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The global water-energy cycle response to greenhouse
gases emissions and consequences
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Farth energy budget and climate change
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Farth energy budget and climate change
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Global circulation and climate change
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Space gravimetry and the monitoring
of climate change impacts



Impacts of climate change




Maturity of the GRACE record

Global coverage
low ratio of missing data (except at the end of GRACE mission)

Robust validation against altimetry (laser radar) and in situ measurements
estimate of the associated uncertainty including time correlation in errors

High stability: <=#0.5 mm.yr? of drift over 20yr

M ERS TWS

Inversion

method 0.06 0.01 0.05 0.01 0.06
geocenter 0.19 <0.01 0.03 <0.01 0.22
C20 0.01 <0.01 <0.01 <0.01 0.02
filtering 0.01 <0.01 0.02 <0.01 0.01
GIA 0.03 (0.4) 0.03 0.01 <0.01 0.04
TOTAL 0.24 (0.5) 0.03 0.04 0.01 0.27

From Blazquez et al. 2018



Space Geodesy: satellite altimetry and space gravimetry
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Space Geodesy: satellite altimetry and space gravimetry

* Jce sheet mass loss and contribution to sea level rise
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Space Geodesy: satellite altimetry and space gravimetry

e Ice sheet mass loss, glaciers mass loss and contribution to sea level rise
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Sea level has not only risen over the last
25 years, but the rate at which it is rising
is getting faster




Space gravimetry and the monitoring
of the causes for climate change
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OHC from satellite altimetry and space gravimetry
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From ESA sea level budget closure project, update in 2020



Geodesy and causes for climate change?
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Geodesy and causes for climate change?

Longwave radiation and heat transfer
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Sea level/Ice
sheet mass loss
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Tentative identification of future needs

Current situation Near futur 2028-2040 Longer term >2040

GRACE-GRACE-FO MAGIC (goal) (Desirable target)
300kmx300km 100kmx100km ?
Monthly RMS: 3cm EWH Weekly RMS: 1.5 cm EWH

20yr trend: £0.5mm/yr EWH 10yr trend +0.5mm/yr EWH
Measuring climate change impacts
Detect and quantify at Detect and quantify at large Need: Detect and quantify at

regional scale basin scale basin scale down to 10km (typical
length of the ablation zone)

Detect and quantify at Detect and quantify at to detect and quantify at
regional scale regional scale catchment scale 3km/3km
Detect at regional scale Detect and quantify at Need : Detect and quantify in key
(AMOC) regional scale (AMOC) small areas e.g. Bering strait,

Denmark Strait, Drake passage
And close to the coast

Measuring causes for climate change

Detect and quantify at global Detect and quantify at Need: Quantify OHC in highly
scale regional scale dynamical regions (WBC) for
regional heat budget



