times 1000) mm
- 9 x ion getter pump: approx. ($200 \times 200 \times 200$) mm

Data provided by ESA, developed by a separated consortium

GOCE EGG

(H 1350, Ø 830)

How 'hungry' is a triaxial Cold Atom Gradiometer?

Instrument Mass and Power budgets.

GOCE	Mas [kg]	Power [W] (science mode)
Platform	866.1	617.1
Gradiometer	180.7	114.9
Satellite	1060.8	876.0

THALES ALENIA SPACE OPEN

Preliminary budget overview						
	Mass	Mass	\mathbf{Power}	Power		
		+20% component		+ 20 % component		
		margin		margin		
	(kg)	(kg)	(W)	(W)		
Instrument with tiptilt mirror	206.1	247.2	664.0	796.8		
Instrument with tiptilt mirror	206.1	247.2	664.0	796.8		
Instrument without tip/tilt	199.6	239.5	610.0	732.0		
mirror						
Total	611.8	733.9	1938.0	2325.6		
Total $+20\%$ system mar-	733.9	880.7	2325.6	2790.7		
$_{ m gin}$						

Data provided by ESA, developed by a separated consortium

Date: 3-4/12/2018

Template: 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION
© 2019 Thales Alenia Space

ThalesAlenia

Thais / Leonards company Space

Realistic accommodation of a single axis gradiometer

On a platform adequate for a gravimetric mission around the Earth

Quantum Sensing in Space – Recent studies

(ASI 2020-2021)

MOCAST + Feasibility study for a mission based on CAI technology integrated with an atomic clock, to study the Earth gravity field

Partners: Politecnico di Milano (I), Atom Sensors (I), Università di Trieste(I), Università di Trento (I)

A QSG mission in formation flying (Bender constellation, with two or three satellites per orbit) with an "enhanced" quantum payload consisting of:

- Cold Atom Interferometer (88Sr atoms), providing observations of gravitational gradients (low sensitivity to magnetic fields, high isotopic abundance),
- **Atomic clock** (87Sr atoms) for optical frequency measurements using an ultra-stable laser providing time observations, hence observations of differences of the gravitational potential.

Mission and Platform contribution to MOCAST+

- Angular rotations, through the centrifugal term, put again a serious limitation to the measurement of the gravity gradient
- MOCAST+ could improve the current knowledge of the Earth gravity field and its time variation, at the price of higher mission and platform complexity (but no showstoppers today):
 - Ionger inter-satellite distances (~ 1000 km)
 - Inter-satellite laser link
 - Bender formation with three satellites per orbit
 - Improvement of angular rate measurement

Template: 83230347-DOC-TAS-EN-006

Realistic accommodation of a single axis gradiometer + clock

On a platform adequate for a gravimetric mission around the Earth

A Cold Atom Gradiometer Today?

- Quantum Cold Atoms gradiometer in a GOCE-like mission is promising for theoretical performances.
- New generation drag free control at low altitude (250 km) is adequate, but ion propulsion technology development is desirable
- CAI mission still needs electrostatic accelerometers to implement DFACS (CAI data rate is still far from being adequate)
- Reduction of instrument footprint (Size, Weight, Power) is necessary, although feasibility studies
 have shown compatibility of real platforms with single axis instruments
- Synergy with atomic clocks provides improvement at very low harmonics, but very long baseline constellations (>> 100 km) require dedicated studies

ESA and EU support in-orbit-demonstration and pathfinder missions in the next decade. Space industry is ready to take the challenge

Waiting for Quantum Gradiometry

Date: 01/06/2016

Ref: Ref.:TASI-SD-XIPE-PBR-0044
Template: 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION
© 2019 Thales Alenia Space

End of presentation

Date: <date:

Ket: <reterence>

Template: 83230347-DOC-TAS-EN-006

PROPRIETARY INFORMATION © 2019 Thales Alenia Space Thales Alenia