

### living planet symposium BONN 23-27 May 2022

TAKING THE PULSE OF OUR PLANET FROM SPACE

EUMETSAT CECMWF



The need for in-situ measurements at altitudes below 200 km to resolve ion-neutral interactions in the Lower Thermosphere - lonosphere

Theodoros E. Sarris, Democritus University of Thrace, Greece

26<sup>th</sup> May 2022

ESA UNCLASSIFIED – For ESA Official Use Only



### Overview



- In the altitudes between 100 and 200 km, the atmosphere transitions from being well-mixed and electrically neutral, to heterogeneous and partly ionized. Furthermore, in the altitudes between 100 and 200 km:
  - a) neutral and electron temperatures increase markedly;
  - b) ion and electron density increase, while neutral density decreases;
  - c) ion and neutral composition exhibits dramatic variation; and
  - d) neutral wind and ion drift patterns are governed by complex physical processes.



### Ion - Neutral Interactions in the 100 to 200 km range





**B** : magnetic field  $E_{\perp}$ : electric field perpendicular to **B**   $j_{\perp}$ : perpendicular current  $V_e$ : electron drift  $V_i$ : ion drift





no collisions

**j**\_= 0

### Processes in the 100 to 200 km altitude range





 Solar UV Radiation is an omni-present energy source, and the largest on long-term averages.

However, during active times:

- Field Aligned Currents close within the 100 to 200 km altitude range at high latitudes, within the altitudes where ion-neutral interactions maximize, leading to Pedersen currents and frictional or Joule heating.
- Joule heating subsequently modifies neutral wind and neutral density paterns as well as thermal tides at lower latitudes.
- Energetic Particle Precipitation alters conductivity and leads to heating and HOx – NOx production that destroys Ozone
- Gravity Waves deposit their momentum within these altitudes



# Energy input and flow in the 100 to 200 km altitude range .eesa



# Energy input and flow in the 100 to 200 km altitude range .eesa





EISCAT 11-year measurements

TIEGCM 11-year run



EISCAT data provided by Anita Aikio

11-year TIEGCM data produced by DUTH

# Joule heating distribution in altitude and MLT

#### Joule heating profiles from Rocket launches



#### **EISCAT 11-year measurements**



Joule heating (10<sup>-8</sup> W/m<sup>3</sup>)

Rocket data provided by Rob Pfaff

EISCAT data provided by Anita Aikio

# Key observables in the 100 to 200 km altitude range





|              | Abbreviation                                                          | Geophysical Observable                                 | Commonly used<br>instruments                                                 |
|--------------|-----------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------|
| lonosphere   | $\overline{v}_i$                                                      | Ion Drift velocity                                     | Thermal Ion Imager or Ion<br>Drift Meter and Retarding<br>Potential Analyzer |
|              | $T_i$                                                                 | Ion Temperature                                        |                                                                              |
|              | T <sub>e</sub>                                                        | Electron Temperature                                   | Langmuir Probe and<br>Mutual Impedance Probe                                 |
|              | Ni                                                                    | Ion Number Density                                     |                                                                              |
|              | N <sub>e</sub>                                                        | Electron Number Density                                |                                                                              |
|              | TEC                                                                   | Total Electron Content                                 | GNSS Receiver                                                                |
|              | n <sub>ix</sub>                                                       | Ion Composition                                        | Ion Mass Spectrometer                                                        |
| Thermosphere | $\vec{u}_n$                                                           | Neutral Wind Velocity                                  | Ram Wind Sensor and<br>Cross-Track Wind Sensor                               |
|              | ρ                                                                     | Neutral Mass Density                                   | Accelerometer                                                                |
|              | $lpha_{ng}$                                                           | Non-gravitational acceler.                             |                                                                              |
|              | T <sub>n</sub>                                                        | Neutral Temperature                                    | Neutral Mass<br>Spectrometer                                                 |
|              | n <sub>nx</sub>                                                       | Neutral Composition                                    |                                                                              |
| fields       | B                                                                     | Magnetic Field                                         | Magnetic Field Instrument                                                    |
|              | Ē                                                                     | Electric Field                                         | Electric Field Instrument                                                    |
| ЕРР          | Fl <sub>e</sub> , Fh <sub>e</sub> , Fl <sub>i</sub> , Fl <sub>e</sub> | Energetic Precipitating<br>Particles (ions, electrons) | Energetic Particle<br>Detector                                               |





### Obtaining global statistics with an in-situ mission





# Science Questions in the 100 to 200 km altitude range



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Key question                                                                                                                                                                                                                                                     | Path to advancement                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Energetics<br>Science Question 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>How and to what extent is energy deposited<br/>as Joule, or frictional, heating in the LTI?</li> <li>How does this heating affect, and is affected<br/>by, the thermal structure, local transport, and<br/>composition within LTI altitudes?</li> </ul> | <ul> <li>Measure simultaneously all the parameters relevant to Joule, or frictional, heating within the 100 to 200 km altitude region;</li> <li>characterize its variability within the high-latitude regions and at altitudes where it maximizes;</li> <li>relate its evolution to co-located plasma and neutral dynamics.</li> </ul> |
| to fundamentally<br>advance our<br>understanding of<br>the energetics,<br>dynamics, and<br>chemistry of the<br>atmosphere-<br>space transition<br>region and of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>What are the effects of Energetic Particle<br/>Precipitation (EPP) on the ionization and<br/>composition of the LTI?</li> <li>To what extent does EPP impact the<br/>mesosphere and stratosphere?</li> </ul>                                            | <ul> <li>Measure the flux of energetic charged particles traveling through the 100 to 200 km region at high latitudes to precipitate into the middle atmosphere;</li> <li>characterize the ionization, energy deposition and effects of EPP on conductivity in the LTI.</li> </ul>                                                     |
| Dynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Bynamics<br>Byn | <ul> <li>What are the relative contributions of<br/>magnetospheric, solar and atmospheric<br/>forcing in influencing LTI fluid dynamics<br/>and electrodynamics at high, middle and<br/>low latitudes?</li> </ul>                                                | Measure all relevant parameters across a range of<br>latitudes and altitudes between 100 and 200 km, to<br>discover how atmospheric and magnetospheric forcing<br>and collisions between charged and neutral gases in<br>the LTI affect the density, composition, winds and drifts<br>in the region.                                   |

### Conclusions



- Co-spatial, co-temporal measurements of all relevant geophysical observables are needed for the unambiguous quantification of key processes in the LTI
- These geophysical observables need to be quantified by an in-situ mission sampling the LTI below 200 km, with statistically representative sampling over the mission lifetime.
- Extensive synergies with various ground-based measurement techniques and space missions will enable to place in situ measurements in a global context as well as providing cross-comparison possibilities.
- Such an in-situ mission will fill a major gap and are in great need for LTI process understanding and quantification.
- A joint ESA-NASA Lower Thermosphere-Ionosphere (ENLoTIS) Working Group has recently been formed to explore agency cooperation on a future LTI mission concept targeting in situ sampling of geophysical parameters that enable advancements in understanding neutral-ion interactions in the 100 - 200 km altitude range, and the ionospheric E-region in particular.